CONTENTS

INTRODUCTION A View of the Past: Exercise Physiology— Roots and Historical Perspectives xvii

Interview with Dr. Charles Tipton

PART ONE: EXERCISE PHYSIOLOGY 1

Section 1 Nutrition: The Base for Human Performance 3

Interview with Dr. David L. Costill

CHAPTER 1 Carbohydrates, Lipids, and Proteins 7

Part 1 * Carbohydrates 8
Kinds and Sources of Carbohydrates 8
Recommended Intake of Carbohydrates 13
Role of Carbohydrates in the Body 13
Carbohydrate Dynamics in Exercise 16

Part 2 * LIPIDS 20
The Nature of Lipids 20
Kinds and Sources of Lipids 20
Recommended Lipid Intake 26
Role of Lipid in the Body 27
Fat Dynamics During Exercise 28

Part 3 PROTEINS 31

The Nature of Proteins 31

Kinds of Protein 31

Recommended Protein Intake 33

Role of Protein in the Body 35

Dynamics of Protein Metabolism 37

Nitrogen Balance 37

Protein Dynamics in Exercise and

Training 39

CHAPTER 2 Vitamins, Minerals, and Water 42

Part 1 * VITAMINS 43
The Nature of Vitamins 43
Kinds of Vitamins 43
Role of Vitamins 43
Defining Nutrient Needs 45
Exercise, Free Radicals, and Antioxidants 51
Vitamin Supplements: The Competitive
Exercise Edge? 53

Part 2 MINERALS 56
The Nature of Minerals 56
Role of Minerals in the Body 56
Calcium 56
The Female Athlete Triad: Unexpected Problem for Women Who Train Intensely 63

Phosphorus 65
Magnesium 65
Iron 67
Sodium, Potassium, and Chlorine 71
Minerals and Exercise Performance 72

Part 3 WATER 75
The Body's Water Content 75
Water Balance: Intake Versus Output 77
Water Requirement in Exercise 78

CHAPTER 3 Optimal Nutrition for Exercise 81

Nutrient Intake Among the Physically Active 82
MyPyramid: The Essentials of Good
Nutrition 87
Exercise and Food Intake 90
Precompetition Meal 94
Carbohydrate Feedings Prior to, During, and in
Recovery from Exercise 97
Glucose Feedings, Electrolytes, and Water
Uptake 101

Section 2 Energy for Physical Activity 107

Interview with Dr. John O. Holloszy

CHAPTER 4 **Energy Value of Food** 111 Measurement of Food Energy 112

CHAPTER 5 Introduction to Energy Transfer 118
Energy—The Capacity for Work 119
Interconversions of Energy 121
Biologic Work in Humans 123
Factors that Affect the Rate of Bioenergetics 124
Hydrolysis and Condensation: The Basis for

Digestion and Synthesis 128

CHAPTER 6 Energy Transfer in the Body 134

Part 1

PHOSPHATE BOND ENERGY 135

Adenosine Triphosphate: The Energy
Currency 135

Phosphocreatine: The Energy Reservoir 138

Cellular Oxidation 138

Oxygen's Role in Energy Metabolism 142

Part 2 ENERGY RELEASE FROM
MACRONUTRIENTS 142
Energy Release from Carbohydrate 145
Energy Release from Fat 153
Energy Release from Protein 157
The Metabolic Mill: Interrelationships Among
Carbohydrate, Fat, and Protein Metabolism 159

Contents

CHAPTER 7 Energy Transfer During Exercise 162

Immediate Energy: The ATP-PCR System 163 Short-Term Energy: The Lactic Acid System 163 Long-Term Energy: The Aerobic System 164

Energy Spectrum of Exercise 168

Oxygen Consumption During Recovery 169

CHAPTER 8 Measurement of Human Energy

Expenditure 178

Measuring the Body's Heat Production 179 Doubly Labeled Water Technique 185 Respiratory Quotient 186 Respiratory Exchange Ratio 190

CHAPTER 9 Human Energy Expenditure During Rest and Physical Activity 192

Part 1 * Energy Expenditure at Rest 193 Basal and Resting Metabolic Rate 193 Metabolic Size Concept 193

Comparing Metabolic Rates in Humans 194 Factors that Affect Energy Expenditure 197

Part 2 * Energy Expenditure During Physical Activity 200

Classification of Physical Activities by Energy Expenditure 200

The MET 200

Daily Rates of Average Energy Expenditure 201

Energy Cost of Household, Industrial, and Recreational Activities 201

Heart Rate to Estimate Energy Expenditure 203

CHAPTER 10 Energy Expenditure During Walking, Jogging, Running, and Swimming 206

Gross Versus Net Energy Expenditure 207 Economy of Human Movement and Mechanical Efficiency 207 Energy Expenditure During Walking 209 Energy Expenditure During Running 212 Swimming 220

CHAPTER 11 Individual Differences and Measurement of Energy Capacities 225

Specificity Versus Generality of Metabolic Capacity and Exercise Performance 226 Overview of Energy-Transfer Capacity During Exercise 226

Anaerobic Energy Transfer: The Immediate and Short-Term Energy Systems 227 Aerobic Energy: The Long-Term Energy

System 234

Section 3 Aerobic Systems of Energy Delivery and Utilization 249

Interview with Dr. Loring B. Rowell

CHAPTER 12 **Pulmonary Structure and Function** 253 Surface Area and Gas Exchange 254 Anatomy of Ventilation 254
Mechanics of Ventilation 255
Lung Volumes and Capacities 258
Lung Function, Aerobic Fitness, and Exercise

Performance 261 Pulmonary Ventilation 263

Variations from Normal Breathing Patterns 265

The Respiratory Tract During Cold-Weather Exercise 266

CHAPTER 13 Gas Exchange and Transport 270

Part 1 * Gaseous Exchange in the Lungs and Tissues 271

Concentrations and Partial Pressures of Respired Gases 271

Movement of Gas in Air and Fluids 272 Gas Exchange in the Lungs and Tissues 273

Part 2 • Oxygen Transport 275
Transport of Oxygen in the Blood 275

Part 3 * CARBON DIOXIDE TRANSPORT 282 Carbon Dioxide Transport in the Blood 282

CHAPTER 14 Dynamics of Pulmonary Ventilation 286

Part 1 * Regulation of Pulmonary Ventilation 287

Ventilatory Control 287

Regulation of Ventilation During Exercise 289

Part 2 * Pulmonary Ventilation During Exercise 291

Ventilation and Energy Demands in Exercise 291 Energy Cost of Breathing 296

Does Ventilation Limit Aerobic Power and Endurance? 298

Part 3 * ACID-BASE REGULATION 300

Buffering 300

Physiologic Buffers 301

Effects of Intense Exercise 302

CHAPTER 15 The Cardiovascular System 303

Cardiovascular System Components 304 Hypertension 315 Blood Pressure Response to Exercise 317 The Heart's Blood Supply 319 Myocardial Metabolism 322

CHAPTER 16 Cardiovascular Regulation and

Integration 324

Intrinsic Regulation of Heart Rate 325
Extrinsic Regulation of Heart Rate and
Circulation 328
Distribution of Blood 333

Integrative Exercise Response 335
Exercising after Cardiac Transplantation 335

CHAPTER 17 Functional Capacity of the Cardiovascular

System 340

Cardiac Output 341 Cardiac Output at Rest 342 Cardiac Output During Exercise 343
Cardiac Output Distribution 346
Cardiac Output and Oxygen Transport 347
Cardiovascular Adjustments to Upper-Body
Exercise 351

CHAPTER 18 **Skeletal Muscle: Structure and Function** 353 Gross Structure of Skeletal Muscle 354

Skeletal Muscle Ultrastructure 357

Muscle Fiber Alignment 360

Actin–Myosin Orientation 363

Chemical and Mechanical Events During Muscle
 Action and Relaxation 364

Muscle Fiber Type 371

Genes that Define Skeletal Muscle
 Phenotype 374

Fiber Type Differences Among Athletic

CHAPTER 19 Neural Control of Human Movement 376

Groups 374

Neuromotor System Organization 377 Nerve Supply to Muscle 385 Motor Unit Functional Characteristics 390 Receptors in Muscles, Joints, and Tendons: The Proprioceptors 393

CHAPTER 20 The Endocrine System: Organization and Acute and Chronic Responses to Exercise 400

Endocrine System Overview 401
Endocrine System Organization 401
Resting and Exercise-Induced Endocrine
Secretions 407
Gonadal Hormones 417
Exercise Training and Endocrine Function 430
Resistance Training and Endocrine Function 437
Opioid Peptides and Physical Activity 439
Physical Activity, Infectious Illness, Cancer, and

PART TWO: APPLIED EXERCISE PHYSIOLOGY 445

Immune Response 439

Interview with Dr. Bengt Saltin

CHAPTER 21 Training for Anaerobic and Aerobic Power 451

Exercise Training Principles 452
Physiologic Consequences of Exercise
Training 457
Anaerobic System Changes with
Training 458
Aerobic System Changes with Training 458
Factors that Affect Aerobic Training
Responses 470

American College of Sports Medicine and
American Heart Association Updated Fitness
Guidelines and Recommendations 475
How Long Before Improvements Occur? 476
Maintenance of Aerobic Fitness Gains 478
Training Methods 479
Overtraining: Too Much of a Good Thing 483
Exercising During Pregnancy 485

CHAPTER 22 Muscular Strength: Training Muscles to Become Stronger 490

Part 1 • Strength Measurement and Resistance Training 491 Measurement of Muscle Strength 492 Gender Differences in Muscle Strength 495 Training Muscles to Become Stronger 498

Part 2 STRUCTURAL AND FUNCTIONAL ADAPTATIONS TO RESISTANCE
TRAINING 519

Factors that Modify the Expression of Human Strength 519

Comparative Training Responses in Men and Women 526

Detraining 527

Metabolic Stress of Resistance Training 527 Circuit Resistance Training 528 Muscle Soreness and Stiffness 528

CHAPTER 23 **Special Aids to Exercise Training and Performances** 533

An Increasing Challenge to Fair
Competition 534
A Need to Critically Evaluate the Scientific
Evidence 538
On the Horizon 540
Pharmacologic Agents 541
Nonpharmacologic Approaches 566

Section 5 Exercise Performance and Environmental Stress 587

Interview with Dr. Barbara Drinkwater

CHAPTER 24 Exercise at Medium and High Altitude 591

The Stress of Altitude 592
Acclimatization 596
Metabolic, Physiologic, and Exercise Capacities at Altitude 604
Altitude Training and Sea-Level
Performance 606
Combine Altitude Stay with Low-Altitude
Training 608

CHAPTER 25 Exercise and Thermal Stress 611

Part 1 Mechanisms of
Thermoregulation 612
Thermal Balance 612
Hypothalamic Temperature Regulation 613

Contents

Thermoregulation in Cold Stress: Heat Conservation and Heat Production 613 Thermoregulation in Heat Stress: Heat Loss 614

Effects of Clothing on Thermoregulation 618

Part 2 • Thermoregulation and Environmental Heat Stress During Exercise 624

Exercise in the Heat 624

Maintaining Fluid Balance: Rehydration and Hyperhydration 627

Factors that Modify Heat Tolerance 630 Complications from Excessive Heat Stress 633

Part 3 THERMOREGULATION AND
ENVIRONMENTAL COLD STRESS
DURING EXERCISE 635

Exercise in the Cold 635 Acclimatization to Cold 637 How Cold Is Too Cold? 638

CHAPTER 26 Sport Diving 640

Diving History—Antiquity to the Present 641 Pressure–Volume Relationships and Diving Depth 645

Snorkeling and Breath-Hold Diving 646 Scuba Diving 650

Special Problems with Breathing Gases at High Pressures 653

Dives to Exceptional Depths: Mixed-Gas Diving 659

Energy Cost of Underwater Swimming 663

CHAPTER 27 Microgravity: The Last Frontier 665

The Weightless Environment 666
Historical Overview of Aerospace Physiology and Medicine 671

Modern Era 673

Medical Evaluation for Astronaut Selection 673 Physiologic Adaptations to Microgravity 676

Countermeasure Strategies 693

Overview of Physiologic Responses to Spaceflight 709

Vision for the Future of Space Exploration 710 Practical Benefits from Space Biology Research 714

Section 6 Body Composition, Energy Balance, and Weight Control 721

Interview with Dr. Claude Bouchard

CHAPTER 28 Body Composition Assessment 725

Overweight, Overfatness, and Obesity: No Unanimity for Terminology 728 The Body Mass Index: A Popular Clinical Standard 728 Composition of the Human Body 733 Common Techniques to Assess Body Composition 738 Average Percentage Body Fat 756 Determining Goal Body Weight 757

CHAPTER 29 **Physique, Performance, and Physical Activity** 759

Physiques of Champion Athletes 760 Upper Limit for Fat-Free Body Mass 778

CHAPTER 30 Overweight, Obesity, and Weight Control 780

Part 1 • OBESITY 781

Historical Perspective 781

Obesity Remains a Worldwide Epidemic 781

A Progressive Long-Term Process 784

Genetics Influences Body Fat
 Accumulation 787

Physical Inactivity: A Crucial Component in
 Excessive Fat Accumulation 789

Health Risks of Excessive Body Fat 790

Criteria for Excessive Body Fat: How Fat
 Is Too Fat? 793

Part 2 * Principles of Weight Control: Diet and Exercise 801

Energy Balance: Input Versus Output 801
Dieting for Weight Control 802
Factors that Affect Weight Loss 810
Exercise for Weight Control 812
Effectiveness of Regular Physical Activity 814
Weight Loss Recommendations for Wrestlers
and Other Power Athletes 822
Gaining Weight: The Competitive Athlete's
Dilemma 823

Section 7 Exercise, Successful Aging, and Disease Prevention 827

Interview with Dr. Steven N. Blair

CHAPTER 31 Physical Activity, Health, and Aging 831

The Graying of America 832

Part 1 * Physical Activity in the Population 835

Physical Activity Epidemiology 835

Part 2 AGING AND PHYSIOLOGIC FUNCTION 842

Age Trends 842

Trainability and Age 852

Part 3 Physical Activity, Health, and Longevity 853

Causes of Death in the United States 854 Exercise, Health, and Longevity 854 Regular Moderate Exercise Provides Significant Benefits 856

Contents

Can Increasing Physical Activity Level Improve Health and Extend Life? 859

Part 4 • CORONARY HEART DISEASE 860 Changes on the Cellular Level 860 Coronary Heart Disease Risk Factors 864

CHAPTER 32 Clinical Exercise Physiology for Cancer, Cardiovascular, and Pulmonary Rehabilitation 876

The Exercise Physiologist in the Clinical Setting 877

Training and Certification Programs for Professional Exercise Physiologists 877 Clinical Applications of Exercise Physiology to Diverse Diseases and Disorders 879 Oncology 879

Cardiovascular Disease 885 Assessing Cardiac Disease 892 Stress Test Protocols 902 Prescribing Physical Activity and Exercise 904 Cardiac Rehabilitation 906 Pulmonary Diseases 909

Exercise and Asthma 917

Neuromuscular Diseases, Disabilities, and Disorders 919 Renal Disease 921 Cognitive/Emotional Diseases and Disorders 922

On the Horizon 929

Interview with Dr. Frank W. Booth

Molecular Biology—A New Vista for Exercise Physiology 933

Brief History Tour of Molecular Biology 936 Revolution in the Biologic Sciences 938

Human Genome 940 Nucleic Acids 942

How DNA Replicates 951

Protein Synthesis: Transcription and

Translation 954

Mutations 971

New Horizons in Molecular Biology 979 Human Performance Research 1001

INDEX 1008