CONTENTS

	Preface	Xi
	New To This Edition	xiv
1	Some Preliminary Considerations	1
1.1	Mathematical Induction	1
1.2 1.3	The Binomial Theorem Early Number Theory	8 12
2	Divisibility Theory in the Integers	17
2.1 2.2 2.3 2.4	The Division Algorithm The Greatest Common Divisor The Euclidean Algorithm The Diophantine Equation $ax + by = c$	17 20 26 32
3	Primes and Their Distribution	40
3.1 3.2 3.3	The Fundamental Theorem of Arithmetic The Sieve of Eratosthenes The Goldbach Conjecture	40 45 51
4	The Theory of Congruences	62
4.1	Carl Friedrich Gauss	62
4.2	Basic Properties of Congruence	64 70
4.3 4.4	Special Divisibility Tests Linear Congruences	70 75

CONTENTS

5	Fermat's Theorem	84
5.1	Pierre de Fermat	84
5.2	Fermat's Factorization Method	86
5.3	The Little Theorem	91
5.4	Wilson's Theorem	98
6	Number-Theoretic Functions	102
6.1	The Functions τ and σ	102
6.2	The Möbius Inversion Formula	111
6.3	The Greatest Integer Function	116
6.4	An Application to the Calendar	121
7	Euler's Generalization of Fermat's Theorem	127
7.1	Leonhard Euler	127
7.2	Euler's Phi-Function	129
7.3	Euler's Theorem	134
7.4	Some Properties of the Phi-Function	139
7.5	An Application to Cryptography	144
8	Primitive Roots and Indices	157
8.1	The Order of an Integer Modulo n	157
8.2	Primitive Roots for Primes	162
8.3	Composite Numbers Having Primitive Roots	168
8.4	The Theory of Indices	173
9	The Quadratic Reciprocity Law	179
9.1	Euler's Criterion	179
9.2	The Legendre Symbol and Its Properties	185
9.3	Quadratic Reciprocity	195
9.4	Quadratic Congruences with Composite Moduli	202
10	Perfect Numbers	207
10.1	Marin Mersenne	207
10.2	The Search for Perfect Numbers	209
10.3	Mersenne Primes	215
10.4	Fermat Numbers	226
11	The Fermat Conjecture	234
11.1	Pythagorean Triples	234
11.2	The Famous "Last Theorem"	241
12	Representation of Integers as Sums of Squares	249
12.1	Joseph Louis Lagrange	249
12.2	Sums of Two Squares	251
12.3	Sums of More than Two Squares	260

CONTENTS

13	Fibonacci Numbers	270
13.1 13.2	The Fibonacci Sequence Certain Identities Involving Fibonacci Numbers	270 277
14	Continued Fractions	287
14.1 14.2 14.3 14.4	Srinivasa Ramanujan Finite Continued Fractions Infinite Continued Fractions Pell's Equation	287 290 304 318
15	Some Twentieth-Century Developments	333
15.1 15.2 15.3 15.4	Hardy, Dickson, and Erdös Primality Testing and Factorization An Application to Factoring: Remote Coin Flipping The Prime Number Theorem	333 338 348 352
Miscellaneous Problems		360
Appendixes		363
	General References Suggested Further Reading Tables Answers to Selected Problems	364 367 370 393
Index		404