Contents

rs	xi xv
The Rice Xa21 Immune Receptor Recognizes a Novel Bacterial Quorum Sensing Factor Chang Jin Park and Pamela C. Ronald	1
Introduction Plants and Animal Immune Systems A Plethora of Immune Receptors Recognize Conserved Microbial Signatures Ax21 Conserved Molecular Signature Non-RD Receptor Kinase Xa21 XA21-Mediated Signaling Components Cleavage and Nuclear Localization of the Rice XA21 Immune Receptor Regulation in the Endoplasmic Reticulum: Quality Control of XA21 Systems Biology of the Innate Immune Response Acknowledgments References	1 2 3 8 11 13 14 15 16
Molecular Basis of Effector Recognition by Plant NB-LRR Proteins Lisong Ma, Harrold A. van den Burg, Ben J. C. Cornelissen, and Frank L. W. Takken	23
Introduction Building Blocks of NB-LRRs; Classification and Structural Features of	23
Subdomains Putting the Parts Together: Combining the Domains to Build a Signaling Competent NB-LRR Protein	2429
Stabilization When the Pathogen Attacks: Perception and Signaling by NB-LRR Proteins Conclusion Acknowledgments	30 33 35 35 36
	The Rice Xa21 Immune Receptor Recognizes a Novel Bacterial Quorum Sensing Factor Chang Jin Park and Pamela C. Ronald Introduction Plants and Animal Immune Systems A Plethora of Immune Receptors Recognize Conserved Microbial Signatures Ax21 Conserved Molecular Signature Non-RD Receptor Kinase Xa21 XA21-Mediated Signaling Components Cleavage and Nuclear Localization of the Rice XA21 Immune Receptor Regulation in the Endoplasmic Reticulum: Quality Control of XA21 Systems Biology of the Innate Immune Response Acknowledgments References Molecular Basis of Effector Recognition by Plant NB-LRR Proteins Lisong Ma, Harrold A. van den Burg, Ben J. C. Cornelissen, and Frank L. W. Takken Introduction Building Blocks of NB-LRRs; Classification and Structural Features of Subdomains Putting the Parts Together: Combining the Domains to Build a Signaling Competent NB-LRR Protein Stabilization and Accumulation of NB-LRR Proteins: Their Maturation and Stabilization When the Pathogen Attacks: Perception and Signaling by NB-LRR Proteins Conclusion

vi CONTENTS

Chapter 3	Signal Transduction Pathways Activated by R Proteins Gitta Coaker and Douglas Baker	41
	Introduction	41
	R Protein Stability	42
	Genetic Separation of CC and TIR-NB-LRR Signaling	42 44
	NB-LRRs Exhibit Modular Structure and Function Subcellular Localization of NB-LRRs	45
	NB-LRRs Can Function in Pairs	47
	Common Immune Signaling Events Downstream of R Protein Activation	48
	Conclusion	50
	Acknowledgments	50
	References	50
Chapter 4	The Roles of Salicylic Acid and Jasmonic Acid in Plant Immunity Pradeep Kachroo and Aardra Kachroo	55
	Introduction	55
	Biosynthesis of SA	55 57
	Derivatives of SA	57 58
	SA Signaling Pothysey	60
	SA Signaling Pathway Jasmonates Mediate Plant Immunity	62
	JA Biosynthetic Mutants Are Altered in Microbial Defense	63
	Receptor Protein Complex Perceives JA	65
	Transcription Factors Regulate JA-Derived Signaling	66
	JA Regulates Defense Gene Expression	68
	Conclusion	68
	Acknowledgments	68
	References	69
Chapter 5	Effectors of Bacterial Pathogens: Modes of Action and Plant Targets Feng Feng and Jian-Min Zhou	81
	Introduction	81
	Overview of Plant Innate Immunity	81
	Overview of Type III Effectors	83
	Host Targets and Biochemical Functions	86 99
	Conclusion	99 99
	Acknowledgments References	99
Chapter 6	The Roles of Transcription Activator–Like (TAL) Effectors in Virulence and Avirulence of <i>Xanthomonas</i> Aaron W. Hummel and Adam J. Bogdanove	107
	Introduction TAL Effectors Are Delivered into and May Dimerize in the Host Cell	107 107

CONTENTS vii

	TAL Effectors Function in the Plant Cell Nucleus	108
	AvrBs4 Is Recognized in the Plant Cell Cytoplasm	109
	TAL Effectors Activate Host Gene Expression	109
	Central Repeat Region of TAL Effectors Determines DNA Binding Specificity	110
	TAL Effectors Wrap Around DNA in a Right-Handed Superhelix	111
	TAL Effector Targets Include Different Susceptibility and Candidate	
	Susceptibility Genes	112
	MtN3 Gene Family Is Targeted by Multiple TAL Effectors	114
	Promoter Polymorphisms Prevent S Gene Activation to Provide Disease	
	Resistance	115
	Nature of the Rice Bacterial Blight Resistance Gene <i>xa5</i> Suggests TAL Effector	113
	Interaction With Plant Transcriptional Machinery	115
	Executor R Genes Exploit TAL Effector Activity for Resistance	116
	Diversity of TAL Effectors in <i>Xanthomonas</i> Populations Is Largely Unexplored	117
	TAL Effectors Are Useful Tools for DNA Targeting	117
	Conclusion	
	References	118 119
	References	119
Chapter 7	Effectors of Fungi and Oomycetes: Their Virulence and Avirulence	
	Functions and Translocation From Pathogen to Host Cells Brett M. Tyler and Thierry Rouxel	123
	Introduction	123
	Plant-Associated Fungi and Oomycetes	125
	Identification of Fungal and Oomycete Effectors	126
	Defensive Effectors: Effectors That Interfere With Plant Immunity	137
	Offensive Effectors: Effectors That Debilitate Plant Tissue	146
	Effectors That Contribute to Fitness via Unknown Mechanisms	149
	Entry of Intracellular Effectors	149
	Genome Location and Consequences for Adaptation/Dispensability	152
	Conclusion	153
	Acknowledgments	154
	References	154
Chapter 8	Plant-Virus Interaction: Defense and Counter-Defense	169
•	Amy Wahba Foreman, Gail J. Pruss, and Vicki Vance	
	Introduction	169
	RNA Silencing as an Antiviral Defense Pathway – the Beginning of the Story	169
	Small Regulatory RNA Biogenesis and Function	172
	The Silencing Mafia – the Protein Families	174
	Defense: Antiviral RNA Silencing Pathways	177
	Counter-Defense: Viral Suppressors of Silencing and Their Targets	178
	Viral Suppressors of Silencing and Endogenous Small Regulatory RNA Pathways	181
	References	182

viii CONTENTS

Chapter 9	Molecular Mechanisms Involved in the Interaction Between Tomato and Pseudomonas syringae pv. tomato André C. Velásquez and Gregory B. Martin	187
	Introduction	187
	PAMP-Triggered Immunity in Solanaceae	188
	Pseudomonas syringae pv. tomato Virulence Mechanisms	192
	Effector-Triggered Immunity in Solanaceae	197
	Races of Pseudomonas syringae pv. tomato	200
	ETI Is Involved in Nonhost Resistance to <i>Pseudomonas syringae</i> Pathovars	200
	ETI Signaling Pathways in Solanaceae	201
	Conclusion	203
	Acknowledgments	204
	References	204
Chapter 10	Cladosporium fulvum-Tomato Pathosystem: Fungal Infection Strategy and Plant Responses Bilal Ökmen and Pierre J. G. M. de Wit	211
	Introduction	211
	History of the Interaction Between C. fulvum and Tomato	212
	Compatible and Incompatible Interactions	212
	Cf-Mediated Downstream Signaling	219
	Effectors in Other Fungi with Similar Infection Strategies Conclusion	220 221
	References	221
Chapter 11	Cucumber Mosaic Virus-Arabidopsis Interaction: Interplay of Virulence	
ompto: 11	Strategies and Plant Responses	225
	Jack H. Westwood and John P. Carr	
	Introduction	225
	Biology of CMV	226
	Host Resistance Responses to Virus Infection	230
	Targeting of Host Factors by the Virus	236
	Phenomenon of Cross-Protection	237
	Functions of SA in Antiviral Defense	237
	Metabolic Responses to CMV Infection	239
	Vector-Mediated Transmission	240
	Conclusion	242
	Acknowledgments References	242 243
Chantan 12	Eutura Pragnants for Constiguilly Engineering Disages Designat Blants	251
Chapter 12	Future Prospects for Genetically Engineering Disease-Resistant Plants Yan-Jun Chen, Michael F. Lyngkjær, and David B. Collinge	251
	Introduction	251
	Targets for Second-Generation Transgenic Strategies for Resistance	252
	Hormones	253

CONTENTS	1X
Defense Modulation	256
Transcription Factors	260
Promoters for Transgenic Disease Resistance	265

ix

277

Implementation of Transgenic Resistance in the Field 266 Why Choose a Transgenic Approach? 267 Conclusion 269 Acknowledgments 269 References 269

Color plate is located between pages 78 and 79.

Index