Contents | Preface to First Edition Preface to Second Edition Contributing Authors | v
vii
ix
xi | | for Long-distance Transport of Nutrients 3.5 Remobilization of Nutrients | 62
66 | |---|----------------------|----|--|------------| | * | | 4. | Uptake and Release of Elements by
Leaves and Other Aerial Plant Parts | | | Part I
Nutritional Physiology | | | Thomas Eichert and Victoria Fernández | | | , | | | 4.1 General | 71 | | 1. Introduction, Definition and Classification of Nutrients | | | 4.2 Uptake and Release of Gases and Other Volatile Compounds Through Stomata | 71 | | For and Windshor | | | 4.3 Uptake of Solutes | 74 | | Ernest Kirkby | | | 4.4 Foliar Application of Nutrients | 78 | | 1.1 General | 3 | | 4.5 Leaching of Elements from Leaves | 82 | | 1.2 Essential Elements for Plant Growth | 3 | | 4.6 Ecological Importance of Uptake and | 0.0 | | 1.3 Biochemical Behaviour and Physiological | | | Leaching of Solutes from Leaves | 83 | | Functions of Elements in Plants | 4 | _ | AR INLARC - World and | | | 2. Ion Uptake Mechanisms of Individual | | 5. | Mineral Nutrition, Yield and | | | Cells and Roots: Short-distance | | | Source-Sink Relationships | | | Transport | | | Christof Engels, Ernest Kirkby and Philip White | | | • | | | 5.1 General | 85 | | Philip White | | | 5.2 Relationships between Nutrient Supply | | | 2.1 General | 7 | | and Yield | 86 | | 2.2 Pathway of Solutes from the External | | | 5.3 Photosynthetic Activity and Related | | | Solution into Root Cells | 8 | | Processes | 87 | | 2.3 Composition of Biological Membranes | 10 | | 5.4 Photosynthetic Area | 102 | | 2.4 Solute Transport Across Membranes | 13 | | 5.5 Respiration and Oxidative | | | 2.5 Factors Affecting Ion Uptake by Roots | 21 | | Phosphorylation | 105 | | 2.6 Uptake of Ions and Water along the | | | 5.6 Phloem Transport of Assimilates and its | 107 | | Root Axis | 39 | | Regulation | 107
113 | | 2.7 Radial Transport of Ions and Water | 4.1 | | 5.7 Sink Formation
5.8 Sink Activity | 117 | | Across the Root | 41
43 | | 5.9 Role of Phytohormones in the Regulation | 117 | | 2.8 Release of lons into the Xylem 2.9 Factors Affecting Ion Release into the | 43 | | of the Sink–Source Relationships | 120 | | Xylem and Exudation Rate | 44 | | 5.10 Source and Sink Limitations on Yield | 131 | | Ayrem and Exadution Nate | | | | | | 3. Long-distance Transport in the | | 6. | Functions of Macronutrients | | | Xylem and Phloem | | | Malcolm Hawkesford, Walter Horst, Thomas | | | Philip White | | | Kichey, Hans Lambers, Jan Schjoerring, Inge | | | · | 49 | | Skrumsager Møller, Philip White | | | 3.1 General 3.2 Xylem Transport | 50 | | 6.1 Nitrogen | 135 | | 3.3 Phloem Transport | 58 | | 6.2 Sulphur | 151 | | o.c. moem mansport | ~ ~ ~ | | F | | | | 6.3 Phosphorus | 158 | 11. Diagnosis of Deficiency and | | |------|---|------------|--|-------------------| | | 6.4 Magnesium
6.5 Calcium | 165 | Toxicity of Nutrients | | | | 6.6 Potassium | 171
178 | Volker Römheld | | | , | Function of Nutrients: Micronutrients Martin Broadley, Patrick Brown, Ismail Cakmak, | | 11.1 General
11.2 Nutrient Supply and Growth Response
11.3 Diagnosis of Nutritional Disorders by
Visible Symptoms | 299
299
300 | | 4 | Zed Rengel and Fangjie Zhao | | 11.4 Plant Analysis | 301 | | | 7.1 Iron
7.2 Manganese | 191
200 | 11.5 Histochemical and Biochemical Methods
11.6 Plant Analysis versus Soil Analysis | 310
311 | | | 7.3 Copper | 206 | | | | | 7.4 Zinc | 212 | Part II | | | | 7.5 Nickel | 223 | Plant-Soil Relationships | | | | 7.6 Molybdenum | 226 | riant-30n Kelationships | | | | 7.7 Boron
7.8 Chlorine | 233
243 | 12. Nutrient Availability in Soils | | | _ | | | Petra Marschner and Zed Rengel | | | 8. I | Beneficial Elements | | 12.1 General | 315 | | | Martin Broadley, Patrick Brown, Ismail Cakmak | | 12.2 Chemical Soil Analysis | 315 | | | Jian Feng Ma, Zed Rengel and Fangjie Zhao | | 12.3 Movement of Nutrients to the Root | | | | 8.1 Definition | 2.40 | Surface | 316 | | | 8.2 Sodium | 249
249 | 12.4 Role of Root Density | 324 | | | 8.3 Silicon | 257 | 12.5 Nutrient Availability and Distribution | | | | 8.4 Cobalt | 261 | of Water in Soils | 325 | | | 8.5 Selenium | 263 | 12.6 Role of Soil Structure | 326 | | | 8.6 Aluminium | 268 | 12.7 Intensity/Quantity Ratio, Plant Factors | | | | 8.7 Other Elements | 268 | and Consequences for Soil Testing | 328 | | 9. | Nutrition and Quality Franz Wiesler | | 13. Effect of Internal and External
Factors on Root Growth and
Development | | | | 9.1 Introduction | 271 | Jonathan Lynch, Petra Marschner and Zed Ren | gel | | | 9.2 Nutrition and Appearance | 272 | 13.1 General | 331 | | | 9.3 Nutrition and Chemical Composition | 273 | 13.2 Carbohydrate Supply | 331 | | | | | 13.3 Root Development | 332 | | 10 | Relationship between Nutrition, | | 13.4 Soil Chemical Factors | 334 | | 10. | Plant Diseases and Pests | | 13.5 Soil Organisms | 340 | | | Tiant Diseases and Lests | | 13.6 Soil Physical Factors | 342 | | | Don Huber, Volker Römheld and
Markus Weinmann | | 13.7 Shoot/Root Ratio | 345 | | | 10.1 General | 283 | 14. Rhizosphere Chemistry in Relation | | | | 10.2 Relationship between Susceptibility and | | to Plant Nutrition | | | | Nutritional Status of Plants | 284 | Cinton November Wellow Directed | | | | 10.3 Fungal Diseases | 285 | Günter Neumann, Volker Römheld | | | | 10.4 Bacterial and Viral Diseases | 291 | 14.1 General | 347 | | | 10.5 Soil-borne Fungal and Bacterial Diseases | 293 | 14.2 Spatial Extent of the Rhizosphere | 349 | | | 10.6 Pests | 295 | 14.3 Inorganic Elements in the Rhizosphere | 350 | | | 10.7 Direct and Indirect Effects of Fertilizer | | 14.4 Rhizosphere pH | 353 | | | Application on the Performance of | | 14.5 Redox Potential and Reducing Processes | 359 | | | Plants and Their Parasites | 297 | 14.6 Rhizodeposition and Root Exudates | 360 | | 15. Rhizosphere Biology | | 17.3 Acid Mineral Soils | 417 | |---|---|--|--| | Petra Marschner | | 17.4 Waterlogged and Flooded Soils
17.5 Calcareous and Alkaline Soils | 430
444 | | 15.1 General 15.2 Rhizosphere Microorganisms 15.3 Mycorrhiza | 369
369
373 | 17.6 Saline Soils 18. Nutrient and Carbon Fluxes in Terrestrial Agro-Ecosystems | 455 | | 16. Nitrogen Fixation Jim Cooper and Heinrich Scherer | | Andreas Buerkert, Rainer Joergensen,
Bernard Ludwig and Eva Schlecht | | | 16.1 General 16.2 Biological Nitrogen-fixing Systems 16.3 Biochemistry of Nitrogen Fixation 16.4 Symbiotic Systems 16.5 Amounts of N Fixed by Legumes, and its Transfer to Other Plants in Mixed Stands 16.6 Significance of Free-living and Associative Nitrogen Fixation 16.7 Outlook | 389
389
390
392
405
407
408 | 18.1 Microbiological Factors Determining
Carbon and Nitrogen Emissions 18.2 Effects of Organic Soil Amendments on
Emissions 18.3 Effects of pH, Soil Water Content and
Temperature on Matter Turnover 18.4 Global Warming Effects 18.5 Plant–animal Interactions Affecting
Nutrient Fluxes at Different Scales 18.6 Modelling Approaches in Matter Fluxes | 473
475
475
476
476
482 | | 17. Adaptation of Plants to Adverse
Chemical Soil Conditions
Eckhard George, Walter Horst and
Elke Neumann
17.1 Natural Vegetation | 409 | References
Index | 483
645 | | 17.2 High-input versus Low-input Approach | 410 | | |