Contents | | Preface | page xv | | | |---|--|---------|--|--| | | Acknowledgments | xvii | | | | | Acknowledgments for permissions to use illustrations | xviii | | | | 1 | Fuels and the global carbon cycle | 1 | | | | | Notes | 8 | | | | 2 | Catalysis, enzymes, and proteins | 10 | | | | | 2.1 Catalysis | 10 | | | | | 2.2 Proteins | 11 | | | | | 2.3 Enzymes | 13 | | | | | Notes | 17 | | | | 3 | Photosynthesis and the formation of polysaccharides | | | | | | 3.1 Water splitting in photosynthesis | 20 | | | | | 3.2 Carbon dioxide fixation | 24 | | | | | 3.3 Glucose, cellulose, and starch | 27 | | | | | Notes | 32 | | | | 4 | Ethanol | | | | | | 4.1 Fermentation chemistry | 35 | | | | | 4.2 Commercial production of ethanol via fermentation | 38 | | | | | 4.3 Ethanol as a motor vehicle fuel | 42 | | | | | 4.4 Issues affecting possible large-scale production of fuel ethanol | 47 | | | | | 4.5 Cellulosic ethanol | 48 | | | | | Notes | 49 | | | | 5 | Plant oils and biodiesel | | | | | | 5.1 Biosynthesis of plant oils | 53 | | | | | 5.2 Direct use of vegetable oils as diesel fuel | 57 | | | | | 5.3 Transesterification of plant oils | 59 | | | | | 5.4 Biodiesel | 62 | | | | | Notes | | | | viii | 6 | Composition and reactions of wood | 69 | | | | |----|--|------|--|--|--| | | 6.1 Wood combustion | · 78 | | | | | | 6.2 Wood pyrolysis | 79 | | | | | | 6.2.1 Charcoal | 79 | | | | | | 6.2.2 Methanol | 81 | | | | | | 6.3 Wood gasification | 82 | | | | | | 6.4 Wood saccharification and fermentation | 83 | | | | | | Notes | 84 | | | | | 7 | Reactive intermediates | | | | | | | 7.1 Bond formation and dissociation | 87 | | | | | | 7.2 Radicals | 89 | | | | | | 7.2.1 Initiation reactions | 89 | | | | | | 7.2.2 Propagation reactions | 91 | | | | | | 7.2.3 Termination reactions | 94 | | | | | | 7.3 Radical reactions with oxygen | 95 | | | | | | 7.4 Carbocations | 97 | | | | | | 7.5 Hydrogen redistribution | 100 | | | | | | Notes | 101 | | | | | 8 | Formation of fossil fuels | | | | | | | 8.1 Diagenesis: from organic matter to kerogen | 104 | | | | | | 8.2 Catagenesis: from kerogen to fossil fuels | 109 | | | | | | 8.3 Catagenesis of algal and liptinitic kerogens | 111 | | | | | | 8.4 Catagenesis of humic kerogen | 117 | | | | | | 8.5 Summary | 127 | | | | | | Notes | 128 | | | | | 9 | Structure-property relationships among hydrocarbons | | | | | | | 9.1 Intermolecular interactions | 132 | | | | | | 9.2 Volatility | 134 | | | | | | 9.3 Melting and freezing | 142 | | | | | | 9.4 Density and API gravity | 145 | | | | | | 9.5 Viscosity | 148 | | | | | | 9.6 Water solubility | 151 | | | | | | 9.7 Heat of combustion | 152 | | | | | | 9.8 The special effects of aromaticity | 156 | | | | | | Notes | 158 | | | | | 10 | Composition, properties, and processing of natural gas | 161 | | | | | | 10.1 Gas processing | 164 | | | | | | 10.1.1 Dehydration | 164 | | | | | | 10.1.2 Gas sweetening | 166 | | | | **Contents** ix | | | 10.1.3 Separation of C ₂ ⁺ hydrocarbons | 168 | | | |----|--------|---|------------|--|--| | | 10.2 | Natural gas as a premium fuel | 170 | | | | | Notes | | 171 | | | | 11 | Comp | osition, classification, and properties of petroleum | 174 | | | | | 11.1 | Composition | 174 | | | | | | 11.1.1 Alkanes | 174 | | | | | | 11.1.2 Cycloalkanes | 175 | | | | | | 11.1.3 Aromatics | 177 | | | | | | 11.1.4 Heteroatomic compounds | 179 | | | | | | 11.1.5 Inorganic components | 180 | | | | | 11.2 | Classification and properties of petroleums | 181 | | | | | | 11.2.1 API gravity | 181 | | | | | | 11.2.2 Carbon preference index | 181 | | | | | | 11.2.3 Age-depth relationships | 182 | | | | | | 11.2.4 Composition relationships | 183 | | | | | 11.3 | Asphalts, oil sands, and other unconventional oils | 187 | | | | | Notes | | 189 | | | | 12 | Petrol | 192 | | | | | | 12.1 | Desalting | 193 | | | | | 12.2 | 1 | 194 | | | | | 12.3 | Refinery distillation operations | 198 | | | | | | 12.3.1 Atmospheric-pressure distillation | 198 | | | | | | 12.3.2 Vacuum distillation | 199 | | | | | 12.4 | Introduction to petroleum distillation products | 200 | | | | | | 12.4.1 Gasoline | 200 | | | | | | 12.4.2 Naphtha | 201 | | | | | | 12.4.3 Kerosene | 201 | | | | | | 12.4.4 Diesel fuel | 202 | | | | | | 12.4.5 Fuel oils | 202 | | | | | | 12.4.6 Lubricating oils | 203 | | | | | | 12.4.7 Waxes | 203 | | | | | Note | 12.4.8 Asphalt | 204
204 | | | | | 11010 | | _, . | | | | 13 | Heter | Heterogeneous catalysis | | | | | | 13.1 | Catalytic materials | 207 | | | | | | 13.1.1 The active species | 207 | | | | | | 13.1.2 The support | 207 | | | | | | 13.1.3 The promoter | 209 | | | | | 10.0 | 13.1.4 Preparation | 209
210 | | | | | 13.2 | 1 | | | | | | 13.3 | Mechanisms of catalytic reactions | 216 | | | ## x Contents | | 13.4 | Measures of catalyst performance | 217 | | |----|------------------------------|---|-----|--| | | 13.5 | Surface effects on catalysts | 219 | | | | Note | es | 221 | | | 14 | Catalytic routes to gasoline | | | | | | 14.1 | Gasoline combustion | 224 | | | | 14.2 | Specifications and properties of gasoline | 229 | | | | 14.3 | Refinery routes to enhanced yield and quality | 231 | | | | 14.4 | Alkylation and polymerization | 232 | | | | 14.5 | Catalytic cracking | 234 | | | | | 14.5.1 Cracking catalysts | 235 | | | | | 14.5.2 Cracking reactions | 241 | | | | | 14.5.3 Practical aspects | 243 | | | | 14.6 | Catalytic reforming | 245 | | | | | 14.6.1 Reforming catalysts | 245 | | | | | 14.6.2 Reforming reactions | 246 | | | | | 14.6.3 Practical aspects | 249 | | | | 14.7 | Methanol to gasoline | 251 | | | | Note | 253 | | | | 15 | Middle distillate fuels | | | | | | 15.1 | Middle distillate fuel products | 256 | | | | | 15.1.1 Kerosene | 256 | | | | | 15.1.2 Jet fuel | 256 | | | | | 15.1.3 Diesel fuel | 260 | | | | | 15.1.4 Fuel oils | 265 | | | | 15.2 | Hydroprocessing | 266 | | | | | 15.2.1 Hydrodesulfurization | 267 | | | | | 15.2.2 Hydrodenitrogenation | 272 | | | | | 15.2.3 Hydrodemetallation | 273 | | | | | 15.2.4 Hydrofining | 273 | | | | | 15.2.5 Hydrocracking | 274 | | | | | 15.2.6 Hydrogenation | 276 | | | | | 15.2.7 Sources of hydrogen | 277 | | | | Note | es | 278 | | | 16 | Ther | mal processing in refining | 281 | | | | 16.1 Thermal cracking | | | | | | 16.2 | 16.2 Visbreaking | | | | | 16.3 | - | 286 | | | | | 16.3.1 Delayed coking | 287 | | | | | 16.3.2 Fluid coking and Flexicoking | 292 | | | | Notes | | | | **Contents** xi | 17 | Composition, properties, and classification of coals | | | | |----|--|--|--|--| | | 17.1 Classification of coal by rank 17.2 The caking behavior of bituminous coals 17.3 Elemental composition 17.4 The macromolecular structures of coals 17.5 Coals as heterogeneous solids 17.6 Physical properties Notes | 295
298
299
306
312
314
320 | | | | 18 | The inorganic chemistry of coals | | | | | | 18.1 The origin of inorganic components in coals 18.2 Inorganic composition of coals 18.3 Minerals in coals and their reactions 18.4 Coal cleaning 18.5 Behavior of inorganic components during coal utilization Notes | 324
324
326
329
334
340 | | | | 19 | Production of synthesis gas | 342 | | | | | 19.1 Steam reforming of natural gas 19.2 Partial oxidation of heavy oils 19.3 Coal and biomass gasification 19.3.1 Fundamentals of the carbon-steam and related reactions 19.3.2 Coal gasification processes 19.3.3 Fixed-bed gasification 19.3.4 Fluidized-bed gasification 19.3.5 Entrained-flow gasification 19.3.6 Underground coal gasification 19.3.7 Biomass gasification Notes | 342
344
345
346
352
354
356
357
359
360 | | | | 20 | Gas treatment and shifting | | | | | | 20.1 Gas clean-up20.2 Acid gas removal20.3 The water gas shiftNote | 363
365
371
373 | | | | 21 | Uses of synthesis gas | | | | | | 21.1 Fuel gas 21.2 Methanation 21.3 Methanol synthesis 21.4 Fischer–Tropsch synthesis 21.5 Kölbel reaction | 375
375
378
381
389 | | | ## xii Contents | - " | 21.6 | Oxo syı | nthesis | 390 | | |-----|---|--------------------|-------------------------------------|-----|--| | | 21.7 | Gas to | liquids | 391 | | | | 21.8 | The po | tential of synthesis gas chemistry | 392 | | | | Notes | | | 393 | | | 22 | Direct production of liquid fuels from coal | | | | | | | 22.1 | Pyrolys | sis | 396 | | | | 22.2 | Solvent | t extraction | 398 | | | | 22.3 | Direct of | coal liquefaction | 402 | | | | | | Principles | 402 | | | | | 22.3.2 | Direct liquefaction processing | 406 | | | | Notes | | | 413 | | | 23 | Carbonization and coking of coal | | | | | | | 23.1 | Therma | al decomposition of coals | 415 | | | | 23.2 | Low- a | nd medium-temperature carbonization | 417 | | | | 23.3 | The spe | ecial case of bituminous coals | 418 | | | | 23.4 | 420 | | | | | | 23.5 | 426 | | | | | | Notes | Notes | | | | | 24 | Carbon products from fossil and biofuels | | | | | | | 24.1 | Activat | ted carbons | 435 | | | | 24.2 | Alumir | 440 | | | | | 24.3 | 24.3 Carbon blacks | | | | | | 24.4 | 445 | | | | | | | 24.4.1 | Natural graphite | 445 | | | | | | Graphitization processes | 446 | | | | | | Electrodes | 447 | | | | | 24.4.4 | High-density isotropic graphites | 449 | | | | Notes | | | 450 | | | 25 | Carbon | dioxide | e | 453 | | | | 25.1 Carbon | | n capture and storage | 455 | | | | | 25.1.1 | Algae | 455 | | | | | 25.1.2 | Biochar | 457 | | | | | 25.1.3 | Chemical uses of CO ₂ | 459 | | | | | 25.1.4 | Coalbed methane recovery | 460 | | | | | 25.1.5 | Enhanced oil recovery | 461 | | | | | 25.1.6 | Mineral carbonation | 462 | | | | | 25.1.7 | Photocatalysis | 464 | | | Contents | | | xiii | |------------------|--------|-----------------------|------| | | 25.1.0 | Tindenson distriction | 466 | | | | Underground injection | 466 | | | 25.1.9 | Urea synthesis | 467 | | 25.2 Conclusions | | | 468 | | Notes | | | 469 | | | | | | | Index | | | 472 | Contonto