Contents

	Pre_{j}			$page m \ xii$
		nowledge	ments	XX
	Not	ation		xxi
1	Sign	nals and	systems	1
	1.1	Contin	mous and discrete signals	1
	1.2	Unit st	tep and nascent delta functions	4
	1.3	Relatio	onship between complex exponentials and delta functions	7
	1.4	Attribu	utes of signals	9
	1.5	Signal	arithmetics and transformations	11
	1.6	Linear	and time-invariant systems	15
	1.7	Signals	s through continuous LTI systems	17
	1.8	Signals	s through discrete LTI systems	21
	1.9	Contin	uous and discrete convolutions	24
	1.10	Homev	work problems	29
2	Vec	tor spac	ces and	
	sign	al repre	sentation	34
	2.1	Inner p	product space	34
			Vector space	34
			Inner product space	36
		2.1.3	Bases of vector space	43
			Signal representation by orthogonal bases	47
			Signal representation by standard bases	52
			An example: the Fourier transforms	55
	2.2	Unitar	y transformation and signal representation	57
			Linear transformation	57
		2.2.2	Eigenvalue problems	59
			Eigenvectors of D^2 as Fourier basis	61
			Unitary transformations	64
			Unitary transformations in N -D space	66
	2.3		tion theorem and signal approximation	70
			Projection theorem and pseudo-inverse	70

Contents	vii
Contents	

		2.3.2 Signal approximation	76
	2.4	Frames and biorthogonal bases	81
		2.4.1 Frames	81
		2.4.2 Signal expansion by frames and Riesz bases	82
		2.4.3 Frames in finite-dimensional space	90
	2.5	Kernel function and Mercer's theorem	93
	2.6	Summary	99
	2.7	Homework problems	101
3	Cont	tinuous-time Fourier transform	105
	3.1	The Fourier series expansion of periodic signals	105
		3.1.1 Formulation of the Fourier expansion	105
		3.1.2 Physical interpretation	107
		3.1.3 Properties of the Fourier series expansion	109
		3.1.4 The Fourier expansion of typical functions	111
	3.2	The Fourier transform of non-periodic signals	119
		3.2.1 Formulation of the CTFT	119
		3.2.2 Relation to the Fourier expansion	124
		3.2.3 Properties of the Fourier transform	125
		3.2.4 Fourier spectra of typical functions	132
		3.2.5 The uncertainty principle	140
	3.3	Homework problems	142
4	Disc	crete-time Fourier transform	146
	4.1	Discrete-time Fourier transform	146
		4.1.1 Fourier transform of discrete signals	146
		4.1.2 Properties of the DTFT	151
		4.1.3 DTFT of typical functions	157
		4.1.4 The sampling theorem	160
		4.1.5 Reconstruction by interpolation	170
	4.2	Discrete Fourier transform	173
		4.2.1 Formulation of the DFT	173
		4.2.2 Array representation	179
		4.2.3 Properties of the DFT	183
		4.2.4 Four different forms of the Fourier transform	192
		4.2.5 DFT computation and fast Fourier transform	196
	4.3	Two-dimensional Fourier transform	201
		4.3.1 Two-dimensional signals and their spectra	201
		4.3.2 Fourier transform of typical 2-D functions	204
		4.3.3 Four forms of 2-D Fourier transform	207
		4.3.4 Computation of the 2-D DFT	209
	4.4	Homework problems	215

5	Арр	olications of the Fourier transforms	220
	5.1	LTI systems in time and frequency domains	220
	5.2	Solving differential and difference equations	225
	5.3	Magnitude and phase filtering	232
	5.4	Implementation of 1-D filtering	238
	5.5	Implementation of 2-D filtering	249
	5.6	Hilbert transform and analytic signals	256
	5.7	Radon transform and image restoration from projections	261
	5.8	Orthogonal frequency-division modulation (OFDM)	269
	5.9	Homework problems	271
6	The	$oldsymbol{z}$ Laplace and z -transforms	277
	6.1	The Laplace transform	277
		6.1.1 From Fourier transform to Laplace transform	277
		6.1.2 The region of convergence	280
		6.1.3 Properties of the Laplace transform	281
		6.1.4 The Laplace transform of typical signals	284
		6.1.5 Analysis of continuous LTI systems by Laplace transform	286
		6.1.6 First-order system	292
		6.1.7 Second-order system	295
		6.1.8 The unilateral Laplace transform	307
	6.2	The z -transform	311
		6.2.1 From Fourier transform to z-transform	311
		6.2.2 Region of convergence	314
		6.2.3 Properties of the z-transform	316
		6.2.4 The z-transform of typical signals	321
		6.2.5 Analysis of discrete LTI systems by z-transform	322
		6.2.6 First- and second-order systems	327
		6.2.7 The unilateral z-transform	332
	6.3	Homework problems	335
7	Fou	rier-related orthogonal transforms	339
	7.1	The Hartley transform	339
		7.1.1 Continuous Hartley transform	339
		7.1.2 Properties of the Hartley transform	341
		7.1.3 Hartley transform of typical signals	343
		7.1.4 Discrete Hartley transform	345
		7.1.5 The 2-D Hartley transform	348
	7.2	The discrete sine and cosine transforms	353
		7.2.1 The continuous cosine and sine transforms	353
		7.2.2 From DFT to DCT and DST	355
		7.2.3 Matrix forms of DCT and DST	360
		7.2.4 Fast algorithms for the DCT and DST	366

_		_		
L	or	١te	nt	S

ı	v

		7.2.5 DCT and DST filtering	370
		7.2.6 The 2-D DCT and DST	373
	7.3	Homework problems	377
8	The	Walsh-Hadamard, slant, and Haar transforms	379
	8.1	The Walsh-Hadamard transform	379
		8.1.1 Hadamard matrix	379
		8.1.2 Hadamard-ordered Walsh-Hadamard transform (WHT $_{\rm h}$)	381
		8.1.3 Fast Walsh-Hadamard transform algorithm	382
		8.1.4 Sequency-ordered Walsh-Hadamard matrix (WHT _w)	384
		8.1.5 Fast Walsh-Hadamard transform (sequency ordered)	386
	8.2	The slant transform	392
		8.2.1 Slant matrix	392
		8.2.2 Slant transform and its fast algorithm	395
	8.3	The Haar transform	398
		8.3.1 Continuous Haar transform	398
		8.3.2 Discrete Haar transform	400
		8.3.3 Computation of the discrete Haar transform	403
		8.3.4 Filter bank implementation	405
	8.4	Two-dimensional transforms	408
	8.5	Homework problems	411
9	Kar	hunen-Loève transform and principal component analysis	412
	9.1	Stochastic process and signal correlation	412
		9.1.1 Signals as stochastic processes	412
		9.1.2 Signal correlation	415
	9.2	Karhunen-Loève transform (KLT)	417
		9.2.1 Continuous KLT	417
		9.2.2 Discrete KLT	418
		9.2.3 Optimalities of the KLT	419
		9.2.4 Geometric interpretation of the KLT	423
		9.2.5 Principal component analysis (PCA)	426
		9.2.6 Comparison with other orthogonal transforms	427
		9.2.7 Approximation of the KLT by the DCT	432
	9.3	Applications of the KLT	438
		9.3.1 Image processing and analysis	438
		9.3.2 Feature extraction for pattern classification	444
	9.4	Singular value decomposition transform	449
		9.4.1 Singular value decomposition	449
		9.4.2 Application in image compression	454
	9.5	Homework problems	456
10	Cor	ntinuous- and discrete-time wavelet transforms	461

× Contents

	10.1 Why wavelet?	461
	10.1.1 Short-time Fourier transform and Gabor transform	461
	10.1.2 The Heisenberg uncertainty	462
	10.2 Continuous-time wavelet transform (CTWT)	464
	10.2.1 Mother and daughter wavelets	464
	10.2.2 The forward and inverse wavelet transforms	466
	10.3 Properties of the CTWT	468
	10.4 Typical mother wavelet functions	471
	10.5 Discrete-time wavelet transform (DTWT)	474
	10.5.1 Discretization of wavelet functions	474
	10.5.2 The forward and inverse transform	476
	10.5.3 A fast inverse transform algorithm	478
	10.6 Wavelet transform computation	481
	10.7 Filtering based on wavelet transform	484
	10.8 Homework problems	490
11	Multiresolution analysis and discrete wavelet transform	492
	11.1 Multiresolution analysis (MRA)	492
	11.1.1 Scale spaces	492
	11.1.2 Wavelet spaces	498
	11.1.3 Properties of the scaling and wavelet filters	501
	11.1.4 Relationship between scaling and wavelet filters	504
	11.1.5 Wavelet series expansion	506
	11.1.6 Construction of scaling and wavelet functions	508
	11.2 Discrete wavelet transform (DWT)	518
	11.2.1 Discrete wavelet transform (DWT)	518
	11.2.2 Fast wavelet transform (FWT)	521
	11.3 Filter bank implementation of DWT and inverse DWT	523
	11.3.1 Two-channel filter bank and inverse DWT	523
	11.3.2 Two-dimensional DWT	530
	11.4 Applications in filtering and compression	535
	11.5 Homework problems	542
	Appendices	546
Α	Review of linear algebra	546
	A.1 Basic definitions	546
	A.2 Eigenvalues and eigenvectors	551
	A.3 Hermitian matrix and unitary matrix	552
	Λ.4 Toeplitz and circulant matrices	554
	A.5 Vector and matrix differentiation	554
В	Review of random variables	556

B.1	Random variables	556
B.2	Multivariate random variables	558
В.3	Stochastic models	562

Index

Contents

χí

566