Contents

	Pref: List	ace of Auth	10rs	xix xxiii
1.	Intr	oductio	n	1
	1.1	Overvi	iew	1
		1.1.1	A Perspective on Solid Fuel Utilization	2
		1.1.2	Fuels and Combustion Technology Development	4
	1.2	Solid I	Fuels Used in Electricity Generation and Process	
		Indust	ry Applications	5
		1.2.1	Characteristics of Solid Fuels	5
			Some Economic Considerations of Solid Fuels	8
	1.3		ombustion Process for Solid Fuels	11
			Combustion Mechanism Overview	12
			Heating and Drying	12
			Pyrolysis or Devolatilization	15
			Volatile Oxidation Reactions	18
			Char Oxidation Reactions	19
			Formation of Airborne Emissions	21
			Reactions of Inorganic Matter	22
			Combustion and Heat Release	24
	1.4		ombustion System	26
			Fuel Quality and Fuel Management	26
			Fuel Preparation	27
			Burners and the Combustion Systems	28
			Post-Combustion Controls	29
	1.5		ization of This Book	30
	1.6	Refere	nces	30
2.	Coa	l Chara	cteristics	33
	2.1	Introd	uction to Coal	33
		2.1.1	Coal Formation and Coalification	34
				wii

	2.2	Coal Classification	37
		2.2.1 Coal Rank	37
		2.2.2 Coal Type	38
		2.2.3 Coal Grade	41
		2.2.4 Coal Classification	41
		2.2.4.1 ASTM Classification System	41
		2.2.4.2 International Classification System	41
	2.3	Coal Reserves/Resources	44
		2.3.1 World Coal Reserves	44
		2.3.2 United States Coal Resources and Reserves	47
	2.4	_	48
		2.4.1 World Coal Production	51
		2.4.2 United States Coal Production	52
	2.5	Traditional Coal Characterization Methods and Their	
		Industrial Application	61
		2.5.1 Proximate Analysis	69
		2.5.2 Ultimate Analysis	70
		2.5.3 Heating Value	70
		2.5.4 Sulfur Forms	71
		2.5.5 Chlorine	71
		2.5.6 Grindability	71
		2.5.7 Ash Composition	71
		2.5.8 Trace Element Characterization	72
		2.5.9 Ash Fusion	72
		2.5.10 Free-Swelling Index (FSI)	72
		2.5.11 Petrography/Coal Reflectance	73
	2.6	Nontraditional Characterization Methods and Their	70
		Industrial Application	73
		2.6.1 Coal Structure	74
		2.6.2 Coal Reactivity	74
	0.7	2.6.3 Volatile Matter Evolution Patterns	77
	2.7	References	80
3.	Cha	racteristics of Alternative Fuels	83
٠,	3.1	Introduction	83
	0.1	3.1.1 Typical Alternative Fuel Applications	84
		3.1.1.1 The Use of Alternative Fuels in Electric	٠.
		Utility Boilers	84
		3.1.1.2 Cofiring Alternative Fuels in Process	٠,
		Industries and Independent	
		Power Producers	86
	3.2	Petroleum Coke	87
	,	3.2.1 Petroleum Coke Production Processes	88

	3.2.2		aracteristics of Petroleum Coke Proximate and Ultimate Analysis of	88
			Petroleum Coke	89
		3.2.2.2	Ash Characteristics of Petroleum Coke	90
	3.2.3	Petroleu	m Coke Utilization in Cyclone Boilers	92
	3.2.4		Petroleum Coke in Pulverized Coal Boilers	3 93
	3.2.5		m Coke Utilization in Fluidized-Bed	94
	Woods	Biomass		96
3.3			Woody Biomass Fuels	
	3.3.1		and Chemical Characteristics of Woody	98
	3.3.2	Biomass		00
				99
		3.3.2.1	Proximate and Ultimate Analysis	100
		2 2 2 2	of Woody Biomass	100
			Inorganic Matter in Woody Biomass	100
			Trace Metal Concentrations	101
	3.3.3		oody Biomass in Dedicated Boilers	102
	3.3.4	Woody E	Biomass in Pulverized Coal Firing	
		Applicat	ions	106
	3.3.5	Cofiring	Woody Biomass in Cyclone Boilers	107
	3.3.6	Conclus	ions Regarding Using Woody Biomass	
		as an Al	ternative Fuel	108
3.4	Tire-D	erived Fu	el (TDF)	110
			Description of Tire-Derived Fuel	111
	3.4.2		aracteristics of Tire-Derived Fuel	112
			Proximate and Ultimate Analysis of	
		J	Tire-Derived Fuel	112
		3.4.2.2		113
		3.4.2.3		114
	3.4.3		Applications with Tire-Derived Fuel	114
	3.4.4	_		
3.5			y Regarding TDF as an Alternative Fuel	115
5.5		eous Cro	±	116
	3.5.1		Herbaceous Biomass Fuels	116
	3.5.2		and Uses of Herbaceous Materials	117
	3.5.3		aracteristics of Switchgrass and Related	
			ural Biomass Materials	118
		3.5.3.1	Density of Switchgrass and Related	
			Materials	118
		3.5.3.2	Proximate and Ultimate Analysis of	
			Switchgrass and Related Agricultural	
			Materials	119
		3.5.3.3	Ash Chemistry for Herbaceous Biomass	
			Fuels	121
	3.5.4	Herbace	ous Crop Summary	123
3.6	Refere		• /	124

4.		racteristics and Behavior of Inorganic Constituents	133		
	4.1	Introduction	133		
	4.2	Inorganic Composition of Coal	136		
		4.2.1 Distribution of Inorganic Constituents in Coal	136		
		4.2.2 Methods of Determining Inorganic Composition	137		
		4.2.3 General Coal Characteristics	148		
		4.2.3.1 Lignites	148		
		4.2.3.2 Subbituminous Coals	148		
		4.2.3.3 Bituminous Coals	149		
		4.2.3.4 World-Traded Coals	150		
	4.3	Ash Formation: Transformation of Coal Inorganic			
		Constituents	151 153		
	4.4 Ash Deposition Formation				
		4.4.1 Deposition Phenomena in Utility Boilers	153		
		4.4.2 Slagging Deposits	155		
		4.4.3 Fouling Deposits	156		
		4.4.4 High-Temperature Fouling	157		
		4.4.5 Low-Temperature Fouling 4.4.6 Ash Impacts on SCR Catalyst			
	4.4.7 Deposit Thermal Properties	160			
4.5 Deposit Strength Development					
	4.6	Deposit Characterization	162		
	4.7	-	167		
		4.7.1 Advanced Indices	167		
		4.7.2 Mechanistic Models	167		
	4.8	References	167		
5.	Fue	l Blending for Combustion Management	171		
	5.1	Introduction	171		
		5.1.1 Types of Fuel Blending	172		
		5.1.2 The Reasons for Fuel Blending	173		
		5.1.3 Issues for Fuel Blending	174		
	5.2				
		Blending	175		
		5.2.1 The Blending System at Monroe Power Plant	176		
		5.2.2 Alternative Blending Systems	177		
	5.3	Fuel and Combustion Effects of Blending	181		
	0,0	5.3.1 Blending Overview	182		
		5.3.2 The Monroe Power Plant Case Study	182		
		5.3.2.1 Development of Combustion Models			
		as an Analytical Tool	18 2		
		5.3.2.2 Fuel Effects of Blending at Monroe	185		
		5.3.2.3 Volatility and Volatile Release Patterns	185		
		5.3.2.4 Char Oxidation	187		
		5 3 2 5 Ash Chemistry	187		

		5.3.3 Fuel Effects for Other Locations	193
	5.4		193
		5.4.1 Managing Inorganic Constituents	194
		5.4.2 Managing the Fire	194
		5.4.3 Managing Blend Changes	194
	5.5	Conclusions	196
	5.6	References	196
6.	Fuel	Preparation	199
	6.1	Know Your Fuel	200
		6.1.1 Fuel Types	200
		6.1.2 Fuel Issues	201
		6.1.3 Coal	202
		6.1.4 Petroleum-Based Products	204
		6.1.5 Biomass	205
	6.2	Fuel Storage Silo	206
		6.2.1 Storage Capacity	206
		6.2.2 Silo/Bunker Design Considerations	208
		6.2.3 Safety Considerations	211
	6.3	Solid Fuel Flow Control	211
	6.4	Fuel Sizing Equipment	214
	6.5	Pulverized Coal System Analysis Guidelines	225
		6.5.1 Mill Sizing and Standard Ratings	226
		6.5.2 Coal Mill Capacity and Capability Analysis	229
		6.5.2.1 Coal Throughput Capability	230
		6.5.2.2 Primary Air Capability	232
		6.5.2.3 Air Heater Leakage	232
		6.5.2.4 Thermal Requirements	234
		6.5.2.5 Analysis Summary	237
		6.5.3 Coal Mill Capability Test Plan	237
	6.6	References	239
7.		ventional Firing Systems	241
	7.1	Overview	241
	7.2	Types of Traditional Combustion Systems	242
		7.2.1 Stoker Firing Systems	242
		7.2.2 Pulverized Firing Systems	242
		7.2.3 Cyclone Firing Systems	243
		7.2.4 Fluidized-Bed Systems	243
	7.3	Applications and Uses of Conventional	
		Firing Systems	243
		7.3.1 Electricity Generation	243
		7.3.2 Industrial Boilers, Kilns, and Process Heaters	246
	7.4	Basic Issues	247
		7.4.1 Fuel Selection	2.47

		7.4.2		al Considerations	249
		7.4.3		Emissions	250
				Particulates	250
			7.4.3.2	SO_2	250
			7.4.3.3	NO_x	250
			7.4.3.4	CO_2	251
			7.4.3.5	Other Emissions (Hazardous	
				Air Pollutants)	251
	7.5	Firing		nd Combustion Issues	252
		7.5.1			252
			7.5.1.1	Basic Description and Identification	
				of Types	252
			7.5.1.2	Fuel Selection for Stokers	253
			7.5.1.3	Fuel Preparation	254
			7.5.1.4	Design Parameters	254
			7.5.1.5	Functioning of Grates	255
		7.5.2	Pulverize	d Firing	256
			7.5.2.1	Applications	256
			7.5.2.2	Basic Description and Identification of	
				Types	257
			7.5.2.3	Wall-Fired Pulverized Coal Boilers and	
				Firing Systems	257
			7.5.2.4	Tangentially Fired Pulverized	
				Coal Boilers	26 2
			7.5.2.5	Vertically Fired (Arch-Fired) Boilers	264
			7.5.2.6	Pulverized Coal Burner Systems	264
			7.5.2.7	Typical and Maximum Conditions	265
			7.5.2.8	Fuel Preparation	265
			7.5.2.9	Effect of Moisture	267
			7.5.2.10	Swirling Flow	267
			7.5.2.11	Overfire Air Systems as Burner-Based	
				Emissions Control	267
		7.5.3	Cyclone		268
			7.5.3.1	Basic Description and Identification of	
				Types	268
			7.5.3.2	Typical and Maximum Conditions	269
			7.5.3.3	NO _x Formation and Cyclones	269
			7.5.3.4	Design and Operating Parameters	269
	7.6	Concl	uding Stat	ements	271
	7.7	Refere	ences		2 72
8.	Flui	dized-B	ed Firing S	Systems	275
-	8.1		luction	•	275
	8.2			ombustion Systems	276
		8.2.1		; Fluidized-Bed Combustion (BFBC)	278

	8.2.2		ng Fluidized-Bed Combustion (CFBC)	280
	8.2.3		ed Fluidized-Bed Combustion (PFBC)	282
8.3		Transfer		283
8.4		ustion Effi	ciency	284
8.5	Fuel F.	lexibility	10 1	284
8.6			tion and Control	288
	8.6.1	Sulfur Di		289
		8.6.1.1	Transformation of Sorbents in the FBC	
			Process	289
		8.6.1.2		291
		8.6.1.3		292
		8.6.1.4		292
		8.6.1.5	Gaseous Environment	292
		8.6.1.6	Combustor Pressure	292
		8.6.1.7	Chemical Composition	293
		8.6.1.8	Porosity	293
		8.6.1.9		294
		8.6.1.10	Particle Size	294
	8.6.2	Nitrogen	Oxides	295
		8.6.2.1	NO _x Formation	295
		8.6.2.2	Fuel Nitrogen and Volatile Matter	
			Content: Fuel Rank	296
		8.6.2.3	Combustion Temperature	296
		8.6.2.4	Excess Air	297
		8.6.2.5	Gas Velocity/Residence Time	297
		8.6.2.6	Limestone Effects	297
		8.6.2.7	NO _x Reduction Techniques	297
	8.6.3	Particula	te Matter	298
	8.6.4	Carbon N	Monoxide/Hydrocarbons	298
	8.6.5	Trace Ele	ements	299
8.7	Ash C	hemistry a	and Agglomeration Issues	301
	8.7.1		l Fractionation of Biomass	303
		8.7.1.1	Results of the Chemical Fractionation	
			Study	304
	8.7.2	Thermod	ynamic Modeling to Predict Inorganic	
		Phases	,	311
	8.7.3	Viscosity	of Inorganic Melt Phases	316
			Viscosity Results	319
	8.7.4	Conclusi	•	320
8.8	FBC B	oilers and	Their Role in Clean Coal Technology	
		pment		321
	8.8.1	United S	tates	322
		8.8.1.1	Clean Coal Technology Development	J
			Program (CCTDP)	322
		8.8.1.2	Clean Coal Power Initiative	324

		8.8.2	Worldwid	de	324
		8.8.3	Further I	Developments Needed for Conventional	
				oal Technologies	325
	8.9	Unique	e Opportu	nities for FBCs	325
				ind of Opportunity/Food Industry Issue	326
			Disposal		328
		8.9.3	_	ATB in Coal-Fired Boilers for Carcass	
			Disposal		329
		8.9.4		y of ATB/Coal Cofiring in a Pilot-Scale	
				l Bed Combustor	329
			8.9.4.1	NCBA/Cargill Food Solutions Tests	330
				PEDA/Cargill Food Solutions Tests	332
			8.9.4.3	DOE Oxygen-Enhanced Combustion	222
				Testing	332
				Statements	333
	8.10	Refer	ences		333
9.	Post	-Combi	astion Em	issions Control	341
	9.1	_			341
	9.2	Partic	ulate Capt	eure	341
			Introduc		341
		9.2.2	Electrost	atic Precipitation	342
			9.2.2.1	Introduction	342
			9.2.2.2	Theory	343
			9.2.2.3	Equipment Arrangement	345
			9.2.2.4	Resistivity	346
			9.2.2.5	Process Control	347
			9.2.2.6	Operating an Electrostatic Precipitator	351
			9.2.2.7		356
			9.2.2.8		360
		9.2.3	Baghous	e/Fabric Filters	361
				Overview	361
				Basic Principles	362
				Specific Designs	363
				Collection Efficiency	365
				Conclusions	366
	9.3	Acid (Gas Contr		366
		9.3.1		ses of Importance: SO ₂ , HCl	366
		9.3.2		Technologies Depending on	
			Applicat		367
		9.3.3		ubber Technology	367
			9.3.3.1	Basic Principles	367
			9.3.3.2	Typical Designs/Scale of Operations	367
			9.3.3.3	Efficiencies	369

		9.3.4	Spray Dr	yer Absorbers	369
			9.3.4.1	Basic Principles	369
			9.3.4.2	Typical Designs/Scale of Operation	369
			9.3.4.3	Efficiencies	370
			9.3.4.4	Waste Streams	371
		9.3.5	Dry Injec	ction Systems	371
				Basic Principles	371
			9.3.5.2	Typical Designs/Scale of Operations	372
			9.3.5.3	Efficiencies	372
		9.3.6	Reaction	S	372
			9.3.6.1	Kinetics and Thermodynamics	374
	9.4	$NO_x C$	Control	,	376
		9.4.1	Introduc	tion	376
		9.4.2	Post-Cor	nbustion Technologies of Significance	377
			9.4.2.1	Selective Noncatalytic	
				Reduction (SNCR)	377
			9.4.2.2	Selective Catalytic Reduction (SCR)	378
	9.5	Mercu	ry Contro		380
		9.5.1		Emissions from Existing Control	
				ogies from Coal-Fired Power Plants	380
		9.5.2		Legislation	383
		9.5.3		ogies for Mercury Control	383
			9.5.3.1	,	384
				Wet Flue Gas Desulfurization	388
	9.6	Carbor	n Dioxide		389
	,		Introduc		389
		9.6.2		hes for Capturing Carbon	90)
		, .o. <u>-</u>		from Coal-Fired Power Plants	389
		9.6.3		mbustion Carbon Dioxide Scrubbing	389
	9.7	Referen		industron Carbon Browner Stratoling	390
	7.7	1(01010)	1000		0,70
10.	Som	e Comr	niter Ann	lications for Combustion Engineering	
		Solid I		and the compaction and an arrangement	393
	10.1		duction		393
		10.1.		uter Applications in Combustion	0,0
			Engine		394
			10.1.1		394
				.2 Computer Applications for Process	0, 1
			101111	Control	396
			10.1.1		070
			10.1.1	Fuel Control	396
	10.2	Backs	ground	Taoi Control	396
	10.2		-	els Opportunity Realization	397
	10.0	10.3.		fy Current Fuels Opportunities	397 397
		10.3.	i identi:	ry Current ructs Opportunitues	371

		10.3.2	Validate Objectives and Develop	
			Effective Design	399
	10.4		fully Applying Computer Technology to Fuels	
		Control		403
	10.5		ack Situation Challenges and Response	408
	10.6		ng the Flow of Coal in Bunkers and Silos	410
			Plug Flow Models	410
			Discrete Element Modeling (DEM)	410
			Void Model	411
			Stochastic Model	411
			Bunker Geometry	412
		10.6.6	Validation of Bunker Modeling	415
	10.7	Conclus	sions Regarding the AccuTrack	
		Approac	ch to Computer Management	
		of Fuel	Properties	420
	10.8	Summa	ry	421
11.	Gasil	ication		423
	11.1		ction to Gasification	423
			ation Theory	424
	11.3		s of Gasification Systems	427
	11.0		Bed Type	427
			Flow Direction	430
			Feed Preparation	430
			Operating Temperature	431
			Oxidant	432
			Reactor Containment	433
			Primary Syngas Cooling	433
		11.3.8		435
		11.3.9	Fuel Issues	435
	11.4		ercial Gasification Systems	436
		11.4.1	GE Energy (formerly Texaco)	436
		11.4.2		436
		11.4.3		439
			Siemens (formerly Future Energy GSP)	439
			KBR Transport Gasifier	441
		11.4.6	Lurgi	442
		11.4.7	Raw Gas Analysis	443
	11.5	Trace C	Components in Gasifier Syngas	443
		11.5.1	Sulfur Compounds	443
		11.5.2	Nitrogen Compounds	444
		11.5.3	Chlorine Compounds	444
		11.5.4	Unsaturated Hydrocarbons	444
		11.5.5	Oxygen	444

		11.5.6	Formic Acid	445
		11.5.7	Carbon	445
		11.5.8	Metal Carbonyls	445
		11.5.9	Mercury	445
		11.5.10	Arsenic	446
	11.6	Gas Trea	ating	446
		11.6.1	Introduction	446
		11.6.2	Desulfurization	447
		11.6.3	Chemical Solvent Processes	448
			11.6.3.1 Amine Processes	448
		11.6.4	Physical Solvent Processes	448
			11.6.4.1 Physical Washes	448
			11.6.4.2 Selexol	449
			11.6.4.3 Rectisol	450
			11.6.4.4 Liquid Redox Processes	453
		11.6.5	Membranes	453
		11.6.6	COS Hydrolysis	453
		11.6.7	CO Shift	454
			11.6.7.1 Clean Gas Shift	455
			11.6.7.2 Raw Gas Shift	456
		11.6.8	Mercury Removal	457
	11.7		e Systems	457
		11.7.1	Integrated Gasification-Combined Cycle (IGCC)	457
			11.7.1.2 Gasification Block	459
			11.7.1.3 Gas Treatment and Sulfur Recovery	460
			11.7.1.4 Combined Cycle Power Plant	461
		11.7.2	IGCC with Carbon Capture	462
		11.7.3	Methanol	462
	11.8	Benefits	and Limits of Gasification	464
		11.8.1	Efficiency	464
		11.8.2	Environmental Impact	464
			11.8.2.1 Sulfur Emissions	465
			11.8.2.2 NO_x Emissions	465
			11.8.2.3 Mercury	465
			11.8.2.4 Other Emissions	465
			11.8.2.5 Start-Up Emissions	465
		11.8.3	Availability	466
			Capital Requirements	466
	11.9	Reference		467
12.	Polic	y Conside	erations for Combustion Engineering	469
	12.1	Introduc		469
		12.1.1	Combustion Engineers Do Not Make Policy	471
		12.1.2	Combustion Engineers Respond to Policy	472
			,	

xviii Contents

12.2	Environmental Policy and the Engineering Response	473
	12.2.1 A Historical Perspective	474
	12.2.2 Environmental Policy and Legislation	
	Since 1990	474
	12.2.3 Mechanisms of Engineering Response to	
	Environmental Policy	477
12.3	Energy Policy and Combustion Engineering	480
	12.3.1 Energy Policy and Fuel Selection	481
	12.3.2 Deregulation and Its Precursors	481
	12.3.3 Energy Efficiency and Energy Policy	482
12.4	Other Federal, State, Local, and Private Policies	
	Impacting Combustion Engineers	482
12.5	Conclusions	484
12.6	References	484
Index		485