Contents

	Foreword		page xiii
	Prefe	исе	xiv
	List e	of Notation	xvii
	List e	of Abbreviations	xix
1	Introduction		1
	1.1	Evolution towards mobile broadband communications	1
	1.2	System design principles of wireless communications	3
	1.3	Why OFDMA for mobile broadband?	4
	1.4	Systems approach and outline of the book	6
2	Elements of OFDMA		9
	2.1	OFDM	9
		2.1.1 Tone signals	9
		2.1.2 Cyclic prefix	10
		2.1.3 Time-frequency resource	13
		2.1.4 Block signal processing	14
		Discussion notes 2.1 FFT/IFFT	15
		Discussion notes 2.2 Filtering	16
		Discussion notes 2.3 Equalization	17
	2.2	From OFDM to OFDMA	18
		2.2.1 Basic principles	18
		2.2.2 Comparison: OFDMA, CDMA, and FDMA	21
		2.2.3 Inter-cell interference averaging: OFDMA versus CDMA	21
		2.2.4 Tone hopping: averaging versus peaking	24
		Practical example 2.1 Physical resource block allocation and hopping	
		in LTE data channels	26
		2.2.5 Time-frequency synchronization and control	30
		2.2.6 Block signal processing	33
		Discussion notes 2.4 Block front-end processing at the base station	34
		Discussion notes 2.5 Wideband processing at the user	34
	2.3	Peak-to-average power ratio and SC-FDMA	34
		2.3.1 PAPR problem	34

		2.3.2 PAPR of OFDMA	3,5
		2.3.3 SC-FDMA and PAPR reduction	35
		2.3.4 Frequency domain equalization at the SC-FDMA receiver	40
		Discussion notes 2.6 SINR degradation in SC-FDMA	42
		2.3.5 System aspects of SC-FDMA	45
		Practical example 2.2 Uplink data and control channels in LTE	46
	2.4	Real-world impairments	52
		2.4.1 Carrier frequency offset and Doppler effect	52
		2.4.2 Arrival time beyond the cyclic prefix	55
		2.4.3 Sampling rate mismatch	56
		2.4.4 I/Q imbalance	60
		2.4.5 Power amplifier nonlinear distortion	61
		Discussion notes 2.7 Determination of OFDMA parameters	61
	2.5	Cross interference and self-noise models	63
		2.5.1 Cross interference and self-noise due to ICI	63
	2.6	Self-noise due to imperfect channel estimation	64
		2.6.1 Self-noise measurement via null pilot	67
	2.7	Summary of key ideas	68
3	Syste	em design principles	70
	3.1	System benefits of OFDMA	70
	3.2	Fading channel mitigation and exploitation	74
		3.2.1 Fading mitigation	75
		3.2.2 Fading exploitation	75
		3.2.3 Mitigation or exploitation?	77
	3.3	Intra-cell user multiplexing	77
	3.4	Inter-cell interference management	80
		3.4.1 Interference averaging and active control	81
		3.4.2 Universal versus fractional frequency reuse	82
	3.5	Multiple antenna techniques	84
		3.5.1 System benefits	84
		3.5.2 OFDMA advantages	86
	3.6	Scheduling	87
	3.7	Network architecture and airlink support	89
		3.7.1 Unplanned deployment of base stations	90
		3.7.2 Mobile IP-based handoff	91
	3.8	Summary of key ideas: evolution of system design principles	92
4	Mitig	gation and exploitation of multipath fading	94
	4.1	Multipath fading channel	97
		4.1.1 Impulse response model	97
		4.1.2 Amplitude statistics	99

		4.1.3 Channel variation in time	100
		4.1.4 Channel variation in frequency	103
		4.1.5 Gaussian-Markov model	105
	4.2	Communications over a fading channel: the single-user case	106
		4.2.1 Performance penalty due to multipath fading	106
		4.2.2 Mitigation of fading via channel state feedback	108
		Discussion notes 4.1 Practical consideration of feedback-based	
		approaches	112
		4.2.3 Mitigation of fading via diversity	115
		Discussion notes 4.2 Tradeoff considerations for achieving diversity	122
		4.2.4 Feedback or diversity	123
	4.3	Communications over a fading channel: the multiuser case	126
		4.3.1 Fading channel and multiuser diversity	126
		Practical example 4.1 Multiuser diversity in the downlink; EV-DO	130
		Practical example 4.2 Multiuser diversity in the uplink: Flash-OFDM	
		and LTE	133
		4.3.2 Exploring multiuser diversity in frequency and space	135
		4.3.3 Multiuser or single-user diversity	144
	4.4	Summary of key ideas	148
5	Intra-cell user multiplexing		150
J	mua		
	5.1	Orthogonal multiplexing	151
		5.1.1 Orthogonal multiplexing in the perfect model	151
		Discussion notes 5.1 An analysis of optimal power and bandwidth	
		allocation in a cellular downlink	157
		Practical example 5.1 Downlink user multiplexing: EV-DO, HSDPA,	
		and LTE	160
		5.1.2 Orthogonal multiplexing in the cross interference model	167
		Discussion notes 5.2 An analysis of optimal power and bandwidth	
		allocation for orthogonal uplink multiplexing with cross	
		interference in the power limited regime	169
		5.1.3 Orthogonal multiplexing in the self-noise model	172
	5.2	Non-orthogonal multiplexing	174
		5.2.1 Non-orthogonal multiplexing in the perfect model	176
		5.2.2 Non-orthogonal multiplexing in the cross interference and	
		self-noise models	180
		5.2.3 Superposition-by-position coding	183
	5.3	Inter-sector interference management	189
		5.3.1 Sectorization	189
		5.3.2 Synchronized sectors	190
		5.3.3 Users at sector edge	192
	5.4	Summary of key ideas	195

6	Inter-d	cell interference management	196
	6.1	Analysis of SIR distributions	198
		6.1.1 Downlink SIR	199
		Discussion notes 6.1 An analysis of C/I distribution with	
		randomly-placed base stations	202
		6.1.2 Uplink SIR	205
	6.2	Uplink power control and SINR assignment in OFDMA	209
		6.2.1 SINR feasibility region	210
		6.2.2 Distributed power control	211
		6.2.3 SINR assignment	212
		6.2.4 Joint bandwidth and SINR assignment	215
		6.2.5 Utility maximization in SINR assignment	216
		Practical example 6.1 Uplink power control in LTE	217
	6.3	Fractional frequency reuse	219
		6.3.1 A two-cell analysis	220
		Discussion notes 6.2 Motivation of fractional frequency reuse from a	
		different angle	225
		6.3.2 Static FFR in a multi-cell scenario	226
		6.3.3 Breathing cells: FFR in the time domain	230
		6.3.4 Adaptive FFR	233
		Practical example 6.2 Inter-cell interference coordination in LTE	236
	6.4	Summary of key ideas	237
7	Use o	f multiple antennas	239
	7.1	MIMO channel modeling	240
		7.1.1 Linear antenna arrays	241
		7.1.2 Polarized antennas	247
	7.2	SU-MIMO techniques	251
		7.2.1 Channel state information at both transmitter and receiver	251
		7.2.2 Channel state information only at receiver	252
		7.2.3 Multiplexing with polarized antennas	254
	7.3	Multiuser MIMO techniques	254
		7.3.1 Uplink SDMA	256
		7.3.2 Downlink beamforming	261
	7.4	Multi-cell MIMO techniques	267
		7.4.1 Coordinated beamforming	268
		7.4.2 Inter-sector beamforming	271
		7.4.3 Inter-cell interference avoidance with polarized antennas	273
		Practical example 7.1 Multiple antenna techniques in LTE	273
	7.5	Summary of key ideas	280
8	Sche	duling	282
	8.1	Scheduling for infinitely backlogged traffic	283

		8.1.1 Fairness based on utility functions	283
		8.1.2 Gradient-based scheduling schemes	286
	8.2	Scheduling for elastic traffic	289
		8.2.1 Congestion control and scheduling	290
		Discussion notes 8.1 TCP performance over wireless	292
	8.3	Scheduling for inelastic traffic	293
		8.3.1 Throughput optimal scheduling	294
		8.3.2 Tradeoff between queue-awareness and channel-awareness	296
		8.3.3 Admission control	299
	8.4	Multi-class scheduling	300
	8.5	Flow level scheduling	301
	8.6	Signaling for scheduling	304
		8.6.1 Dynamic packet scheduling	304
		Practical example 8.1 Signaling for scheduling in LTE	307
		8.6.2 Semi-persistent scheduling	310
		Practical example 8.2 Semi-persistent scheduling in LTE for VoIP	311
		8.6.3 MAC state scheduling	311
		Practical example 8.3 LTE DRX mode and Flash-OFDM HOLD state	312
	8.7	Summary of key ideas	313
9	Hand	loff in IP-based network architecture	315
	9.1	IP-based cellular network architecture	317
		9.1.1 Motivation for IP-based cellular network architecture	317
		9.1.2 Description of IP-based cellular networks	317
	9.2	Soft handoff in CDMA	319
	9.3	Make-before-break handoff in OFDMA	323
		9.3.1 Parallel independent links to multiple base stations	324
		9.3.2 Mobile IP-based MBB handoff procedure	327
		9.3.3 Uplink macro-diversity	328
		9.3.4 Downlink macro-diversity	333
		9.3.5 MBB handoff in an FFR or multi-carrier scenario	335
	9.4	Break-before-make handoff in OFDMA	337
		9.4.1 BBM handoff in an FFR or multi-carrier scenario	338
		9.4.2 Expedited BBM handoff	339
	9.5	Handoff initiation	342
		9.5.1 The universal frequency reuse case	342
		Practical example 9.1 Flash signaling in Flash-OFDM	351
		Practical example 9.2 Handoff in a railway Flash-OFDM network	353
		9.5.2 The non-universal frequency reuse cases	354
	9.6	Mobile-controlled versus network-controlled handoff	356
		Practical example 9.3 Cell search and random access in LTE handoff	357
	9.7	Summary of key ideas	363

10	Beyon	nd conventional cellular frameworks	365
	10.1	Heterogeneous topology	366
		10.1.1 Relays	367
		10.1.2 Femtocells	383
		10.1.3 Device-to-device communications	398
		Discussion notes 10.1 Gaussian interference channel capacity	412
	10.2	Cooperative communication	415
		10.2.1 User cooperation	417
		10.2.2 Network cooperation	425
	10.3	Cognitive radio	431
		10.3.1 Spectrum sensing	433
		10.3.2 Spectrum sharing	438
		Practical example 10.1 LTE-Advanced	444
		Practical example 10.2 Cognitive radio RAN in TV white spaces (IEEE	
		802.22)	456
	10.4	Summary of key ideas	458
A	Overview of system operations		461
	A.1	Cell search, synchronization, and identification	461
	A.2	Link establishment	462
	A.3	Traffic control and transmission	463
	A.4	Sleep state	465
	A.5	Handoff	465
В	OFDM point-to-point communications		467
	B.1	Signal-presence detection	467
	B.2	Synchronization	471
	B.3	Channel estimation	477
	B.4	Error correction	487
C	Brief review of channel capacity		495
	C.1	AWGN channel	495
	C.2	Flat fading channel	496
		C.2.1 Channel side information only at receiver	49 <i>6</i>
		C.2.2 Channel side information at both receiver and transmitter	497
	C.3	Frequency selective fading channel	499
	C.4	Multiuser capacity	499
	Refe	rences	503
	Inde.	x	514