Contents

Pr	Preface				
1	Intro	duction		1	
	1.1	Why Energy Conversion Electronics Circuits?			
		1.1.1	Applications in the Information and Telecommunication Industry	2	
		1.1.2	Applications in Renewable Energy Conversion	4	
		1.1.3	Future Energy Conversion – Fuel Cells	6	
		1.1.4	Electric Vehicles	6	
		1.1.5	Applications in Electronic Display Devices	8	
		1.1.6	Audio Amplifiers	9	
		1.1.7	Applications in Portable Electronic Devices	9	
		1.1.8	Applications in High Voltage Physics Experiments and Atomic Accelerators	10	
		1.1.9	Lighting Technology	11	
		1.1.10	Aerospace Applications	11	
		1.1.11	Power System Conditioning	12	
		1.1.12	Energy Recycling in Manufacturing Industry	12	
		1.1.13	Applications in Space Exploration	12	
		1.1.14	Defense Applications	14	
		1.1.15	Drives and High-Power Industrial Applications	15	
		1.1.16	Classification of Power Electronic Circuits	15	
	1.2	Basic F	Principles of Operation of a Power Electronics Circuit	17	
	1.3	Basic (Components of the Power Circuit: Power Semiconductor Switches and Passive		
		Reactiv	ve Elements	28	
		1.3.1	Uncontrollable Switches – Power Diodes	28	
		1.3.2	Semicontrollable Switches (Thyristors)	32	
		1.3.3	Controllable Switches	35	
			1.3.3.1 Bipolar Junction Transistor (BJT)	35	
			1.3.3.2 Power Metal Oxide Semiconductor Field-Effect Transistor (MOSFET)	38	
			1.3.3.3 Insulated Gate Bipolar Transistor (IGBT)	47	
		1.3.4	Gallium Nitride (GaN) Switch Technology	51	
		1.3.5	Energy Losses Associated with Power Switches	52	
			1.3.5.1 Switching Losses	52	
			1.3.5.2 Off-State Leakage Power Loss	54	

			1.3.5.3 Conduction Power Loss	56
			1.3.5.4 Gate Drive Power Loss	56
			1.3.5.5 Heat Sinks	56
			1.3.5.6 Outline for Choosing a Transistor	57
		1.3.6	Passive Reactive Elements	65
			1.3.6.1 Capacitors	65
			1.3.6.2 Inductors, Transformers, Coupled Inductors	72
		1.3.7	Ultracapacitors	80
	1.4	Basic St	teady-State Analysis of Duty Cycle Controlled Converters with Constant	
		Switchin	ng Frequency	81
		1.4.1	Input-to-Output Voltage Ratio for Basic DC-DC Converters	81
		1.4.2	Continuous and Discontinuous Conduction Operation Modes	85
		1.4.3	Design of the Elements of the Basic Converters	85
		1.4.4	Controller for Duty Cycle Control (PWM)	88
		1.4.5	Conversion Efficiency, Hard-switching and Soft-switching	92
	1.5		ction to Switched-Capacitor (SC) Converters	96
	1.6	-	ncy-Controlled Converters	101
		1.6.1	Resonant Converters	101
		1.6.2	Quasi-Resonant Converters (QRC)	110
	1.7		ew on AC-DC Rectifiers and DC-AC Inverters	119 119
		1.7.1	Rectifiers	132
		1.7.2	Inverters	140
	1.8	Case St		140
		1.8.1	Case Study 1	146
		1.8.2	Case Study 2	150
	1.0	1.8.3	Case Study 3	154
	1.9	Problem	thts of the Chapter	155
		Bibliog		157
		Dibliog	тарпу	,,,,
2	Mod	eling DC	2-DC Converters	161
	2.1		s the Purpose of Modeling the Power Stage?	162
	2.2		e State-Space Equations, Small-Ripple Approximation (Time-Linearization)	164
	2.3			
		Averag	e State-Space Equations for Converters Operating in Continuous Conduction	
		Mode		169
		2.3.1	DC Voltage Gain and AC Open-Loop Line-to-Load Voltage Transfer Function	169
		2.3.2	Duty Cycle-to-Output Voltage AC Transfer Function. Small-Signal	
			Approximation	171
		2.3.3	DC Gain and AC Small-Signal Open-Loop Transfer Functions of the Boost,	
			Buck and Buck-Boost Converters Operating in CCM	173
			2.3.3.1 Boost Converter	173
			2.3.3.2 Buck Converter	182
			2.3.3.3 Buck-Boost Converter	18
		2.3.4*	Graphical Averaged Models of the Boost, Buck and Buck-Boost Converters	10
			Operating in CCM	19
			2.3.4.1 Boost Converter	19

				Contents	ix		
		2342	Buck Converter		203		
			Buck-Boost Converter		207		
	2.3.5*		al Graphical Averaged Models of DC-DC Converters		207		
	2.3.3		ing in CCM		211		
2.4	DC Volt		and AC Small-Signal Open-Loop Transfer Functions Based on		211		
	Average State-Space Equations for Converters Operating in Discontinuous						
		tion Mode			217		
	2.4.1		l-Order Averaged Models		217		
			Boost Converter		218		
			Buck-boost converter		226		
			Buck Converter		229		
			An Alternative Way for Obtaining First-Order Average State-Spa	ace			
			Equations for Converters Operating in DCM by Neglecting the				
			Dynamics of the Inductor Current		235		
	2.4.2*	Full-Ord	ler Averaged Models		237		
		2.4.2.1	· · · · · · · · · · · · · · · · · · ·				
			Current Dynamics		237		
		2.4.2.2	Average State-Space Equations Without Neglecting the Inductor				
			Current Dynamics and Without Neglecting the Parasitic				
			Resistances in the Inductor Charging Process		239		
		2.4.2.3	Full-Order Small-Signal Transfer Functions for Converters				
			Operating in DCM		241		
2.5*	Average	PWM S	witch Model		253		
	2.5.1		PWM Switch Model for Converters Operating in Continuous				
			ion Mode		253		
	2.5.2	Average	PWM Switch Model for Converters Operating in Discontinuous				
			ion Mode		263		
			DC Analysis of the Boost Converter in DCM		270		
			Small-Signal Analysis of the Boost Converter in DCM		271		
			DC Analysis of the Buck Converter in DCM		279		
			Small-Signal Analysis of the Buck Converter in DCM		280		
			DC Analysis of the Buck-Boost Converter in DCM		284		
		2.5.2.6			285		
2.6	Average	Model o	of the Switches Resistances and Diode Forward Voltage. Average				
	Model o	of the PW	M		288		
	2.6.1	Average	Model of the Switches DC Resistances and Diode				
		Forward	Voltage		288		
	2.6.2	Average	Model of the PWM		291		
2.7*	Average Resonant Switch Model for the DC and Small-Signal Analysis of QRC						
	Convert	ers			292		
	2.7.1	Average	Model of the Zero-Current (ZC) Resonant Switch		293		
	2.7.2	Average	Model of the Zero-Voltage (ZV) Resonant Switch		300		
	2.7.3	DC Ana	lysis and Open-Loop Small-Signal Transfer Functions of ZCS				
			esonant Converters		305		
		2.7.3.1	ZCS QR Buck Converter		305		
		2.7.3.2	ZCS QR Boost Converter		310		
		2.7.3.3	ZCS QR Buck-Boost Converter		318		

x Contents

		2.7.4	DC Analysis and Open-Loop Small-Signal Transfer Functions of ZVS	
			Quasi-Resonant Converters	325
			2.7.4.1 ZVS QR Buck Converter	325
			2.7.4.2 ZVS QR Boost Converter	331
			2.7.4.3 ZVS QR Buck-Boost Converter	337
	2.8	Simulat	tion and Computer-Aided Design of Power Electronics Circuits	339
	2.9	Case St	udy	355
	2.10	Highlig	thts of the Chapter	362
		Problem	ns	365
		Bibliog	raphy	368
3	Class	ical DC-	DC PWM Hard-switching Converters	369
	3.1	Buck D	OC-DC PWM Hard-switching Converter	369
		3.1.1	Influence of the DC Resistance of the Inductor	369
		3.1.2	Boundary Control	375
		3.1.3	Calculation of Losses in a Buck Converter Operating in CCM by	
			Considering the Inductor Current Ripple and the ESR of the Capacitor	377
		3.1.4	Design of a Buck Converter in CCM Operation	382
			3.1.4.1 Design Example	385
		3.1.5	Buck Converter with Input Filter	386
		3.1.6	Review of the Steady-State Analysis of the Buck Converter in	
			DCM Operation	390
		3.1.7	Design of a Buck Converter in DCM Operation	395
			3.1.7.1 Design Example	398
		3.1.8*	Aspects of Dynamic Response of Buck Converter	399
	3.2	Boost I	DC-DC PWM Hard-switching Converter	402
		3.2.1	Boost Converter in Steady-State CCM Operation	402
			3.2.1.1 Design Example	409
		3.2.2	Boost Converter in Steady-State DCM Operation	410
			3.2.2.1 Design Example	416
		3.2.3*	Aspects of Dynamic Response of Boost Converter	417
	3.3	Buck-F	Boost DC-DC PWM Hard-switching Converter	420
		3.3.1	Buck-Boost Converter in Steady-State CCM Operation	421
			3.3.1.1 Design Example Case Study	427
			3.3.1.2 Four-Switch Noninverting Buck-Boost Converter	428
		3.3.2	Buck-Boost Converter in Steady-State DCM Operation	429
		3.3.3*	Aspects of Dynamic Response of Buck-Boost Converter	437
	3.4	Ćuk (B	Boost-Buck) PWM Hard-switching Converter	437
		3.4.1	Derivation and Switching Operation of the Ćuk Converter	438
		3.4.2	Steady-State Analysis of Ćuk Converter in CCM Operation and	
			its Design	438
		3.4.3*	DC Voltage Gain and AC Small-Signal Characteristics of the Ćuk Converter	
			in the Presence of Parasitic Resistances	44
		3.4.4	Design Example and Commercially Available Ćuk Converters	453
			3.4.4.1 Design of a Ćuk Converter Based on National Semiconductor	
			I M2611 Current-Mode Controller	450

	3.4.5*	Discontinuous Conduction Mode for the Ćuk Converter	456				
	3.4.6*	Ćuk Converter with Coupled Inductor	468				
3.5	SEPIC	PWM Hard-switching Converter	470				
	3.5.1	SEPIC Converter in CCM Operation	471				
	3.5.2	Steady-State Analysis of SEPIC Converter in CCM Operation	473				
	3.5.3*	Small-Signal Analysis of the SEPIC Converter in CCM Operation	479				
	3.5.4	Commercially Available SEPIC Converters: Case Studies	483				
		3.5.4.1 SEPIC Converter Based on National Semiconductor LM3478					
		Controller	483				
		3.5.4.2 SEPIC Converter Based on Unitrode (Texas Instruments) UCC380	3				
		Controller	485				
		3.5.4.3 SEPIC Converter Based on Unitrode (Texas Instruments) UC2577					
		Controller for Automotive Applications	487				
		3.5.4.4 SEPIC Converter Based on Texas Instruments TPS61175 IC					
		Controller	487				
	3.5.5*	SEPIC Converter in DCM Operation	489				
		3.5.5.1 Numerical Example	498				
	3.5.6*	AC Analysis of SEPIC Converter in DICM	500				
	3.5.7*	Isolated SEPIC Converter	503				
3.6	Zeta (Ir	Zeta (Inverse SEPIC) PWM Hard-switching Converter					
	3.6.1	Zeta Converter in CCM Operation	504				
	3.6.2	Steady-State Analysis of a Zeta Converter in CCM Operation 50					
	3.6.3*	Small-Signal Analysis of the Zeta Converter in CCM Operation 51					
	3.6.4	Design Example and Case Study	515				
		3.6.4.1 Zeta Converter Based on the Sipex SP6126 Controller	517				
		3.6.4.2 Zeta Converter Based on the Dual-Channel Synchronous					
		Current-Mode Switching Controller ADP1877 from Analog Devic	es 519				
		3.6.4.3 Zeta Converter Based on the Texas Instruments TPS40200					
		Non-Synchronous Voltage-Mode Controller	520				
	3.6.5*	Zeta Converter in DCM Operation	520				
		3.6.5.1 Numerical Example	527				
	3.6.6*	Isolated Zeta Converter	529				
3.7	Forward Converter 5						
	3.7.1	The Role of a High-Frequency Transformer in the Structure of DC-DC					
		Converters	530				
	3.7.2	Derivation of Forward Converter	531				
	3.7.3	Operation of Forward Converter in CCM	534				
		3.7.3.1 First Switching Stage	534				
		3.7.3.2 Second Switching Stage	538				
		3.7.3.3 Third Switching Stage	542				
		3.7.3.4 Derivation of the Input-to-Output DC Voltage Conversion Ratio	543				
		3.7.3.5 Limit on the Maximum Duty Ratio	543				
	3.7.4	Operation of a Forward Converter in DCM and Design Considerations					
		for CCM and DCM	545				
	3.7.5*	Multiple-Output Forward Converter	551				
	3.7.6*	\mathbf{c}	551				
		3.7.6.1 Clamping Circuits for Core Reset	553				

		3.7.6.2	Operation of an Active Clamping Circuit Formed by a Switch			
			and a Reset Capacitor	554		
		3.7.6.3	A Resonant Passive Clamping Circuit	559		
		3.7.6.4	Two-Transistor Forward Converter	563		
	3.7.7	Example	es of Practical Designs: Case Studies	564		
		-	A Forward Converter with RCD Clamping Circuit	564		
			Forward Converter with a Reset Transformer Winding and			
			Synchronous Rectification used in a Consumer Application for a			
			USA Typical Input Voltage Range	564		
		3.7.7.3	Design of a Forward Converter using the MAX8541 Voltage-Mode			
			Controller with Synchronous Rectifier	566		
3.8*	Isolated	l Ćuk Cor		568		
3.9		Convert		574		
	3.9.1 Derivation of the Flyback Converter					
	3.9.2		on of Flyback Converter in CCM and DCM	577		
		3.9.2.1	Analysis for CCM Operation	577		
			Particularities of Operation in DCM	583		
	3.9.3		of the Coupled Inductor Leakage Inductance	587		
			Dissipative RCD Snubber Solution	589		
			Transformer Tertiary Winding Solution	593		
			Two-Transistor Flyback Converter	593		
			Flyback Converter with Active Clamping	597		
	3.9.4*		Signal Model of the Flyback Converter	598		
	3.9.5		s of the Flyback Converter: Case Studies – Practical Considerations	600		
		3.9.5.1	Design of a Flyback Converter with Integrated Regulator Si9108,			
			Vishai Siliconix	601		
		3.9.5.2	Flyback Converter for Battery-Powered CCDs (Charge Coupled			
			Devices)	603		
		3.9.5.3	A Flyback Converter Designed for Telecommunication Industry			
			(Unitrode/Texas Instruments Application Note)	604		
3.10	Push-F	ull Conve	erter	607		
	3.10.1	Push-P	ull Converter of Buck Type (Voltage Driven)	607		
	3.10.2	CCM C	Operation of the Push–Pull Converter	608		
	3.10.3	Non-Ide	ealities in the Push–Pull Converter	616		
	3.10.4	DCM C	Operation	619		
	3.10.5*	Push-P	full Converter of the Boost Type (Current Driven)	625		
	3.10.6	Design	Example	631		
3.11	Half-B	ridge Cor	nverter	634		
	3.11.1	The Bu	ck-Type Half-Bridge Topology	634		
	3.11.2	CCM C	Operation	636		
	3.11.3		o-Output Voltage Conversion Ratio and Design of a Half-Bridge			
			ter in CCM Operation	645		
	3.11.4		al Aspects	647		
	3.11.5		Operation	648		
			t-Driven Half-Bridge Converter	652		
3.12		ridge Con		657		
	3.12.1	Full-Br	ridge Topology	657		

				Contents	xiii
			CCM Operation of the Buck-Type Full-Bridge Converter Input-to-Output Voltage Conversion Ratio and Design of a Buck-Type Full Bridge Converter in CCM Operation		660
		2 12 4	Full-Bridge Converter in CCM Operation Practical Aspects		672 676
			Other Transistor Control Schemes: Phase-Shift Control		676
			Current-Driven Full-Bridge Converter		680
	3.13		hts of the Chapter		687
	5.15	Problem	•		696
		Bibliogi			702
4	Donis	ad Struc	tures of DC-DC Converters		705
-	4.1		Doubler Rectifier (CDR) for Push–Pull, Half-Bridge and Full-Bridge		705
		Convert			705
		4.1.1	Cyclical Operation of Current Doubler Rectifier		706
		4.1.2	Voltage Conversion Ratio of Converters with CDR		711
		4.1.3	Ripple Cancellation in the Output Current		711
		4.1.4*	Other Structures of CDR		713
		4.1.5	Penalties of CDR		719
		4.1.6*	Current Tripler and Current Multiplier		719
	4.2		Doubler and Voltage Multiplier Rectifier		721
		4.2.1	Full-Wave Bridge Voltage Doubler		721
		4.2.2	Greinacher Multiplier		723
		4.2.3	Voltage Tripler and General Cockcroft–Walton Multiplier		727
		4.2.4*	Voltage Doubler with One Capacitor		729
		4.2.5	Fibonacci Voltage Multiplier		730
		4.2.6	Voltage Dividers		735
		4.2.7*	"Economy" Power Supply and the 4×8 Power Supply		736
	4.3	Quadrat	tic Converters		742
		4.3.1	Quadratic Buck Converters		743
		4.3.2*	Buck-Boost Quadratic Converters (D < 0.5)		746
	4.4*	Two-Sv	vitch Buck-Boost Converter		748
		4.4.1	Buck-Boost Converters Obtained by Interleaving a Boost and a Buck		
			Switching Cell		749
		4.4.2	Z-Source Buck-Boost Converter with Positive Output Voltage		753
	4.5*	Switche	ed-Capacitor/Switched-Inductor Integrated Basic Converters		757
		4.5.1	Family of Converters Based on Switched-Capacitor/Switched-Inductor		
			Structures		757
			4.5.1.1 Switched-Capacitor/Switched-Inductor Building Blocks		757
			4.5.1.2 Switched-Capacitor/Switched-Inductor Integrated Buck Conve	rters	760
			4.5.1.3 Switched-Capacitor/Switched-Inductor Integrated Boost Conve		767
			4.5.1.4 Switched-Capacitor/Switched-Inductor Integrated Buck-Boost,	,	
			Ćuk, SEPIC and Zeta Converters		770
		4.5.2	KY Converter		776
			4.5.2.1 First-Order KY Converter		776
			4.5.2.2 Second-Order KY Converter		778
		4.5.3	Watkins–Johnson Converter		782

xiv Contents

4.6*	The Sh	eppard-Taylor Converter	783		
	4.6.1	CCM Operation	783		
	4.6.2	Discontinuous Conduction Mode Operation	785		
	4.6.3	Isolated Sheppard–Taylor Converter	791		
4.7*	Converters with Low Voltage Stress on the Active Switches				
	4.7.1	4.7.1 Four-Switch Full-Bridge-Type Converter with V _{in} /2 Primary-Side Switches			
		Voltage Stress	794		
	4.7.2	Converter with V _{in} /3 Voltage Stress on the Primary-Side Switches	797		
	4.7.3	Three-Level Boost Converter	797		
4.8*	Tapped Inductor-Based Converters				
	4.8.1	Tapped Inductor Buck Converter and VRMs (Voltage Regulator Module)	805		
		4.8.1.1 Diode-To-Tap and Switch-To-Tap Buck Converters	805		
		4.8.1.2 Rail-To-Tap (Watkins-Johnson Type) Tapped Inductor Buck Converter			
		For Automotive Applications	810		
		4.8.1.3 Voltage Regulator Module (VRM)	811		
	4.8.2	Tapped Inductor Boost Converter	812		
4.9*	Curren	Current-Driven Dual-Bridge Converter with Center-Tapped Inductor			
4.10	Highlights of the Chapter				
	Problems				
	Bibliography				

Index 833