## Contents

| Part I | State and Changes in Dryland East Asia —— 1                                                           |
|--------|-------------------------------------------------------------------------------------------------------|
| 1      | State and Change of Dryland East Asia (DEA) —— 3                                                      |
| 1.1    | Geography, Demography and Economics in DEA —— 3                                                       |
| 1.2    | Climate and Land-Use Changes ——— 10                                                                   |
| 1.3    | Ecosystem Production and Evapotranspiration ————————————————————————————————————                      |
| 1.4    | Scientific and Societal Challenges for Adaptations in DEA ———————————————————————————————————         |
|        | References —— 20                                                                                      |
| 2      | Dryland East Asia in Hemispheric Context ——23                                                         |
| 2.1    | Study Regions ——— 23                                                                                  |
| 2.2    | Change Analysis of Vegetated Land Surface —— 25                                                       |
| 2.3    | Retrospective Trend Analysis Reveals Areas of Significant Change ———————————————————————————————————— |
| 2.4    | Vegetation Change in Three Epochs —— 27                                                               |
| 2.5    | Land Cover Variation and Change —— 30                                                                 |
| 2.6    | Precipitation Variation and Change ——— 34                                                             |
| 2.7    | Conclusion —— 38                                                                                      |
|        | References —— 39                                                                                      |
| 3      | NEESPI and MAIRS Programs in Dryland East Asia ——45                                                   |
| 3.1    | Introduction —— 45                                                                                    |
| 3.2    | Contrast and Comparison —— 47                                                                         |
| 3.2.1  | The Programs —— 47                                                                                    |
| 3.2.2  | Research Approaches —— 48                                                                             |
| 3.2.3  | Organization Structure —— 49                                                                          |
| 3.2.4  | Major Research Activities —— 49                                                                       |
| 3.3    | Major Findings and Achievements ——— 50                                                                |
| 3.3.1  | Understanding Climate Change —— 50                                                                    |
| 3.3.2  | Understanding Societal Consequences —— 51                                                             |
| 3.3.3  | Understanding Ecosystem Impacts —— 53                                                                 |
| 3.3.4  | Institutional Responses to Environmental Change ——— 54                                                |
| 3.3.5  | Understanding Challenges —— 54                                                                        |
| 3.4    | Conclusions ——— 56                                                                                    |
|        | References —— 57                                                                                      |

| 4     | Land Use and Land Cover Change in Dryland East Asia ——61             |
|-------|----------------------------------------------------------------------|
| 4.1   | Introduction —— 62                                                   |
| 4.2   | Global Land Use Changes through Centuries —— 65                      |
| 4.3   | Long-Term Changes in Cropland and Pastureland in DEA —— 66           |
| 4.4   | Recent Changes in Asian Drylands —— 68                               |
| 4.4.1 | Rangeland Degradation and Desertification and                        |
|       | Increased Cropland —— 68                                             |
| 4.4.2 | Grassland Recovery —— 72                                             |
| 4.4.3 | Reforestation/Afforestation —— 72                                    |
| 4.5   | Sahel Land Use Change — 74                                           |
|       | References —— 78                                                     |
| 5     | Urban Expansion and Environment Change in                            |
|       | Dryland East Asia ——81                                               |
| 5.1   | Introduction ——— 81                                                  |
| 5.2   | Study Area, Data, and Methodology ——— 83                             |
| 5.2.1 | Study Area —— 83                                                     |
| 5.2.2 | Data and Methodology —— 85                                           |
| 5.3   | Findings —— 86                                                       |
| 5.3.1 | Urban Expansion —— 87                                                |
| 5.3.2 | Environment Impact —— 90                                             |
| 5.4   | Case of Ürümqi —— 92                                                 |
| 5.4.1 | Spatio-Temporal Change in Ürümqi —— 92                               |
| 5.4.2 | Environment Challenges of Ürümqi —— 94                               |
| 5.5   | Discussion —— 96                                                     |
| 5.5.1 | Characteristics of Urbanization in Arid Regions —— 96                |
| 5.5.2 | Socio-Economic Factors Driving Urbanization —— 97                    |
| 5.6   | Conclusions —— 99                                                    |
|       | References —— 100                                                    |
| 6     | Ecosystem Carbon Cycle under Changing Atmosphere,                    |
|       | Climate and Land Use in Dryland East Asia ——105                      |
| 6.1   | Introduction —— 105                                                  |
| 6.2   | Simulated Ecosystem Carbon Patterns in DEA —— 106                    |
| 6.3   | Responses of Ecosystem Carbon Cycling to Atmospheric Change —— 110   |
| 6.3.1 | $CO_2$ Enrichment —— 110                                             |
| 6.3.2 | Nitrogen Deposition and Its Impact on DEA Ecosystems —— 111          |
| 6.4   | Responses of Ecosystem Carbon Cycling to Climate Change —— 112       |
| 6.4.1 | Responses to Precipitation Changes ——112                             |
| 6.4.2 | Responses to Temperature Changes ——113                               |
| 6.5   | Responses of Ecosystem Carbon Cycling to Land Use and                |
|       | Land Cover Changes —— 114                                            |
| 6.6   | Interactions among Environmental Changes —— 115                      |
| 6.6.1 | Limitation of Nitrogen Availability on CO <sub>2</sub> Impacts ——115 |

| 6.6.2 | Dependence of Nitrogen Effects on Water Status                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------|
| 6.6.3 | (Precipitation Regimes) —— 116 Interaction between Temperature (Warming) and Water Availability (Precipitation) —— 116 |
| 6.6.4 | Relationship and Interactions between Land Use and Climate Changes on Ecosystem Carbon Cycling —— 117                  |
| 6.7   | Carbon Sequestration Potential and Human Adaption to Climate Change —— 118 References —— 118                           |
| 7     | Dynamics of Vegetation Productivity in Dryland East Asia                                                               |
| •     | from 1982 to 2010 ——125                                                                                                |
| 7.1   | Introduction —— 125                                                                                                    |
| 7.2   | Data and Methods —— 127                                                                                                |
| 7.2.1 | AVHRR NDVI —— 127                                                                                                      |
| 7.2.2 | MODIS NDVI —— 128                                                                                                      |
| 7.2.3 | Land Cover Map —— 129                                                                                                  |
| 7.2.4 | MERRA Reanalysis Data —— 129                                                                                           |
| 7.2.5 | Agricultural Statistics —— 129                                                                                         |
| 7.2.6 | Statistical Analysis —— 131                                                                                            |
| 7.3   | Results and Discussion —— 131                                                                                          |
| 7.3.1 | Trends of Spatially-Averaged NDVI —— 131                                                                               |
| 7.3.2 | Spatial Patterns of NDVI Trends —— 135                                                                                 |
| 7.3.3 | Climatic Drivers —— 137                                                                                                |
| 7.3.4 | Other Drivers —— 139                                                                                                   |
| 7.4   | Conclusions —— 142                                                                                                     |
|       | References —— 143                                                                                                      |
| Sumi  | mary I: Contexts of Change ——149                                                                                       |
| Part  |                                                                                                                        |
| 8     | Impacts of Global Change on Water Resources in                                                                         |
|       | Dryland East Asia ——153                                                                                                |
| 8.1   | Introduction —— 154                                                                                                    |
| 8.2   | Key Water Resource Challenges ——— 157                                                                                  |
| 8.2.1 | Distribution of Water Balances across DEA and Historical Changes ———157                                                |
| 8.2.2 | Land Use/Land Cover Change —— 160                                                                                      |
| 8.2.3 | Agricultural Irrigation and Industrialization —— 163                                                                   |
| 8.2.4 | Climate Change ————————————————————————————————————                                                                    |
| 8.3   | Water Resources under Environmental Changes: Case Studies —— 167                                                       |
| 8.3.1 | Loess Plateau ——— 167                                                                                                  |
| 8.3.2 | Impacts of Future Climate Change on Runoff across DEA ——171                                                            |
| 8.4   | Conclusions —— 174                                                                                                     |

References ---175

| 9      | Examining Changes in Land Cover and Land Use,                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
|        | Regional Climate and Dust in Dryland East Asia and                                                                              |
|        | Their Linkages within the Earth System ——183                                                                                    |
| 9.1    | Introduction —— 184                                                                                                             |
| 9.2    | Assessment of Decadal Dust Emission Based on Historical LCLU,                                                                   |
|        | Regional Climate and the Regional Coupled Dust Modeling System                                                                  |
|        | WRF-Chem-DuMo —— 185                                                                                                            |
| 9.3    | Observation-based Dust Climatology and Its Relationship to                                                                      |
|        | LCLU and Regional Climate ——— 194                                                                                               |
| 9.4    | A Satellite Perspective on the Last Decade —— 199                                                                               |
| 9.5    | Impacts of Dust on Human-Environment-Climate Systems —— 203 References —— 206                                                   |
| 10     | Biophysical Regulations of Grassland Ecosystem Carbon                                                                           |
|        | and Water Fluxes in DEA ——213                                                                                                   |
| 10.1   | Brief Introduction of Abiotic and Biotic Factors in Relation to                                                                 |
|        | Carbon and Water Fluxes in DEA ——213                                                                                            |
| 10.2   | Biophysical Regulations of Carbon Fluxes between Grazed and                                                                     |
| 1001   | Ungrazed Grasslands —— 220                                                                                                      |
| 10.2.1 | Responses of Daytime Net Ecosystem Exchange to                                                                                  |
| 10.2.2 | Biotic/Abiotic Factors —— 220<br>Response of Nighttime NEE (Re) to $T$ and SWC —— 224                                           |
| 10.2.2 | Ecosystem Carbon Fluxes between Grassland and                                                                                   |
| 10.0   | Cultivated Cropland —— 227                                                                                                      |
| 10.3.1 | Responses of Daytime NEE to Biotic/Abiotic Factors —— 227                                                                       |
| 10.3.2 | Response of Nighttime NEE (Re) to $T$ and SWC —— 230                                                                            |
| 10.4   | Biophysical Regulations of Water and Energy Fluxes —— 232                                                                       |
| 10.4.1 | Energy Partitioning and Its Response to Abiotic/Biotic Factors —— 232                                                           |
| 10.4.2 | Ecosystem Water and Energy Fluxes between Grazed and Ungrazed                                                                   |
|        | Grasslands and between Grassland and Cultivated Cropland —— 233                                                                 |
|        | References —— 240                                                                                                               |
| 11     | Afforestation and Forests at the Dryland Edges:                                                                                 |
|        | Lessons Learned and Future Outlooks ——245                                                                                       |
| 11.1   | Introduction —— 245                                                                                                             |
| 11.2   | Vegetation Zonation and Climate —— 246                                                                                          |
| 11.3   | Climate Forcing Effect of Forests: Ambiguous Conditions                                                                         |
|        | at the Dryland Edges —— 247                                                                                                     |
| 11.3.1 | Low Elevation Xeric Limits: Vulnerable                                                                                          |
|        | Forest-Grassland Transition —— 250                                                                                              |
| 11.3.2 | Management of Forests—Plantations vs. Close to                                                                                  |
| 11 4   | Nature Ecosystems —— 251                                                                                                        |
| 11.4   | Effects of Forest Management on Forest Hydrological Balances in Dry Regions: A Comparison of China and the United States —— 252 |
| 11 / 1 | China —— 253                                                                                                                    |
| 11.4.1 | Omna —— 200                                                                                                                     |

| 11.4.2          | United States —— 254                                                |
|-----------------|---------------------------------------------------------------------|
| 11.5            | Past and Future of Forest Policy in Dryland Regions of China —— 255 |
| 11.5.1          | Causes and Consequences of Expanding Desertification —— 255         |
| 11.5.2          | Shelterbelt Development and Sand Control Programs in China —— 255   |
| 11.5.3          | Debates and Critics about the Achievements of                       |
| 12.0.0          | the Past Programs —— 256                                            |
| 11.5.4          | Lessons Learned from Past —— 258                                    |
| 11.6            | Conclusions —— 258                                                  |
| 11.0            | References —— 259                                                   |
| 12              | Human Impact and Land Degradation in Mongolia ——265                 |
| 12.1            | Introduction —— 266                                                 |
| 12.2            | Land Degradation Overview —— 266                                    |
| 12.2.1          | Mining Land Degradation —— 267                                      |
| 12.2.1 $12.2.2$ | Land Degradation by Road ————————————————————————————————————       |
| 12.2.2          | Pastureland Degradation and Desertification —— 270                  |
| 12.2.4          | Soil Erosion of Arable Land —— 272                                  |
| 12.2.4 $12.2.5$ | Deforestation —— 273                                                |
| 12.2.6          | Soil Pollution —— 274                                               |
| 12.2.0          | Use of Fallout Radionuclide Methods for Soil Erosion Study —— 274   |
| 12.4            | Conclusions —— 278                                                  |
| 12.4            | References —— 279                                                   |
|                 | Helefences — - 215                                                  |
| 13              | The Effect of Large-Scale Conservation Programs on the              |
|                 | Vegetative Development of China's Loess Plateau ——283               |
| 13.1            | Introduction —— 284                                                 |
| 13.2            | Conservation Programs —— 285                                        |
| 13.3            | Study Region —— 286                                                 |
| 13.3.1          | Loess Plateau —— 286                                                |
| 13.3.2          | Subset for Fine Scale Analysis —— 287                               |
| 13.4            | Data —— 288                                                         |
| 13.4.1          | MODIS Data —— 288                                                   |
| 13.4.2          | Landsat Data —— 289                                                 |
| 13.4.3          | Grazing Statistics —— 290                                           |
| 13.4.4          | Anthromes —— 290                                                    |
| 13.5            | Methods —— 293                                                      |
| 13.6            | Results and Discussion —— 293                                       |
| 13.6.1          | Vegetation Index and Albedo Changes —— 293                          |
| 13.6.2          | 500 m NDVI Changes —— 296                                           |
| 13.6.3          | Grazing Intensity Change —— 298                                     |
| 13.7            | Conclusions —— 302                                                  |
|                 | References —— 303                                                   |

Summary II: Consequences ——307

## Part **■** Solutions/Adaptations ——309

| 14     | Monitoring and Assessment of Dryland Ecosystems with              |
|--------|-------------------------------------------------------------------|
|        | Remote Sensing ——311                                              |
| 14.1   | Problems of Land Degradation and Desertification in               |
|        | Drylands: Current Challenges and Perspectives ———312              |
| 14.2   | Indicators of Land Degradation/Desertification and                |
|        | Their Detection by Remote Sensing —— 318                          |
| 14.2.1 | History of Degradation/Desertification Indicator Development      |
|        | in Recent Decades ————————————————————————————————————            |
| 14.2.2 | Retrieving Biophysical Spectral Information with                  |
|        | Remote Sensing for DLDD —— 322                                    |
| 14.2.3 | Bio-physiological Indexes for Assessment and Monitoring —— 329    |
| 14.3   | Review of Available Sensors and Data over DEA and                 |
|        | Their Suitability for Detecting Desertification Indicators —— 332 |
| 14.3.1 | Short Outlook on Future Satellite Sensors over DEA —— 335         |
| 14.4   | Remote Sensing Approach for Desertification Assessment in         |
|        | Central Asia: History, Current Research, and                      |
|        | Perspectives—A Case Study——337                                    |
| 14.5   | Conclusions —— 342                                                |
|        | References ——— 343                                                |
|        |                                                                   |
| 15     | The Effects of Spatial Resolution on Vegetation Area              |
|        | Estimates in the Lower Tarim River Basin,                         |
|        | Northwestern China ——351                                          |
| 15.1   | Introduction —— 351                                               |
| 15.2   | Study Area —— 353                                                 |
| 15.3   | Methodology —— 354                                                |
| 15.4   | Results and Discussion —— 356                                     |
| 15.5   | Conclusions —— 360                                                |
|        | References —— 361                                                 |
| 16     | New Ecology Education: Preparing Students for                     |
| 10     |                                                                   |
|        | the Complex Human- Environmental Problems of                      |
|        | Dryland East Asia ——363                                           |
| 16.1   | Introduction —— 364                                               |
| 16.2   | Description of New Ecology Education —— 365                       |
| 16.2.1 | Topic 1: What's Going On? (Conceptual Models) — 369               |
| 16.2.2 | Topic 2: Life Is So Confusing! (Nonlinearity) —— 370              |
| 16.2.3 | Topic 3: Everything Is Connected to Everything Else               |
| 1001   | (Systems Thinking) —— 374                                         |
| 16.2.4 | Topic 4: Climbing Up-and-Down the Complexity Ladder               |
|        | (Hierarchy Theory) ——— 376                                        |

| 16.2.5 | Topic 5: What Does It Take to Change This System? (Resilience) —— 378 |
|--------|-----------------------------------------------------------------------|
| 16.2.6 | Topic 6: Coping with Land Degradation in Drylands                     |
| 10.2.0 | (Ecosystem Services) —— 382                                           |
| 16.2.7 | Topic 7: Unraveling the Complexity of Coupled H-E Systems and         |
| 10.2   | Desertification (The Drylands Development Paradigm) —— 386            |
| 16.2.8 | Topic 8: Where Art, Science, and Craft Meet                           |
| 201215 | (Ostrom's Framework) —— 392                                           |
| 16.3   | Conclusions —— 394                                                    |
|        | References —— 396                                                     |
| 17     | Grassland Degradation and Restoration in Inner                        |
|        | Mongolia Autonomous Region of China from the                          |
|        | 1950s to 2000s: Population, Policies and Profits ——405                |
| 17.1   | Introduction $405$                                                    |
| 17.2   | Population and Urbanization in IM —— 407                              |
| 17.2.1 | Population Evolution —— 408                                           |
| 17.2.2 | Population and Over-Grazing —— 409                                    |
| 17.2.3 | Urbanization and Restoration —— 410                                   |
| 17.3   | Policy, Laws and Regulation for Grassland ——412                       |
| 17.4   | From Production to Profits —— 414                                     |
| 17.4.1 | Animal Husbandry —— 414                                               |
| 17.4.2 | Tourism Development —— 416                                            |
| 17.4.3 | Environmental Service —— 418                                          |
| 17.5   | Conclusions —— 418                                                    |
|        | References —— 420                                                     |
| 18     | Sustainable Governance of the Mongolian Grasslands:                   |
|        | Comparing Ecological and Social-Institutional Changes                 |
|        | in the Context of Climate Change in Mongolia and                      |
|        | Inner Mongolia Autonomous Region, China ——425                         |
| 18.1   | Introduction —— 426                                                   |
| 18.2   | Explanatory Models of Grassland Dynamics —— 427                       |
| 18.3   | Analyses and Results —— 429                                           |
| 18.3.1 | Collectivization of Pastures and Livestock —— 431                     |
| 18.3.2 | Privatization and Market Incentives —— 434                            |
| 18.3.3 | Recentralization of Grassland Management in IM, China —— $436$        |
| 18.3.4 | Changing Roles of the State, Market and Community for                 |
|        | Grassland Management —— 437                                           |
| 18.3.5 | Climate Variability and Change: History and Future —— 438             |
| 18.4   | Discussion —— 439                                                     |
| 18.5   | Conclusions —— 442                                                    |
|        | References —— 443                                                     |

| 19     | Adaptive Management of Grazing Lands ——447                    |
|--------|---------------------------------------------------------------|
| 19.1   | Introduction —— 447                                           |
| 19.2   | Distribution of Grazing Lands and Problems —— 450             |
| 19.3   | Case Study and Adaptive Management in IM —— 451               |
| 19.3.1 | Study Site —— 451                                             |
| 19.3.2 | The ACIAR-Model ——— 452                                       |
| 19.3.3 | Typical Farm —— 453                                           |
| 19.3.4 | Economic Stocking Rate —— 453                                 |
| 19.3.5 | Improved Feeding of Livestock during Winter and Spring —— 454 |
| 19.3.6 | Changing Lambing Time —— 456                                  |
| 19.3.7 | Use of Warm Sheds during Cold Seasons —— 458                  |
| 19.4   | Conclusions and Discussion —— 460                             |
|        | References —— 463                                             |

## Summary II: Solutions and Adaptations ——465

Index ——467