Contents

Prefac	ce — vii
Notati	ion — ix
0	Introduction —— 1
1	Preliminaries — 13
1.1	Simple transformations and examples —— 13
1.1.1	Dirac-type systems as a subclass of canonical systems —— 13
1.1.2	Schrödinger systems as a subclass of canonical systems — 18
1.1.3	Gauge transformations of the Dirac systems —— 19
1.2	S-nodes and Weyl functions — 22
1.2.1	Elementary properties of S -nodes — 22
1.2.2	Continual factorization — 24
1.2.3	Canonical systems and representation of the S -nodes — 27
1.2.4	Asymptotics of the Weyl functions, a special case —— 30
1.2.5	Factorization of the operators S — 36
1.2.6	Weyl functions of Dirac and Schrödinger systems — 38
2	Self-adjoint Dirac system: rectangular matrix potentials — 44
2.1	Square matrix potentials: spectral and Weyl theories — 45
2.1.1	Spectral and Weyl functions: direct problem — 45
2.1.2	Spectral and Weyl functions: inverse problem — 48
2.2	Weyl theory for Dirac system with a rectangular matrix potential — 49
2.2.1	Direct problem — 49
2.2.2	Direct and inverse problems: explicit solutions — 56
2.3	Recovery of the Dirac system: general case — 61
2.3.1	Representation of the fundamental solution — 62
2.3.2	Weyl function: high energy asymptotics — 66
2.3.3	Inverse problem and Borg-Marchenko-type uniqueness
	theorem —— 69
2.3.4	Weyl function and positivity of S — 73
3	Skew-self-adjoint Dirac system: rectangular matrix potentials — 79
3.1	Direct problem — 80
3.2	The inverse problem on a finite interval and semiaxis — 83
3.3	System with a locally bounded potential —— 94
4	Linear system auxiliary to the nonlinear optics equation —— 101
/ı 1	Direct and inverse problems 102

4.1.1	Bounded potentials — 102
4.1.2	Locally bounded potentials — 106
4.1.3	Weyl functions — 115
4.1.4	Some generalizations — 117
4.2	Conditions on the potential and asymptotics of generalized Weyl (GW)
	functions — 118
4.2.1	Preliminaries. Beals-Coifman asymptotics — 118
4.2.2	Inverse problem and Borg-Marchenko-type result —— 120
4.3	Direct and inverse problems: explicit solutions — 123
5	Discrete systems — 126
5.1	Discrete self-adjoint Dirac system — 126
5.1.1	Dirac system and Szegö recurrence — 127
5.1.2	Weyl theory: direct problems —— 130
5.1.3	Weyl theory: inverse problems — 138
5.2	Discrete skew-self-adjoint Dirac system — 142
5.3	GBDT for the discrete skew-self-adjoint Dirac system — 156
5.3.1	Main results —— 157
5.3.2	The fundamental solution —— 160
5.3.3	Weyl functions: direct and inverse problems — 164
5.3.4	Isotropic Heisenberg magnet — 171
6	Integrable nonlinear equations —— 177
6.1	Compatibility condition and factorization formula — 178
6.1.1	Main results — 178
6.1.2	Proof of Theorem 6.1 — 179
6.1.3	Application to the matrix "focusing" modified Korteweg-de Vries
<i>(</i> 1	(mKdV) — 181
6.1.4	Second harmonic generation: Goursat problem — 185
6.2 6.2.1	Sine-Gordon theory in a semistrip — 188 Complex sine-Gordon equation: evolution of the Weyl function and
0.2.1	uniqueness of the solution — 189
6.2.2	Sine-Gordon equation in a semistrip — 193
6.2.3	Unbounded solutions in the quarter-plane — 207
7	General GBDT theorems and explicit solutions of nonlinear
	equations — 210
7.1	Explicit solutions of the nonlinear optics equation — 210
7.2	GBDT for linear system depending rationally on z — 212
7.3	Explicit solutions of nonlinear equations — 221

8	Some further results on inverse problems and generalized
	Bäcklund-Darboux transformation (GBDT) — 230
8.1	Inverse problems and the evolution of the Weyl functions — 230
8.2	GBDT for one and several variables —— 234
9	Sliding inverse problems for radial Dirac and Schrödinger equations — 242
9.1	Inverse and half-inverse sliding problems —— 242
9.1.1	Main definitions and results — 242
9.1.2	Radial Schrödinger equation and quantum defect — 248
9.1.3	Dirac equation and quantum defect — 252
9.1.4	Proofs of Theorems 9.10 and 9.14 — 256
9.1.5	Dirac system on a finite interval — 257
9.2	Schrödinger and Dirac equations with Coulomb-type potentials — 259
9.2.1	Asymptotics of the solutions: Schrödinger equation — 260
9.2.2	Asymptotics of the solutions: Dirac system — 261
Apper	ndices — 265
A	General-type canonical system: pseudospectral and Weyl functions — 267
A.1	Spectral and pseudospectral functions — 268
A.1.1	Basic notions and results — 268
A.1.2	Description of the pseudospectral functions — 272
A.1.3	Potapov's inequalities and pseudospectral functions — 283
A.1.4	Description of the spectral functions — 290
A.2	Special cases — 297
A.2.1	Positivity-type condition —— 297
A.2.2	Continuous analogs of orthogonal polynomials — 301
В	Mathematical system theory —— 304
С	Krein's system — 306
D	Operator identities corresponding to inverse problems — 308
D.1	Operator identity: the case of self-adjoint Dirac system — 309
D.2	Operator identity for skew-self-adjoint Dirac system —— 312
D.3	Families of positive operators — 313
D.4	Semiseparable operators S — 314
D.5	Operators with D -difference kernels —— 317
E	Some basic theorems —— 320
Biblio	ography — 323

Index — 339