Contents

Pre	face			хi
Abo	About the Author			
Dec	Dedications Acknowledgements			
Ack				
Glo	ssary o	f Abbrev	viations	xix
Cha	apter 1	Intro	duction	1
1.1	Food a	nd its pro	duction	1
	1.1.1	-	control and other issues	4
1.2	Image		g and machine vision	5
1.3	_		s machine vision	7
1.4	_		processing help with food processing?	8
1.5		lowing ch		10
	apter 2	_	es and image processing	13
2.1	Introdi	_	es and image processing	13
2.2	Images			13
2.3	_	processin	g	14
	_	Pixel op	-	14
	2.3.2	-	operations	17
	2.3.3		roblems and implementation issues	21
		2.3.3.1	Eliminating underflow and overflow	21
		2.3.3.2	Solving image border problems	21
		2.3.3.3	Sequential and parallel processing	22
		2.3.3.4	The need for restoring operations	23
		2.3.3.5	Speed of processing	23
		2.3.3.6	Processing in the spatial frequency domain	23
2.4	Media	n and ran	k-order filters	24
2.5	Thresh	olding		25

<i>Image</i>	Proce	essing	for	the	Food	Ind	lustry
Inuage	1 / 000	JUUUIUE	101	vive	1 Oou	LIVU	wou y

2.6	Adaptive thresholding	28
2.7	Edge detection	31
2.8	Concluding remarks	34
~1		
	pter 3 Shape analysis	37
3.1	Introduction	37
3.2	Connected components analysis of images	37
3.3	Skeletons and thinning	40
3.4	Skeleton-based analysis of shape	43
3.5	Distance functions	44
3.6	General dilation and erosion operators	46
3.7	Properties of dilation and erosion operators	48
3.8	Closing and opening	50
3.9	Summary of morphological operations	53
3.10	Boundary pattern analysis	55
	3.10.1 The centroidal profile approach	55
3.11	Concluding remarks	59
Cha	pter 4 Feature detection and object location	61
4.1	Introduction	61
4.2	From template matching to inference	61
4.3	Finding features	63
4.4	Line location	66
4.5	Circle location	68
4.6	Ellipse location	70
4.7	Graph matching	72
4.8	Using the Hough transform for point pattern matching	75
4.9	Concluding remarks	76
Cha	pter 5 Texture	79
5.1	Introduction	79
		80
5.2	• •	82
5.3	Laws' approach	84
5.4 5.5	Ade's approach	85
0.0	Concluding remarks	00
Cha	upter 6 Three-dimensional processing	87
6.1	Introduction	87
6.2	Stereo vision	88
6.3	Shape from shading	94
0.0	STORY TRAITE STRUCTURE	0.1

Con	tents		vii
6.4	Views a	and projections	98
6.5	Motion	• •	101
6.6	Conclu	ding remarks	105
Cha	apter 7	Pattern recognition	107
7.1	Introdu	iction	107
7.2	Bayes'	approach to SPR	108
7.3	The nea	arest neighbour approach	111
7.4	Artifici	al neural networks	114
7.5	Superv	ised and unsupervised learning	117
7.6	-	al components analysis	119
7.7	_	ding remarks	121
	Pa	rt 2 Application to food production	
Cha	apter 8	Inspection and inspection procedures	125
8.1	Introdu	action	125
8.2	Phases	in the inspection process	127
8.3		of the inspection process	129
8.4		ng schemes	131
··-	8.4.1	_	132
	0.40		
	8.4.2	Case of two infinite parallel strip lights	135
	8.4.3	Case of circular and square ring lights	138
. .	8.4.4	Summary	138
8.5	Conclu	ding remarks	139
Cha	apter 9	Inspection of baked products	141
9.1	Introdu	action	141
9.2	A basic	case study: Jaffacake inspection	141
	9.2.1	The problem	141
	9.2.2	The solution	142
	9.2.3	Image acquisition	144
	9.2.4	Product location	144
	9.2.5	Hardware for real-time operation	145
	9.2.6	Discussion	146
9.3		tudy: inspection of cream biscuits	149
9.4		ease studies of baked product inspection	151
J. T	9.4.1	Description of the textural appearance of bread crumb	152
	9.4.2	Development of an objective crumb-grain measurement	152
	9.4.2	Automated inspection of bread and loaves	153
	U. I.U	Travellence dispersion of electrical and todates	700

	9.4.4	Fast boundary extraction of biscuits	153
	9.4.5	Fast location of biscuits by line sampling	153
	9.4.6	Location of cherries on cup cakes	154
9.5	Conclud	ling remarks	154
Cha	pter 10	Cereal grain inspection	157
10.1	Introdu	ction	157
10.2	Case stu	ady: location of dark contaminants in cereals	158
	10.2.1	Application of morphological and non-linear filters to	
		locate rodent droppings	159
	10.2.2	Appraisal of the various schemas	162
	10.2.3	Summary	164
10.3	Case stu	ady: location of insects	164
	10.3.1	The vectorial strategy for linear feature detection	165
	10.3.2	Designing linear feature detection masks for larger	
		windows	167
	10.3.3	Application to cereal inspection	168
	10.3.4	Summary and discussion	169
10.4	Case stu	ıdy: high speed grain location	170
	10.4.1	Extending an earlier sampling approach	170
	10.4.2	Application to grain inspection	172
	10.4.3	Summary	175
10.5	Short ca	ase studies of grain and nut inspection	177
	10.5.1	Kernel positioning for grain measurement	177
	10.5.2	A dedicated wheat grain image analyser	177
	10.5.3	Discrimination between wheat grain varieties and	
		classes	178
	10.5.4	Classification of wheat kernels	178
	10.5.5	Detection of maize and soybean quality factors	179
	10.5.6	Detection of surface defects of maize kernels	180
	10.5.7	Detection of early split pistachio nuts	180
	10.5.8	Detection of stained pistachio nuts	180
	10.5.9	Automatic grading of peanuts	181
	10.5.10	X-ray detection of weevils in wheat	181
	10.5.11	X-ray detection of insects in pistachio nuts	181
	10.5.12	Detection of insects inside wheat kernels by NIR	
		imaging	182
		On-line measurement of bran in flour	183
10.6	6 Concluding remarks		183

Contents ix

Cha	pter 11	X-ray inspection	185		
11.1	1.1 Introduction				
11.2	X-ray in	nage acquisition	18 è		
11.3	Case stu	udy: reliable thresholding of X-ray images	187		
	11.3.1	Variance-based thresholding measures	188		
	11.3.2	Entropy-based thresholding measures	189		
	11.3.3	A modified entropy measure	190		
11.4	Case stu	ady: inspection of frozen food packs	192		
	11.4.1	General strategy of the system	193		
	11.4.2	Further details of the system	195		
11.5	Case str	udy: design of hardware for inspection of frozen food			
	packs		197		
	11.5.1	Real-time processing issues	198		
	11.5.2	Main contenders for real-time inspection hardware	198		
	11.5.3	The Centurion software-based real-time system	200		
		11.5.3.1 Communication channels	200		
		11.5.3.2 System components	200		
		11.5.3.3 Performance	201		
		11.5.3.4 Use of the Centurion for foreign object detection	201		
	11.5.4	Summary	202		
11.6	Short ca	ase studies of X-ray inspection	202		
	11.6.1	Combining X-ray imaging and machine vision	202		
	11.6.2	Intelligent visual inspection of food products	202		
	11.6.3	Approaches to foreign body detection in foods	203		
	11.6.4	Defect detection in apples	203		
	11.6.5	Detection of interior voids, inclusions and pests	203		
	11.6.6	Inspection of metal and glass containers	203		
	11.6.7	Inspection of packaged foods	204		
	11.6.8	Inspection of canned products	204		
	11.6.9	3D inspection of food products	205		
11.7	Conclud	ding remarks	205		
Cha	nter 12	2 Image processing in agriculture	207		
	Introdu		$\frac{-37}{207}$		
		udy: guidance of a crop-spraying vehicle	207		
	12.2.1	3D aspects of the task	210		
	12.2.2	Real-time implementation	211		
12.3		udy: model-based tracking of animals	212		
		udy: inspection and grading of potatoes	215		
	12.4.1	Colour inspection of potatoes	217		
12.5		udy: inspection of apples	218		
	12.5.1	· · · · · · · · · · · · · · · · · · ·	218		
	12.5.2	•	219		

	12.5.3	Russetting	221	
	12.5.4	Blemish detection	221	
		12.5.4.1 Problems with snakes	224	
12.6	Case st	udy: inspection and grading of mushrooms	225	
12.7	Conclud	ling remarks	227	
Cha	pter 13	Vision for fish and meat processing	231	
	Introdu		231	
		udy: species sorting of fish	231	
		udy: grading of prawns	234	
		blem of meat processing	235	
	_	udy: inspection and grading of poultry parts	236	
10.0		Tasks associated with packaging	236	
13.6		ling remarks	237	
Cha	pter 14	System design considerations	241	
14.1	Introdu	ction	241	
14.2	Design	of inspection systems—the status quo	242	
14.3	System	optimization	244	
14.4	The val	ue of case studies	246	
14.5	The wa	y to go	247	
14.6	Further	considerations relating to hardware accelerators	248	
14.7	The nee	ed for rigorous timing analysis of vision algorithms	248	
14.8	Conclud	ling remarks	249	
Cha	nter 15	Food processing for the Millennium	251	
	Introdu		251	
		age of the case studies	252	
		t of vision hardware	253	
		cential range of applications of vision	254	
	Prognos		256	
10.0	Tiogno	710	400	
Refe	erences		257	
Aut	Author Index			
Sub	Subject Index			