Contents

Foreword ix List of Contributors xv

1. Introduction 1

2. Quantitative Structure-Activity Relationship (QSAR) Models, Physiologically Based Pharmacokinetic (PBPK) Models, Biologically Based Dose Response (BBDR) and Toxicity Pathways 5

PATRICIA RUIZ, XIAOXIA YANG, ANNIE LUMEN, AND JEFF FISHER

Introduction 5
Application of Structure-Activity Relationship
(SAR) and Quantitative Structure-Activity
Relationship (QSAR) 6
Physiologically Based Pharmacokinetic (PBPK)
Modeling Case Studies 7
VOC Models 8
Metals Models 10
References 16

3. Multiple Chemical Exposures and Risk Assessment 23

JOHN C. LIPSCOMB, NIKKI MAPLES-REYNOLDS, AND MOIZ MUMTAZ

Historical Perspective 23
Regulatory Perspective 24
Mixtures versus Components 26
Additivity Approaches 27

Future Directions 38 References 41

4. Modeling of Sensitive Subpopulations and Interindividual Variability in Pharmacokinetics for Health Risk Assessments 45

KANNAN KRISHNAN, BROOKS McPHAIL, WEIHSUEH CHIU, AND PAUL WHITE

Introduction 45
Physiological Differences and PBPK
Modeling of Sensitive Human
Subpopulations 47
Animal PBPK Models for Evaluating Sensitive
Subpopulations 58
Concluding Remarks 61
Disclaimer 62
References 62

 Integrated Systems Biology Approaches to Predicting Drug-Induced Liver Toxicity 67

KALYANASUNDARAM SUBRAMANIAN

Introduction 67
General Principles 68
Model Building 68
Energy Homeostasis 69
Glutarhione Homeostasis 70
Fatty Acid Metabolism 71
Bile Salt Metabolism and Transport 73
Solving the Equation-Set 74
Model Validation and Predictions 74
Conclusions 79
References 80

6. Computational Translation and Integration of Test Data to Meet Risk Assessment Goals 85

LUIS G. VALERIO JR.

Introduction 85
Computational Analyses and Translational
Research 86
Toxicology-Based (Q)SARs 87
Read-Across 97
Data Mining for Computational Translation and
Integration of Test Data 98
High-Throughput Screening for Signal Detection
in Risk Assessment 100
Integrating Computational Tools with Test Data for
Risk Assessment 102
Disclaimer 107
References 108

7. Computational Translation of Nonmammalian Species Data to Mammalian Species to Meet REACH and Next Generation Risk Assessment Needs 113

EDWARD I, PERKINS AND NATÀLIA GARCIA-REYERO

A Changing Regulatory Environment 113 Nonmammalian Species Can Help to Reduce, Refine, and Replace Mammalian Animal Testing 115 Pathway-Based Hazard and Risk Assessment 115 Translating Effects on Nonmammalian Species to Mammalian Species 118 Translating Molecular Initiating Events: Gene/Protein Annotation and Mammalian Ortholog Identification 120 Annotation of Large Gene Sets 122 Pathway-Level Comparison/Translation 123 Pathway-Based Extrapolation to Mammals in Determining Chemical Mode of Action 124 Pathway-Based Dose-Response Relationships 125 Network Inference and Mapping 128 Cross-Species Analysis Using Networks 128 Translating Effects through Computational Modeling at the Systems Level 130

Future Efforts in Use of High-Throughput Screening and "Omics" Technology and Computational Tools in Translation of Nonmammalian Species to Mammalian Species to Meet REACH and Next Generation Risk Assessment Needs 130 References 131

8. Interpretation of Human Biological Monitoring Data Using a Newly Developed Generic Physiological-Based Toxicokinetic Model 137

FRANS JONGENEELEN, WIL TEN BERGE, AND PETER J. BOOGAARD

Introduction 137
The Generic PBTK Model IndusChemFate 139
Examples 141
Discussion 148
Supplementary Information 149
References 149

9. Uses of Publicly Available Data in Risk Assessment 151

ISAAC WARREN AND SORINA EFTIM

Introduction 151
Publicly Available Data Sets with Uses in Risk
Assessment 152
Comparison of the NHANES IV and ToxCast™
Data Sets 159
Methods for Compiling Data from Multiple Sources
for Risk Assessment 159
Designing Publicly Available Toxicological Data
Sets 162
Analogies to the Human Genome Project in
Computational Toxicology 163
Chemical Domain and Limitations to Data Analysis
of Traditional and Computational Toxicology
Data 164
Data Semantics and Limitations to Relating HTS

Data Semantics and Limitations to Relating HTS
Data to In Vivo Effects 165
Conclusions 166
References 166

CONTENTS vii

10. Computational Toxicology Experience and Applications for Risk Assessment in the Pharmaceutical Industry 171

Background 171 Two Main Considerations 172 Summary 188 References 188

11. Omics Biomarkers in Risk Assessment 195

HONG FANG, HUIXIAO HONG, ZHICHAO LIU, ROGER PERKINS, REAGAN KELLY, JOHN BERESNEY, WEIDA TONG, AND BRUCE A. FOWLER

Abbreviations and Glossaries 195
Introduction 196
Biomarkers 198
Bioinformatics Approaches: Challenges and
Solutions in Omics Biomarker Discovery 201
Decision Forest for Omics Biomarkers 206
Conclusion 210
Disclaimer 210
References 211

12. Translation of Computational Model Results for Risk Decisions 215 WILLIAM MENDEZ AND BRUCE A. FOWLER

Origins and Nature of the Computational Toxicology
Applications in Risk Assessment 215
Drivers for the Application of Computational
Toxicology to Risk Assessment 220
Translational Research 221
Computational Toxicology Applications in Risk- and
Hazard-Based Screening 228
Current Status of Computational Toxicology in
Quantitative Risk Assessment 236
Summary 238
References 242

13. Future Directions for Computational Toxicology for Risk Assessment 247 BRUCE A. FOWLER

Needed Essential Elements 247 Specific Elements in Computational Toxicology Needed for the Field to Move Forward 248

Index 251