

Contents

Preface		vii
1. Che	mical Reaction Engineering	1.1
1.1	Reaction Kinetics – Rate Laws	1.1
1.2	Ideal Flow and Isothermal Reactors	1.4
1.3	Non-Isothermal Reactors	1.15
1.4	Non-Ideal Flow and Non Ideal Reactors	1.17
1.5	RTD for Ideal Reactors	1.21
1.6	Models for Non-Ideal Reactors	1.22
1.7	Heterogeneous Catalysis and Kinetics	1.27
1.8	Diffusion and Reaction in Spherical Catalyst Pellets	1.33
1.9	Weisz-Prater Criterion for Internal Diffusion C_{WP}	1.37
1.10	Mear's Criterion for External Diffusion	1.37
1.11	Fluid-Particle Reaction Kinetics: Non Catalytic Reactions	1.38
	References	1.41
2. Che	mical Thermodynamics and Process Calculations	2.1
2.1	Introduction	2.1
2.2	Processes and Process Parameters	2.1
2.3	Types of Processes	2.2
2.4	**Measurements of Process Parameters	2.2
2.5	General Conservation Equation	2.3
2.6	Flowcharts and Degree of Freedom	2.3
2.7	Recycle and Bypass Operations	2.4
2.8	Purge Operations	2.4
2.9	Chemical Reaction Equilibrium and Associated Terminology	2.5

x			C	on	ten	ts	8
---	--	--	---	----	-----	----	----------

2.10	Single and Multiple Reactions	2.6
2.11	Concept of Yield and Selectivity	2.6
2.12	Product Separation and Recycle	2.6
2.13	Equilibrium Constants	2.7
2.14	Thermodynamics	2.9
2.15	Laws of Thermodynamics-First Law	2.9
2.16	Type of Systems	2.10
2.17	Sign Conventions for Heat and Work	2.11
2.18	Intensive and Extensive Variables	2.11
2.19	Energy Balance for a Closed System	2.11
2.20	Concept of Thermodynamic State and State Functions	2.12
2.21	Concept of Equilibrium and the Phase Rule	2.12
2.22	Phase Rule	2.13
2.23	Different Types of Processes and their Definitions	2.13
2.24	Mass Balance for Open Systems	2.15
2.25	Energy Balance for an Open System	2.16
2.26	Sensible Heat and its Consequences	2.17
2.27	Latent Heat and its Consequences	2.18
2.28	Trouton's Rule	2.18
2.29	PVT and Equation of State (EOS)	2.18
2.30	EOS – Equation of State	2.19
2.31	Ideal Gas Equation	2.20
2.32	Equations for Different Types of Processes	2.21
2.33	Work in an Irreversible Processes	2.23
2.34	Virial Equation and its Various Forms	2.24
2.35	General Cubic Equation of State	2.24
2.36	Second Law of Thermodynamics	2.27
2.37	Gibbs Generating Function	2.30
2.38	Residual Properties Functions	2.31
2.39	Departure Functions	2.32
2. 4 0	Vapor Liquid Equilibrium	2.33
2.41	Key Concepts and Applications of Thermodynamics to Solutions	2.39
2.42	Fugacity and Fugacity Coefficient for Pure Species	2.43
2.43	Fugacity and Fugacity Coefficient Pure Species in Solutions	2.44
2.44	Concept of Ideal Solution	2.44
2.45	Lewis Randall Rule	2.45

	·	Contents	xi
	2,46	Concept of Excess Properties	2.45
	2.47	Relationship between Residual Property and Excess Property	
		of a Solution	2.45
	2.48	Fundamental Excess Property Relation	2.46
	2.49	Excess Gibbs Energy and Activity Coefficient	2.46
	2.50	Models for Excess Gibbs Energy	2.47
		References	2.47
3.	Heat	Transfer	3.1
	3.1	Conduction Heat Transfer	3.1
	3.2	Boundary Conditions	3.4
	3.3	Steady State One Dimensional Heat Conduction	3.5
	3.4	Thermal Resistance	3.6
	3.5	Conduction and Convection Combined	3.7
	3.6	Composite Medium	3.8
	3.7	Thermal Contact Resistance	3.9
	3.8	Temperature Dependent Thermal Conductivity	3.9
	3.9	Critical Thickness of Insulation	3.10
	3.10	Enhanced Heat Transfer	3.11
	3.11	Unsteady State Heat Conduction	3.13
	3.12	Convection Heat Transfer	3.16
	3.13	Dimensionless Numbers	3.18
	3.14	Thermal Boundary Layer	3.19
	3.15	Heat and Momentum Analogies	3.20
	3.16	Free/Natural Convection	3.32
	3.17	Condensation and Boiling	3.36
	3.18	Boiling Heat-Transfer	3.41
	3.19	Radiation Heat-Transfer	3.45
	3.20	Heat-Transfer Equipments	3.47
		References	3.48
4.	Mass	Transfer	4.1
	4.1	Introduction	4.1
	4.2	Gradient Driven Transport Processes	4.1
	4.3	Mass Transfer	4.2
	4.4	Fick's First Law of Molecular Diffusion	4.4
	4.5	Diffusion Coefficients	4.5
	4.6	Steady State Molecular Diffusion in Gases	4.6

xii		Contents —	
	4.7	Steady Stage Molecular Diffusion in Liquids	4.8
	4.8	Other forms of Diffusion	4.9
	4.9	Convective Mass Transfer	4.9
	4.10	Boundary Layer Theory	4.12
	4.11	Convective Mass Transfer Correlations	4.13
	4.12	Applications of Mass Transfer – Separation Processes	4.14
		References	4.72
5.	Fluid	Mechanics and Turbo Machines	5.1
	5.1	Introduction	5.1
	5.2	Properties of Fluid	5.1
	5.3	Newtonian vs Non-Newtonian Fluid	5.2
	5.4	Fluid Statics	5.4
	5.5	Fluid Kinematics	5.9
	5.6	Flow Equation and Transport Theorem	5.14
	5.7	Conservation Laws	5.15
	5.8	Stream Function in Two Dimensional Flow	5.17
	5.9	Differential Momentum Balance Equation	5.18
	5.10	Navier-Stoke's Equation	5.18
	5.11	Inviscid Flow	5.20
	5.12	Bernoulli's Equation	5.20
	5.13	Velocity Potential	5.21
	5.14	Incompressible Viscous Flow-Internal	5.22
	5.15	Fully Developed Laminar Flow Between Parallel Plates	5.23
	5.16	Fully Developed Laminar Flow in a Cylindrical Pipe	5.25
	5.17	Fully Developed Turbulent Flow in Pipe	5.26
	5.18	Incompressible Viscous Flow-External	5.29
	5.19	Flow Over a Sphere	5.31
	5.20	Pipelines and Piping System	5.32
	5.21	Flow Measuring Devices	5.47
	5.22	Pumps: Basic Theory	5.51
	5.23	Compressor: Basic Theory and Performance Control	5.58
		References	5.72
6.	Instr	rumentation and Process Control	6.1
	6.1	Mathematical Preliminaries - Laplace Transforms	6.1
	6.2	Properties of Laplace Transform	6.1
	6.3	Initial and Final Value Theorem	6.4

		Contents	xiii
	6.4	Key Control Terminologies and Concepts	6.4
	6.5	Laws of Process Control	6.8
	6.6	Techniques for Control System Analysis	6.8
	6.7	Processes with Delay or Transport Lag	6.19
	6.8	Lead-Lag Model	6.19
	6.9	Basic Controller Types	6.20
	6.10	Types of Industrial Controllers	6.21
	6.11	Closed-Loop Transfer Functions	6.23
	6.12	General Expression for Feedback Control System	6.24
	6.13	Selection and Action of Controllers	6.25
•	6.14	Stability	6.26
	6.15	Root Locus Analysis	6.30
	6.16	Design and Tuning of Single-Loop Control System	6.31
	6.17	State Space Representation	6.34
	6.18	Frequency Response Analysis	6.37
	6.19	Advance Control Systems	6.47
	6.20	Instrument and Control Elements	6.54
		References	6.59
	7. Proc	ess Design, Economics and Sizing of Equipments	7.1
	7.1	Process Equipments	7.1
	7.2	Heat Exchanger: Basic Theory and Design	7.2
	7.3	Evaporators	7.28
	7.4	Condensers	7.32
	7.5	Boiler	7.34
	7.6	Reboilers	7.38
	7.8	Process Diagrams and Instrumentation Systems	7.43
	7.9	Distributed Control System (DCS) and Instrumentation	
		Codes and Symbols	7.51
	7.10	Process Economics	7.54
		References	7.79
:	8. Che	mičal Technology	8.1
	8.1	Introduction	8.1
	8.2	Hydrocarbons and its Classification	8.1
	8.3	Petroleum Refining Processes	8.2
	8.4	Crude Assay	8.13
	8.5	ASTM Distillation	8 14

xív		Contents	
	8.6	True Boiling Point Curve	8.14
	8.7	Characterization of Physical Properties of Crude	8.14
	8.8	Principle Petroleum Products	8.16
	8.9	Petrochemicals	8.19
	8.10	Petrochemical Products	8.21
	8.11	Nylons	8.27
	8.12	Phenol Formaldehyde	8.28
	8.13	Urea Formaldehyde	8.28
	8.14	Melamine Formaldehyde	8.28
	8.15	Polyurethane	8.28
	8.16	Offsite and Storage Utilities	8.29
	8.17	Tanks	8.29
	8.18	Pressure Tanks	8.32
	8.19	Elements of Distributed Control Systems (DCS)	8.34
		References	8.35
9.	Misc	cellaneous Topics	9.1
	9.1	Measurement and Instrumentation Tools	9.1
	9.2	Valves	9.11
		References	9.18
Index			I.1