Contents | Some elements of vector analysis | 7 | |--|----| | 2.1 Simple numerical vectors | 7 | | 2.2 Vector fields | 12 | | 2.3 Vector operators | 13 | | 2.4 The three major coordinate systems | 13 | | 2.5 Some vector identities | 17 | | 2.6 General orthogonal coordinate systems | 20 | | 2.7 Transformations between coordinate systems | 27 | | The electrostatic field | 33 | | 3.1 Introduction | 33 | | 3.2 The electrostatic field | 35 | | 3.3 Volume-, surface-, and line-charge densities | 37 | | 3.4 Gauss's law for the electric field in free space | 43 | | 3.5 Electrostatic field lines | 50 | | 3.6 Line integrals in vector fields | 53 | | 3.7 The gradient of a scalar field | 56 | | The electrostatic potential | 62 | | 4.1 Definition | 62 | | 4.2 Potentials for elementary charge distributions | 65 | | 4.3 Potential and field of an elementary dipole | 67 | 100000 | 111 | e transition towards maxwell 5 equations for electrostatics | | |-----|--|-----| | 5.1 | Introduction | 75 | | 5.2 | The divergence of a vector field and Gauss's divergence theorem | 75 | | 5.3 | The curl of a vector field; Stokes's theorem | 80 | | 5.4 | Irrotational (conservative) and solenoidal fields | 83 | | 5.5 | Maxwell's equations for electrostatic fields | 8: | | Ele | ectrostatic fields in material media | 90 | | 6.1 | Introduction | 9(| | 6.2 | Metallic conductors | 92 | | 6.3 | Induced charge separation in conductors | 94 | | 6.4 | Dielectric materials | 98 | | Ele | ectrostatic energy, electromechanical force, and capacitance | 118 | | 7.1 | N point charges | 118 | | 7.2 | 2 Continuous charge distribution | 120 | | 7.3 | Stored energy in terms of the fields | 122 | | 7.4 | Extraction of energy by means of the field forces | 124 | | 7.5 | 5 Capacitance – definition | 12 | | 7.€ | 6 Capacitance, stored energy, and forces | 13 | | 7.7 | 7 Capacitance of a system of many conductors | 13- | | Th | e Laplace and Poisson equations of electrostatics | 138 | | 8.1 | The general equation for electrostatic potential | 13 | | 8.2 | 2 Laplace and Poisson equations for uniform-permittivity regions | 142 | | 8.3 | 3 The method of images | 144 | | 8.4 | 4 Some simple Poisson-equation situations | 150 | | 8.5 | 5 Separation of variables | 15 | | Nı | umerical solutions of Laplace and Poisson equations | 17 | | 9. | General potential equation in Cartesian coordinates | 17 | | 9.2 | 2 Methods of solution for the potential | 17 | | | | | | Electric current | 190 | |---|-----| | 10.1 Concept of current density | 190 | | 10.2 Various types of current | 19: | | 10.3 Power and conservation of current | 19′ | | 10.4 Boundary conditions and consequences for lossy dielectrics | 20 | | 10.5 Relationship between resistance and capacitance | 203 | | The magnetostatic field | 200 | | 11.1 Magnetostatic forces, fields, and the law of Biôt and Savart | 200 | | 11.2 Basics of Maxwell's laws for magnetostatic fields | 214 | | 11.3 Ampère's law and applications | 218 | | 11.4 The finite solenoid | 223 | | 11.5 The boundary conditions for B and H | 22' | | The magnetostatic potentials | 23 | | 12.1 The scalar magnetic potential | 230 | | 12.2 The vector magnetic potential | 234 | | 12.3 Potential and field of an elementary magnetic dipole | 238 | | Inductance and magnetic stored energy | 24 | | 13.1 Mutual and self inductance | 24 | | 13.2 Inductance due to internal and external flux linkage | 248 | | 13.3 Magnetostatic stored energy | 25: | | 13.4 Inductance, stored energy, and forces | 258 | | 13.5 Internal inductance and equation (13.11) | 262 | | Magnetostatic fields in material media | 26 | | 14.1 Force and torque upon a current loop | 26: | | 14.2 Magnetization and magnetic permeability | 27 | | 14.3 Magnetic materials | 270 | | 14.4 Some vacuum–ferromagnet interface consequences | 285 | | 14.5 Some details on diamagnetics and paramagnetics | 287 | 10000 | Extension to electrodynamics | 295 | |---|------------| | 15.1 Faraday's law – introduction | 296 | | 15.2 Maxwell's displacement current | 306 | | 15.3 The Maxwell equations | 307 | | How Maxwell's equations lead to waves and signals | 312 | | 16.1 Some forms for the constitutive equations | 312 | | 16.2 The gauge equations for the potentials | 313 | | 16.3 Signals propagating at finite velocities | 315 | | 16.4 Frequency, wavelength, and all that | 319 | | 16.5 Plane waves – introduction | 320 | | 16.6 Use of phasors | 321 | | 16.7 Time-harmonic fields | 324 | | 17.1 Phase and group velocities17.2 Plane waves in lossy media17.3 Polarization | 336
340 | | 17.4 Power flow; Poynting vector | 345 | | Reflection and transmission of plane waves | 352 | | 18.1 Normal incidence upon a perfect conductor | 353 | | 18.2 Oblique incidence upon a perfect conductor | 355 | | 18.3 Normal incidence upon a dielectric half-space | 361 | | 18.4 Oblique incidence upon a dielectric half-space | 365 | | 18.5 Critical and Brewster angles, refractive phenomena | 370 | | 18.6 Optical filters; dielectric stacks | 37' | | Waveguides | 386 | | 19.1 The waveguide equations | 38′ | | 19.2 Classification of modes for two-dimensional waveguides | 390 | | : | Contents | |----|----------| | ΙX | Contents | | 19.3 | | | |--|--|--| | 19.4 | TM modes in two-dimensional planar geometry | 39: | | 19.5 | TE modes in two-dimensional planar geometry | 39′ | | 19.6 | Rectangular waveguides | 39 | | 19.7 | Cylindrical waveguides | 402 | | Tran | smission lines | 409 | | 20.1 | The TEM mode of a two-dimensional waveguide | | | | as transmission line | 410 | | | Extension to lossy infinite transmission lines | 410 | | | Finite-length transmission lines | 42. | | | Measurement of transmission-line parameters | 432 | | | The Smith Chart | 43' | | | Some impedance-matching techniques | 44: | | | General lossless-transmission-line equations and transients
Reasons for considering TE, TM modes | 451
451 | | مام | cted topics in radiation and antopnas | AEG | | Sele | cted topics in radiation and antennas | 459 | | 21.1 | Time-harmonic radiation by an infinitesimal source | · | | 21.1
21.2 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source | 459
464 | | 21.1
21.2
21.3 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source | 459
464
465 | | 21.1
21.2
21.3
21.4 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters | 459
464
463
468 | | 21.1
21.2
21.3
21.4
21.5 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources | 459
464
465
468
472 | | 21.1
21.2
21.3
21.4
21.5
21.6 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation | 459
464
465
468
472
473 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction | 459
464
465
468
473
473 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation | 459
464
468
473
473 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction | 459
464
463
468
472
473
473
481 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction | 459
464
465
472
473
477
488 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
App | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction | 455
464
465
472
472
473
486
486 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction endices Some results from calculus | 459
462
463
468
472
473
477
481
486
486 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction endices Some results from calculus A.1.1 Taylor series | 459
464
468
472
473
477
481
486
486
486
486
486 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
App | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction endices Some results from calculus A.1.1 Taylor series A.1.2 Multiple integrals | 459
464
465
468
472
473
477
481
486
486
486 | | 21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8 | Time-harmonic radiation by an infinitesimal source The time-harmonic infinitesimal electric-dipole source The time-harmonic infinitesimal magnetic-dipole source A linear current source of nonzero length; antenna parameters An array of linear current sources Receiving antennas and radar equation Geometrical optics and refraction Diffraction endices Some results from calculus A.1.1 Taylor series A.1.2 Multiple integrals A.1.3 Logarithms | 455
466
466
472
472
477
48
486
486
486
488
489 | ## Contents | A.3 Vectors | 493 | |--|-----| | A.3.1 The principal vector operators | 493 | | A.3.2 Useful vector identities | 494 | | A.3.3 Useful vector-operator identities | 494 | | A.4 Some mathematical and physical constants | 495 | | A.5 Various material constants | 496 | | Bibliography | 498 | | Index | 501 |