Contents

Ab	About the Author x				
Pr	eface			xix	
Ac	knowle	edgemen	ts	xxiii	
1	Fund	Fundamentals of Electrical Overstress			
	1.1	Electric	cal Overstress	2	
		1.1.1	The Cost of Electrical Overstress	2	
		1.1.2	Product Field Returns – The Percentage that is Electrical		
			Overstress	2	
		1.1.3	Product Field Returns – No Defect Found versus Electrical		
			Overstress	4	
		1.1.4	Product Failures - Failures in Integrated Circuits	4	
		1.1.5	Classification of Electrical Overstress Events	4	
		1.1.6	Electrical Over-Current	6	
		1.1.7	Electrical Over-Voltage	6	
		1.1.8	Electrical Over-Power	7	
	1.2	De-My	stifying Electrical Overstress	7	
		1.2.1	Electrical Overstress Events	8	
	1.3	Source	s of Electrical Overstress	8	
		1.3.1	Sources of Electrical Overstress in Manufacturing		
			Environment	8	
		1.3.2	Sources of Electrical Overstress in Production		
			Environments	10	
	1.4	Miscor	nceptions of Electrical Overstress	10	
	1.5	Minim	ization of Electrical Overstress Sources	11	
	1.6	Mitigat	tion of Electrical Overstress	11	
	1.7	Signs o	of Electrical Overstress Damage	12	
		1.7.1	Signs of Electrical Overstress Damage - The Electrical		
			Signature	12	

		CONTENTS
١	/	CONTENTS

viii	CC	ONTENTS		
		1.7.2	Signs of Electrical Overstress Damage – The Visual	
			Signature	13
	1.8	Electrica	ll Overstress and Electrostatic Discharge	14
		1.8.1	Comparison of High and Low Current EOS versus ESD Events	15
		1.8.2	Electrical Overstress and Electrostatic Discharge Differences	15
		1.8.3	Electrical Overstress and Electrostatic Discharge Similarities	17
		1.8.4	Comparison of EOS versus ESD Waveforms	18
		1.8.5	Comparison of EOS versus ESD Event Failure Damage	19
	1.9	Electron	nagnetic Interference	20
		1.9.1	Electrical Overstress Induced Electromagnetic Interference	20
	1.10	Electron	nagnetic Compatibility	21
	1.11		Over-Stress	21
		1.11.1	Electrical Overstress and Thermal Overstress	22
		1.11.2	Temperature Dependent Electrical Overstress	22
		1.11.3	Electrical Overstress and Melting Temperature	23
	1.12		ty Technology Scaling	23
		1.12.1	Reliability Technology Scaling and the Reliability Bathtub	
			Curve	23
		1.12.2	The Shrinking Reliability Design Box	24
		1.12.3	The Shrinking Electrostatic Discharge Design Box	25
		1.12.4	Application Voltage, Trigger Voltage, and Absolute	
			Maximum Voltage	25
	1.13	Safe Ope	erating Area	26
		1.13.1	Electrical Safe Operating Area	. 26
		1.13.2	Thermal Safe Operating Area	27
		1.13.3	Transient Safe Operating Area	28
	1.14	Summar	y and Closing Comments	28
	Refe	rences		29
2	Fund	lamentals	of EOS Models	36
	2.1	Thermal	Time Constants	36
		2.1.1	The Thermal Diffusion Time	37
		2.1.2	The Adiabatic Regime Time Constant	38
		2.1.3	The Thermal Diffusion Regime Time Constant	38
		2.1.4	The Steady State Regime Time Constant	39
	2.2	Pulse Ev	rent Time Constants	39
		2.2.1	The ESD HBM Pulse Time Constant	39
		2.2.2	The ESD MM Pulse Time Constant	39
		2.2.3	The ESD Charged Device Model Pulse Time Constant	40
		2.2.4	The ESD Pulse Time Constant – Transmission Line Pulse	40
		2.2.5	The ESD Pulse Time Constant – Very Fast Transmission	
			Line Pulse	41
		2.2.6	The IEC 61000-4-2 Pulse Time Constant	41
		2.2.7	The Cable Discharge Event Pulse Time Constant	42

			CONTENTS	ix
		2.2.8	The IEC 61000-4-5 Pulse Time Constant	42
	2.3	Mathen	natical Methods for EOS	42
		2.3.1	Mathematical Methods for EOS – Green's Functions	42
		2.3.2	Mathematical Methods for EOS – Method of Images	45
		2.3.3	Mathematical Methods for EOS – Thermal Diffusion Partial	
			Differential Equation	47
		2.3.4	Mathematical Methods for EOS – Thermal Diffusion Partial	
			Differential Equation with Variable Coefficients	48
		2.3.5	Mathematical Methods for EOS – Duhamel Formulation	48
		2.3.6	Mathematical Methods for EOS – Integral Transforms	
			of the Heat Conduction Equation	53
	2.4	The Spl	herical Model – Tasca Derivation	57
		2.4.1	The Tasca Model in the ESD Time Regime	61
		2.4.2	The Tasca Model in the EOS Time Regime	61
		2.4.3	The Vlasov–Sinkevitch Model	62
	2.5	The On	e-dimensional Model – Wunsch–Bell Derivation	62
		2.5.1	The Wunsch–Bell Curve	66
		2.5.2	The Wunsch-Bell Model in the ESD Time Regime	66
		2.5.3	The Wunsch-Bell Model in the EOS Time Regime	67
	2.6		h Model	68
	2.7		lindrical Model – The Arkihpov–Astvatsaturyan–	
			osyn-Rudenko Derivation	68
	2.8		ree-dimensional Parallelepiped Model – Dwyer–	
			n–Campbell Derivation	69
		2.8.1	The Dwyer-Franklin-Campbell Model in the ESD	
			Time Regime	75
		2.8.2	The Dwyer–Campbell–Franklin Model in the EOS	
			Time Regime	75
	2.9			76
	2.10	Instabil		79
		2.10.1	Electrical Instability	79
		2.10.2	Electrical Breakdown	80
		2.10.3	Electrical Instability and Snapback	80
		2.10.4	Thermal Instability	81
	2.11		-migration and Electrical Overstress	84
	2.12		ry and Closing Comments	84
	Refer	rences		85
3	EOS,	ESD, E	MI, EMC and Latchup	87
	3.1		cal Overstress Sources	87
		3.1.1	EOS Sources – Lightning	88
		3.1.2	EOS Sources – Power Distribution	90
		3.1.3	EOS Sources – Switches, Relays, and Coils	90
		3.1.4	EOS Sources – Switch Mode Power Supplies	90

	COI	17		ITO.
X	$ \cup$ \cup I	VΙ	יום	

		3.1.5	EOS Sources – Machinery	90
		3.1.6	EOS Sources – Actuators	91
		3.1.7	EOS Sources – Solenoids	91
		3.1.8	EOS Sources – Servo Motors	91
		3.1.9	EOS Sources – Variable Frequency Drive Motors	93
		3.1.10	EOS Sources – Cables	93
	3.2	EOS Fa	ilure Mechanisms	94
		3.2.1	EOS Failure Mechanisms: Semiconductor	
			Process – Application Mismatch	95
		3.2.2	EOS Failure Mechanisms: Bond Wire Failure	95
		3.2.3	EOS Failure Mechanisms: PCB to Chip Failures	96
		3.2.4	EOS Failure Mechanisms: External Load to Chip Failures	96
		3.2.5	EOS Failure Mechanisms: Reverse Insertion Failures	97
	3.3	Failure	Mechanism – Latchup or EOS?	97
		3.3.1	Latchup versus EOS Design Window	98
	3.4	Failure !	Mechanism – Charged Board Model or EOS?	98
	3.5	Summa	ry and Closing Comments	99
	Refe	rences		99
4	EOS	Failure A	Analysis	102
	4.1		al Overstress Failure Analysis	102
		4.1.1	EOS Failure Analysis – Information Gathering	
			and Fact Finding	106
		4.1.2	EOS Failure Analysis – Failure Analysis Report and	
			Documentation	106
		4.1.3	EOS Failure Analysis – Failure Site Localization	108
		4.1.4	EOS Failure Analysis – Root Cause Analysis	108
		4.1.5	EOS or ESD Failure Analysis – Can Visual Failure	
			Analysis Tell the Difference?	108
	4.2	EOS Fa	ilure Analysis – Choosing the Correct Tool	112
		4.2.1	EOS Failure Analysis - Non-Destructive Methods	113
		4.2.2	EOS Failure Analysis - Destructive Methods	115
		4.2.3	EOS Failure Analysis - Differential Scanning Calorimetry	115
		4.2.4	EOS Failure Analysis – Scanning Electron Microscope/Energy	
			Dispersive X-ray Spectroscopy	116
		4.2.5	EOS Failure Analysis – Fourier Transform Infrared	
			Spectroscopy	116
		4.2.6	EOS Failure Analysis – Ion Chromatography	117
		4.2.7	EOS Failure Analysis – Optical Microscopy	117
		4.2.8	EOS Failure Analysis – Scanning Electron Microscopy	118
		4.2.9	EOS Failure Analysis – Transmission Electron Microscopy	118
		4.2.10	EOS Failure Analysis – Emission Microscope Tool	120
		4.2.11	EOS Failure Analysis – Voltage Contrast Tools	120
		4.2.12	EOS Failure Analysis – IR Thermography	121

			CONTENTS	χi
		4.2.13	EOS Failure Analysis - Optical Beam Induced Resistance	
			Change Tool	122
		4.2.14	EOS Failure Analysis – IR-OBIRCH Tool	122
		4.2.15	EOS Failure Analysis – Thermally Induced Voltage	
			Alteration Tool	123
		4.2.16	EOS Failure Analysis – Atomic Force Microscope Tool	124
		4.2.17	EOS Failure Analysis – Super-Conducting Quantum	
			Interference Device Microscope	125
		4.2.18	EOS Failure Analysis – Picosecond Imaging Current	
			Analysis Tool	127
	4.3	Summa	ry and Closing Comments	129
	Refe	rences		130
5	EOS	Testing a	and Simulation	133
	5.1	Electros	static Discharge Testing – Component Level	133
		5.1.1	ESD Testing – Human Body Model	134
		5.1.2	ESD Testing – Machine Model	136
		5.1.3	ESD Testing – Charged Device Model	138
	5.2		ission Line Pulse Testing	140
		5.2.1	ESD Testing – Transmission Line Pulse	140
		5.2.2	ESD Testing – Very Fast Transmission Line Pulse	142
	5.3		sting – System Level	143
		5.3.1	ESD System Level Testing – IEC 61000-4-2	143
		5.3.2	ESD Testing – Human Metal Model	144
		5.3.3	ESD Testing – Charged Board Model	145
		5.3.4	ESD Testing – Cable Discharge Event	146
	5.4		al Overstress Testing	148
		5.4.1	EOS Testing – Component Level	149
		5.4.2	EOS Testing – System Level	149
	5.5		sting – Lightning	149
	5.6		sting – IEC 61000-4-5	150
	5.7		sting – Transmission Line Pulse Method and EOS	151
		5.7.1	EOS Testing – Long Pulse TLP Method	152
		5.7.2	EOS Testing – TLP Method, EOS and the Wunsch–Bell	
			Model	152
		5.7.3	EOS Testing – Limitations of the TLP Method for the	1.50
			Evaluation of EOS for Systems	152
		5.7.4	EOS Testing – Electro-magnetic Pulse	153
	5.8		esting – D.C. and Transient Latchup	153
	5.9		esting – Scanning Methodologies	154
		5.9.1	EOS Testing – Susceptibility and Vulnerability	154
		5.9.2	EOS Testing – Electrostatic Discharge/Electromagnetic	4
		7.0.	Compatibility Scanning	155
		5.9.3	Electromagnetic Interference Emission Scanning Methodology	157

xii	СО	NTENTS		
		5.9.4	Radio Frequency Immunity Scanning Methodology	158
		5.9.5	Resonance Scanning Methodology	158
		5.9.6	Current Spreading Scanning Methodology	158
	5.10		ry and Closing Comments	161
		rences		161
6	EOS	Robustn	ness – Semiconductor Technologies	166
	6.1	EOS an	d CMOS Technology	166
		6.1.1	CMOS Technology – Structures	166
		6.1.2	CMOS Technology – Safe Operation Area	167
		6.1.3	CMOS Technology – EOS and ESD Failure Mechanisms	168
		6.1.4	CMOS Technology – Protection Circuits	173
		6.1.5	CMOS Technology – Silicon On Insulator	178
		6.1.6	CMOS Technology – Latchup	179
	6.2	EOS an	nd RF CMOS and Bipolar Technology	180
		6.2.1	RF CMOS and Bipolar Technology – Structures	180
		6.2.2	RF CMOS and Bipolar Technology – Safe Operation Area	181
		6.2.3	RF CMOS and Bipolar Technology – EOS and ESD Failure	
			Mechanisms	182
		6.2.4	RF CMOS and Bipolar Technology – Protection Circuits	185
	6.3	EOS ar	nd LDMOS Power Technology	186
		6.3.1	LDMOS Technology – Structures	187
		6.3.2	LDMOS Transistors – ESD Electrical Measurements	189
		6.3.3	LDMOS Technology – Safe Operation Area	190
		6.3.4	LDMOS Technology – Failure Mechanisms	191
		6.3.5	LDMOS Technology – Protection Circuits	193
		6.3.6	LDMOS Technology – Latchup	193
	6.4	Summa	ary and Closing Comments	194
	Refe	rences		195
7	EOS	Design -	- Chip Level Design and Floor Planning	196
	7.1	EOS aı	nd ESD Co-Synthesis – How to Design for Both EOS and ESD	196
	7.2	Produc	t Definition Flow and Technology Evaluation	197
		7.2.1	Standard Product Definition Flow	197
		7.2.2	EOS Product Design Flow and Product Definition	198
	7.3	EOS P	roduct Definition Flow – Constant Reliability Scaling	199
	7.4	EOS P	roduct Definition Flow – Bottom Up Design	200
	7.5	EOS P	roduct Definition Flow – Top Down Design	200
	7.6	On-Ch	ip EOS Considerations – Bond Pad and Bond Wire Design	202
	7.7	EOS P	eripheral I/O Floor Planning	202
		7.7.1	EOS Peripheral I/O Floor Planning – V_{DD} -to- V_{SS} Power	
			Clamp Placement in Corners	203
		7.7.2	EOS Peripheral I/O Floor Planning – Distributed Power	
			Clamp Placement	204

			CONTENTS	xiii	
		7.7.3	EOS Peripheral I/O Floor Planning – Multi-Domain		
			Semiconductor Chips	205	
	7.8	EOS C	hip Power Grid Design – IEC Specification Power Grid and		
			nnect Design Considerations	206	
		7.8.1	IEC 61000-4-2 Power Grid	207	
		7.8.2	ESD Power Clamp Design Synthesis – IEC 61000-4-2		
			Responsive ESD Power Clamps	207	
	7.9	Printed	Circuit Board Design	209	
		7.9.1	System Level Board Design – Ground Design	209	
		7.9.2	System Card Insertion Contacts	209	
		7.9.3	Component and EOS Protection Device Placement	210	
	7.10	Summa	ary and Closing Comments	211	
	Refe	rences	,	211	
8	EOS	Design -	- Chip Level Circuit Design	213	
	8.1	EOS Pr	rotection Devices	213	
	8.2	EOS Pr	rotection Device Classification Characteristics	213	
		8.2.1	EOS Protection Device Classification - Voltage		
			Suppression	214	
		8.2.2	EOS Protection Device – Current-Limiting Devices	215	
	8.3	EOS P1	rotection Device – Directionality	216	
		8.3.1	EOS Protection Device – Uni-Directional	216	
		8.3.2	EOS Protection Device – Bi-Directional	217	
	8.4	EOS P1	rotection Device Classification – I-V Characteristic Type	217	
		8.4.1	EOS Protection Device Classification – Positive		
			Resistance I-V Characteristic Type	218	
		8.4.2	EOS Protection Device Classification – S-Type I-V		
			Characteristic Type	219	
	8.5	EOS Pr	rotection Device Design Window	220	
		8.5.1	EOS Protection Device versus ESD Device Design Window	220	
		8.5.2	EOS and ESD Co-Synthesis	221	
		8.5.3	EOS Activates ESD Circuitry	221	
	8.6	EOS Pi	rotection Device – Types of Voltage Suppression Devices	222	
		8.6.1	EOS Protection Device – TVS Device	222	
		8.6.2	EOS Protection Device – Diodes	222	
		8.6.3	EOS Protection Device – Schottky Diodes	223	
		8.6.4	EOS Protection Device – Zener Diodes	223	
		8.6.5	EOS Protection Device – Thyristor Surge Protection Device	224	
		8.6.6	EOS Protection Device – Metal Oxide Varistors Device	225	
		8.6.7	EOS Protection Device – Gas Discharge Tube Devices	228	
	8.7		rotection Device – Types of Current-Limiting Devices	229	
		8.7.1	EOS Protection Device – Current-Limiting Devices – PTC		
			Devices	230	
		872	FOS Protection Device - Conductive Polymer Devices	231	

xiv	CONTENTS

		8.7.3	EOS Protection Device – Current-Limiting Devices – Fuses	232
		8.7.4	EOS Protection Device – Current-Limiting Devices – eFuse	234
		8.7.5	EOS Protection Device – Current-Limiting Devices – Circuit	
			Breakers	235
	8.8	EOS Pro	otection – Across Board Supply and Ground Plane Using a	
			nt Voltage Suppression Device and Schottky Diodes	236
	8.9		d ESD Protection Co-Synthesis Network	237
	8.10		thesis of EOS in Cables and PCBs	237
	8.11	•	ry and Closing Comments	239
	Refe	ences		239
9	EOS	Preventi	on and Control	240
	9.1		ling EOS	240
	7.1	9.1.1	Controlling EOS in a Manufacturing Environment	240
		9.1.2	Controlling EOS in a Production Environment	241
		9.1.3	Controlling EOS in a Back End Process	242
	9.2		inimization	242
	7.2	9.2.1	EOS Prevention – Manufacturing Area Operation	244
		9.2.2	EOS Prevention – Production Area Operation	246
	9.3		inimization – Preventive Actions in the Design Process	246
	9.4		evention – EOS Guidelines and Procedures	246
	9.5		evention – Ground Testing	247
	9.6		evention – Connectivity	247
	9.7		evention – Insertion	247
	9.8		d Electromagnetic Interference Prevention – Printed	
	,,,		Board Design	248
		9.8.1	EOS and EMI Prevention – PCB Power Plane and	0
			Ground Design	248
		9.8.2	EOS and EMI Prevention – PCB Design	
		7.0.2	Guidelines – Component Selection and Placement	249
		9.8.3	EOS and EMI Prevention – PCB Design	- 17
		7.0.5	Guidelines – Trace Routing and Planes	250
	9.9	EOS Pr	evention – Desktop Boards	251
	9.10		evention – On-Board and On-Chip Design Solutions	252
	,,,,	9.10.1	EOS Prevention – Operational Amplifier	252
		9.10.2	EOS Prevention – Low Dropout Regulators	253
		9.10.3	EOS Prevention – Soft Start Over-current and Over-voltage	-00
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Protection Circuitry	254
		9.10.4	EOS Prevention – Power Supply EOC and EOV Protection	255
	9.11		erformance Serial Buses and EOS	257
	,	9.11.1	High Performance Serial Buses – FireWire and EOS	257
		9.11.2	High Performance Serial Buses – Peripheral Component	201
			Interconnect Express and EOS	258
		9.11.3	High Performance Serial Buses – Universal Serial Bus and EOS	259
		1 - 0		

			CONTENTS	χv	
	9.12	Summary and Closing Comments		259	
		rences		259	
10	EOS	Design – Electronic Design Automation		263	
	10.1	EOS and Electronic Design Automation		263	
	10.2	EOS and ESD Design Rule Checking		263	
		10.2.1 ESD Design Rule Check		264	
		10.2.2 ESD Layout Versus Schematic Verification		265	
		10.2.3 ESD Electrical Rule Check		266	
	10.3	EOS Electronic Design Automation		266	
		10.3.1 EOS Design Rule Checking		267	
		10.3.2 EOS Layout Versus Schematic Verification		268	
		10.3.3 EOS Electrical Rule Check		269	
		10.3.4 EOS Programmable Electrical Rule Check		270	
	10.4	Printed Circuit Board Design Checking and Verification		270	
	10.5	EOS and Latchup Design Rule Checking		273	
		10.5.1 Latchup Design Rule Check		273	
		10.5.2 Latchup Electrical Rule Check		277	
	10.6	Summary and Closing Comments		282	
	Refer	rences		282	
11	EOS	Program Management		285	
	11.1	EOS Audits and Manufacturing Control		285	
	11.2	Controlling EOS in the Production Process		287	
	11.3	EOS and Assembly Plant Corrective Actions		287	
	11.4	EOS Audits – From Manufacturing to Assembly Control		288	
	11.5	EOS Program - Weekly, Monthly, Quarterly, to Annual Audits		288	
	11.6	EOS and ESD Design Release		289	
		11.6.1 EOS Design Release Process		290	
		11.6.2 ESD Cookbook		290	
		11.6.3 EOS Cookbook		293	
		11.6.4 EOS Checklists		295	
		11.6.5 EOS Design Reviews		297	
	11.7	EOS Design, Testing and Qualification		297	
	11.8	Summary and Closing Comments		298	
	Refer	rences		298	
12	Elect	rical Overstress in Future Technologies		301	
	12.1	EOS Future Implications for Future Technologies		301	
	12.2	EOS in Advanced CMOS Technology		302	
		12.2.1 EOS in FinFET Technology		303	
		12.2.2 EOS and Circuit Design		303	
	12.3	EOS Implications in 2.5-D and 3-D Systems		304	
		12.3.1 EOS Implications in 2.5-D Systems		305	

xvi	CC	NTENTS		
		12.3.2	EOS and Silicon Interposers	30:
		12.3.3	EOS and Through Silicon Vias	30
		12.3.4	EOS Implications in 3-D Systems	309
	12.4	EOS and Magnetic Recording		309
		12.4.1	EOS and Magneto-Resistors	309
		12.4.2	EOS and Giant Magneto-Resistors	31
		12.4.3	EOS and Tunneling Magneto-Resistors	312
	12.5	EOS and Micro-Machines		312
		12.5.1	Micro-Electromechanical Devices	312
		12.5.2	ESD Concerns in MEM Devices	313
		12.5.3	Micro-Motors	314
		12.5.4	ESD Concerns in Micro-Motors	314
	12.6	EOS and RF MEMs		316
	12.7	EOS Implications for Nano-Structures		318
		12.7.1	EOS and Phase Change Memory	318
		12.7.2	EOS and Graphene	320
		12.7.3	EOS and Carbon Nanotubes	320
	12.8	Summar	y and Closing Comments	32:
References				322
Appendix A: Glossary of Terms				329
Appendix B: Standards				33
Index				33