Foreword by Professor Dani Or pa		
Preface	XV	
List of symbols	xvii	
Part I Introduction and state of the art	1	
1 Introduction	3	
1.1 Landslide overview	3	
1.2 Landslide classification	4	
1.2.1 Landslide velocity	6	
1.2.2 Illustration of landslide classification	9	
1.3 Landslide occurrence	9	
1.3.1 Landslide triggering mechanisms	9	
1.3.2 Frequency and magnitude of landslide events	11	
1.4 Socio-economic impacts of landslides	12	
1.4.1 Types of costs	14	
1.4.2 Historical examples of widespread landslide events		
in North America	15	
1.4.3 Direct economic loss in the San Francisco Bay region in 1997–8	15	
1.5 Rainfall-induced landslides	16	
1.5.1 Evidence of shallow landslide occurrence in the unsaturated zone	19	
1.5.2 Role of precipitation characteristics in triggering shallow landslides		
1.5.3 Role of infiltration and unsaturated flow within hillslopes	23	
1.6 Scope and organization of the book	24	
1.6.1 Why does rainfall cause landslides?	24	
1.6.2 Organization of the book	24	
1.7 Problems	25	
2 Hillslope geomorphology	27	
2.1 Hillslope hydrologic cycle	27	
2.1.1 Global patterns of precipitation and evaporation	27	
2.1.2 Orographic precipitation enhancement	32	
2.1.3 Atmospheric rivers	32	
2.1.4 Monsoons	33	
2.1.5 Tropical cyclones	35	

		2.1.6 El Niño and La Niña	35
		2.1.7 Trends in extreme precipitation	36
	2.2	Topography	40
		2.2.1 General topographic features	40
		2.2.2 Digital landscapes	42
		2.2.3 DEM methods for landslide analysis	43
	2.3	Soil classification	43
		2.3.1 Soil stratigraphy	43
		2.3.2 Commonly used classification systems	45
	2.4	Hillslope hydrology and stream flow generation	46
		2.4.1 Runoff and infiltration	46
		2.4.2 Subsurface flow processes and runoff generation	50
		2.4.3 Subsurface stormflow	53
		2.4.4 Subsurface stormflow and landslide initiation	55
	2.5	Mechanical processes in hillslopes	56
		2.5.1 Stress variation mechanisms	58
		2.5.2 Strength reduction mechanisms	64
		2.5.3 Combined change in stress and strength	66
	2.6	Problems	69
		Part II Hillslope hydrology	71
3	Stea	ady infiltration	73
_		Water movement mechanisms	73
		3.1.1 Introduction	73
		3.1.2 Gravitational potential	75
		3.1.3 Pressure potential	76
		3.1.4 Osmotic potential	78
		3.1.5 Water vapor potential	80
		3.1.6 Chemical potential equilibrium principle in multi-phase media	81
		3.1.7 Pressure profiles under hydrostatic conditions	83
	3.2	Darcy's law	85
		3.2.1 Darcy's experiments	85
		3.2.2 Darcy's law in three-dimensional space	86
		3.2.3 Hydraulic properties	87
	3.3	Capillary rise	90
		3.3.1 Height of capillary rise in soils	90
		3.3.2 Rate of capillary rise in soils	91
	3.4	Vapor flow	92
	3.5	Vertical flow	93
		3.5.1 One-layer system	93
		3.5.2 Two-layer system	98
	3.6	Hydrologic barriers	106
		3.6.1 Flat capillary barriers	106

	3.6.2 Dipping capillary barriers	110
	3.6.3 Hydraulic barriers due to heterogeneity	112
	3.7 Problems	114
4	Transient infiltration	117
•	4.1 Governing equation for transient water flow	117
	4.1.1 Principle of mass conservation	117
	4.1.2 Transient saturated flow	119
	4.1.3 Richards equation for unsaturated flow	119
	4.2 One-dimensional transient flow	122
	4.2.1 Richards equation in hillslope setting	122
	4.2.2 The Green–Ampt infiltration model	123
	4.2.3 The Srivastava and Yeh infiltration model	128
	4.3 Numerical solutions for multi-dimensional problems	131
	4.4 Transient flow patterns in hillslopes	133
	4.4.1 Controlling factors for flow direction	133
	4.4.2 General conceptual model for "wetting" and "drying" states	137
	4.4.3 Flow patterns under constant rainfall intensity	138
	4.4.4 Flow patterns following the cessation of rainfall	143
	4.4.5 Flow patterns resulting from a step-function in rainfall	146
	4.4.6 Flow patterns resulting from transient rainfall	150
	4.5 Summary of flow regimes in hillslopes	152
	4.6 Problems	153
	Part III Total and effective stress in hillslopes	157
5	Total stresses in hillslopes	159
_	5.1 Definitions of stress and strain	159
	5.1.1 Definition of total stress	159
	5.1.2 Definition of strain	162
	5.1.3 Stress–strain relationship	163
	5.2 Analysis and graphical representation of the state of stress	165
	5.2.1 Mohr circle concept	165
	5.2.2 Principal stresses	167
	5.3 Force equilibrium equations	168
	5.3.1 Equations of motion	168
	5.3.2 Theory of linear elastostatics	169
	5.4 Two-dimensional elastostatics	171
	5.4.1 Navier's field equations in terms of displacement	171
	5.4.2 Beltrami-Michell's field equations in terms of stress	172
	5.5 Total stress distribution in hillslopes	174
	5.5.1 Savage's two-dimensional analytical solution	174
	5.5.2 Finite-element solutions	179
	5.6 Problems	213

6	Effective stress in soil				
	6.1 Terzaghi's and Bishop's effective stress theories	215			
	6.2 Coleman's independent stress variables theory	217			
	6.3 Lu et al.'s suction stress theory	218			
	6.4 Unified effective stress representation	220			
	6.4.1 Unified effective stress principle	220			
	6.4.2 Experimental validation and determination of suction stres	s 224			
	6.4.3 Unified equation for effective stress	228			
	6.4.4 Validity of unified equation for effective stress	230			
	6.5 Suction stress profile in hillslopes	232			
	6.5.1 Steady-state profiles in one dimension: single layer	232			
	6.5.2 Steady-state profiles in one dimension: multiple layers	234			
	6.5.3 Transient state suction stress profiles in one dimension:				
	single layer	238			
	6.6 Problems	241			
	Part IV Hillslope material properties	245			
7	' Strength of hillslope materials	247			
	7.1 Failure modes and failure criteria	247			
	7.1.1 Definition of strength	247			
	7.1.2 Stress–strain relation	249			
	7.2 Shear strength due to frictional resistance	251			
	7.2.1 Friction angle concept	251			
	7.2.2 Apparent cohesion concept	253			
	7.2.3 Internal friction angle of sand	254			
	7.3 Shear strength due to cohesion	256			
	7.3.1 Drained cohesion	256			
	7.3.2 Cementation cohesion	259			
	7.3.3 Capillary cohesion	260			
	7.4 Shear strength due to plant roots	261			
	7.4.1 Role of root reinforcement in hillslope stability	261			
	7.4.2 Shear strength of rooted soils	262			
	7.4.3 Tensile strength of roots	266			
	7.4.4 Spatial and temporal variation of root strength	267			
	7.5 Shear strength under various drainage conditions	271			
	7.5.1 Shear strength of saturated soils	271			
	7.5.2 Consolidated-drained conditions	273			
	7.5.3 Consolidated-undrained conditions	275			
	7.5.4 Unconsolidated-undrained conditions	276			
	7.6 Unified treatment of shear strength of hillslope materials	278			
	7.7 Problems	279			

8	Hydro-mechanical properties					
	8.1 Overall review					
		8.1.1 Methods for measurement of suction	282			
		8.1.2 Methods for measurement of hydraulic conductivity	284			
	8.2	Transient release and imbibition method (TRIM)	287			
		8.2.1 Working principle of TRIM	287			
		8.2.2 TRIM device	287			
		8.2.3 Parameter identifications by TRIM	290			
	8.3	8.3 TRIM testing procedure				
8.4 Validation of the TRIM method		Validation of the TRIM method	299			
		8.4.1 Uniqueness of results obtained by inverse modeling	299			
		8.4.2 Repeatability of TRIM tests	301			
		8.4.3 Independent experimental confirmation	301			
	8.5	Application of the TRIM to different soils	304			
		8.5.1 TRIM test on sandy soil	304			
		8.5.2 TRIM test on undisturbed silty clay soil	304			
		8.5.3 TRIM test on remolded silty clay soil	305			
	8.6	Quantification of SSCC using TRIM	305			
		Summary	307			
	8.8	Problems	308			
		Part V Hillslope stability	311			
		rait v innsiope stability	311			
9	9 Failure surface based stability analysis					
	9.1	Classical methods of slope stability analysis	313			
		9.1.1 Factor of safety for slope stability	313			
		9.1.2 Infinite-slope stability model	315			
		9.1.3 Culmann's finite-slope stability model	317			
	9.2	Method of slices for calculating factors of safety	321			
		9.2.1 Ordinary method of slices	321			
		9.2.2 Bishop's simplified method of slices	323			
	9.3	Landslides under steady infiltration	325			
		9.3.1 Extension of classical methods to unsaturated conditions	325			
		9.3.2 Impact of infiltration rate on slope stability	331			
		9.3.3 Impact of moisture variation on slope stability	336			
	9.4	Shallow landslides induced by transient infiltration	341			
		9.4.1 Stability of a coarse sand hillslope	344			
		9.4.2 Stability of a medium sand hillslope	346			
		9.4.3 Stability of a fine sand hillslope	347			
		9.4.4 Stability of a silt hillslope	349			
		9.4.5 Summary of model results	351			
	9.5	Case study: Rainfall-induced shallow landslide	351			
		9.5.1 Site geology, geomorphology, and monitoring program	351			

		9.5.2	Numerical modeling of transient flow	352	
		9.5.3	Comparison of model results with observations	353	
	9.6	Case s	tudy: Snowmelt-induced deeply seated landslide	356	
		9.6.1	Site geology, morphology, and hydrology	356	
		9.6.2	Slope stability analysis with and without suction stress	358	
		9.6.3	Slope stability analysis with water table rise	358	
	9.7	Proble	ms	362	
10	Stress	field ba	ised stability analysis	364	
	10.1	Hydro	-mechanical framework	364	
		10.1.1	Failure modes in hillslopes	364	
		10.1.2	Unified effective stress principle	367	
		10.1.3	Hydro-mechanical framework	368	
	10.2	Scalar	field of factor of safety	369	
		10.2.1	Rationale for scalar field of factor of safety	369	
		10.2.2	Definition of scalar field (or local) of factor of safety	371	
			Comparisons with the classical factor of safety methodologies	373 381	
	10.3	10.3 Transient hillslope stability analysis			
	10.4	Case s	tudy: Rainfall-induced landslide	387	
		10.4.1	Two-dimensional numerical model	388	
		10.4.2	Simulated hydrologic response to rainfall	389	
		10.4.3	Simulated Changes in stress and stability	392	
	10.5	Case s	tudy: Snowmelt-induced deeply seated landslide	395	
		10.5.1	Site hydrology and displacement monitoring	395	
		10.5.2	Simulated transient suction and suction stress fields	399	
		10.5.3	Simulated transient slope stability conditions	402	
	10.6	Proble	ms	404	
Re	ferenc	es		406	
Inc	lex			430	

The color plates can be found between pages 216 and 217