Contents

Preface									
y pl	brevia	tions		xiii					
1	Introduction								
	1.1	Introdu	uction	1					
		1.1.1	Why Photovoltaics?	1					
		1.1.2	Who Should Read this Book?	2 2 3					
		1.1.3	Structure of the Book	2					
	1.2	What	is Energy?						
		1.2.1	Definition of Energy	3					
		1.2.2	Units of Energy						
		1.2.3	Primary, Secondary and End Energy	5					
		1.2.4	Energy Content of Various Substances	6 7					
	1.3	Proble	ems with Today's Energy Supply	7					
		1.3.1	Growing Energy Requirements	7					
		1.3.2	Tightening of Resources	8					
		1.3.3	Climate Change	9					
		1.3.4	Hazards and Disposal	10					
	1.4	Renev	vable Energies	11					
		1.4.1	The Family of Renewable Energies	11					
		1.4.2	Advantages and Disadvantages of Renewable Energies	12					
	1.5	Photo	voltaic – The Most Important in Brief	12					
		1.5.1	What Does "Photovoltaic" Mean?	13					
		1.5.2	What are Solar Cells and Solar Modules?	13					
		1.5.3	How is a Typical Photovoltaic Plant Structured?	14					
		1.5.4	What Does a Photovoltaic Plant "Bring?"	14					
	1.6	Histor	ry of Photovoltaics	15					
		1.6.1	How it all Began	1.5					
		1.6.2	The First Real Solar Cells	16					
		1.6.3	From Space to Earth	18					
		164	From Toy to Energy Source	18					

vi Contents

2	Solar	Radiat		21
	2.1	_	ties of Solar Radiation	21
		2.1.1	Solar Constant	21
		2.1.2	Spectrum of the Sun	22
		2.1.3	Air Mass	23
	2.2	Global	Radiation	24
			Origin of Global Radiation	24
			Contributions of Diffuse and Direct Radiation	25
		2.2.3	Global Radiation Maps	25
	2.3		ation of the Position of the Sun	29
		2.3.1	Declination of the Sun	29
		2.3.2	Calculating the Path of the Sun	31
	2.4		ion on Tilted Surfaces	33
			Radiation Calculation with the Three-Component Model	33
			Radiation Estimates with Diagrams and Tables	37
		2.4.3	Yield Gain through Tracking	38
	2.5		ion Availability and World Energy Consumption	40
			0,	40
		2.5.2	The Sahara Miracle	41
3	Fund		als of Semiconductor Physics	43
	3.1	Structu	are of Semiconductors	43
			Bohr's Atomic Model	43
			Periodic Table of the Elements	45
		3.1.3	Structure of the Silicon Crystal	46
			Compound Semiconductors	47
	3.2	Band I	Model of the Semiconductor	47
		3.2.1	Origin of Energy Bands	47
		3.2.2	Differences in Isolators, Semiconductors and Conductors	48
		3.2.3	Intrinsic Carrier Concentration	49
	3.3	Charge	e Transport in Semiconductors	50
		3.3.1	Field Currents	50
		3.3.2	Diffusion Currents	52
	3.4	Doping	g of Semiconductors	53
		3.4.1	n-Doping	53
		3.4.2	p-Doping	54
	3.5	The p-	n Junction	54
		3.5.1	Principle of Method of Operation	55
		3.5.2	Band Diagram of the p-n Junction	56
		3.5.3	Behavior with Applied Voltage	58
		3.5.4	Diode Characteristics	59
	3.6	Interac	ction of Light and Semiconductors	60
		3.6.1	Phenomenon of Light Absorption	60
		3.6.2	Light Reflection on Surfaces	64

4	Strue	cture a	and Method of Operation of Solar Cells	67
	4.1		deration of the Photodiode	.67
		4.1.1	Structure and Characteristics	67
		4.1.2	Equivalent Circuit	69
	4.2	Metho	od of Function of the Solar Cell	69
		4.2.1	Principle of the Structure	69
		4.2.2	2 0	70
		4.2.3	What Happens in the Individual Cell Regions?	71
		4.2.4		73
	4.3	Photo	current	73
		4.3.1	Absorption Efficiency	74
		4.3.2	Quantum Efficiency	75
		4.3.3	Spectral Sensitivity	76
	4.4	Chara	acteristic Curve and Characteristic Dimensions	77
		4.4.1	Short Circuit Current I _{SC}	78
		4.4.2	Open Circuit Voltage V _{OC}	78
		4.4.3		79
		4.4.4	Fill Factor FF	79
		4.4.5	Efficiency η	80
		4.4.6	Temperature Dependency of Solar Cells	80
	4.5	Electr	rical Description of Real Solar Cells	82
		4.5.1	Simplified Model	82
		4.5.2	Standard Model (Single-Diode Model)	83
		4.5.3	Two-Diode Model	83
		4.5.4	Determining the Parameters of the Equivalent Circuit	85
	4.6	Consi	idering Efficiency	87
		4.6.1	Spectral Efficiency	87
		4.6.2	Theoretical Efficiency	90
		4.6.3	Losses in Real Solar Cells	92
	4.7		Efficiency Cells	95
		4.7.1		96
		4.7.2	Point-Contact Cell	96
		4.7.3	PERL Cell	97
5	Cell	Techn	nologies	99
	5.1		uction of Crystalline Silicon Cells	99
		5.1.1	·	99
		5.1.2	From Silicon to Wafer	103
		5.1.3		104
		5.1.4	Production of Solar Modules	106
	5.2	Cells	of Amorphous Silicon	108
		5.2.1		108
		5.2.2		108
		5.2.3	Structure of the pin Cell	109
		5.2.4		110
		5.2.5	Stacked Cells	112

		5.2.6	Combined Cells of Micromorphous Material	113
		5.2.7		114
	5.3	Furthe	er Thin Film Cells	115
		5.3.1	Cells of Cadmium-Telluride	115
		5.3.2	CIS Cells	116
	5.4	Hybrid	d Wafer Cells	118
		5.4.1	Combination of c-Si and a-Si (HIT Cell)	118
		5.4.2	Stacked Cells of III/V Semiconductors	119
	5.5	Other	Cell Concepts	120
	5.6	Conce	entrator Systems	120
		5.6.1	Principle of Radiation Bundling	120
		5.6.2	What is the Advantage of Concentration?	120
		5.6.3	Examples of Concentrator Systems	122
		5.6.4	Advantages and Disadvantages of Concentrator Systems	123
	5.7	Ecolog	gical Questions on Cell and Module Production	123
		5.7.1	Environmental Effects of Production and Operation	123
		5.7.2	Availability of Materials	124
		5.7.3	Energy Amortization Time and Yield Factor	126
		Summ	nary	129
6	Sola	r Modu	iles and Solar Generators	133
	6.1		rties of Solar Modules	133
		6.1.1	Solar Cell Characteristic Curve in All Four Quadrants	133
		6.1.2	~	134
		6.1.3		135
		6.1.4		136
		6.1.5		141
		6.1.6	Special Case Thin Film Modules	143
		6.1.7	Examples of Data Sheet Information	145
	6.2	Conne	ecting Solar Modules	145
		6.2.1		145
		6.2.2		147
		6.2.3		148
		6.2.4	Smart Installation in Case of Shading	148
	6.3	Direct	Current Components	150
		6.3.1		150
		6.3.2	Direct Current Cabling	151
	6.4	Types	of Plants	153
		6.4.1	Open Air Plants	153
		6.4.2	Flat Roof Plants	155
		<i>6:4.3</i>	Pitched Roof Systems	157
		6.4.4	Façade Systems	159
7	Phot	tovoltai	c System Technology	161
	7.1		Generator and Load	161
	-		Resistive Load	161

Contents

		7.1.2	DC/DC Converter	162
		7.1.3		-167
	7.2		Connected Systems	168
			Feed-In Variations	169
		7.2.2		169
		7.2.3	•	171
		7.2.4	Efficiency of Inverters	177
		7.2.5	Dimensioning of Inverters	181
		7.2.6	Measures for Increasing Self-Consumption	184
		7.2.7	Requirements of Grid Operators	186
		7.2.8	Safety Aspects	188
	7.3	Stand-	Alone Systems	189
		7.3.1	Principle of the Structure	189
		7.3.2	Batteries	190
		7.3.3	Charge Controllers	194
		7.3.4	Examples of Stand-Alone Systems	197
		7.3.5	Dimensioning Stand-Alone Plants	199
8	Phot	ovoltaic	c Metrology	205
	8.1		rement of Solar Radiation	205
	0.1	8.1.1	Global Radiation Sensors	205
		8.1.2	Measuring Direct and Diffuse Radiation	207
	8.2		ring the Power of Solar Modules	208
		8.2.1	Buildup of a Solar Module Power Test Rig	209
		8.2.2	Quality Classification of Module Flashers	210
		8.2.3	Determination of the Module Parameters	211
	8.3	Peak I	Power Measurement at Site	212
		8.3.1	Principle of Peak Power Measurement	212
		8.3.2	Possibilities and Limits of the Measurement Principle	213
	8.4	Therm	ographic Measuring Technology	214
		8.4.1	Principle of Infrared Temperature Measurement	214
		8.4.2	Bright Thermography of Solar Modules	215
		8.4.3	Dark Thermography	217
	8.5	Electro	oluminescence Measuring Technology	218
		8.5.1	Principle of Measurement	218
		8.5.2	Examples of Photos	219
9	Desi	gn and	Operation of Grid-Connected Plants	223
	9.1		ing and Dimensioning	223
		9.1.1	Selection of Site	223
		9.1.2	Shading	224
		9.1.3	Plant Dimensioning and Simulation Programs	228
	9.2		omics of Photovoltaic Plants	230
		9.2.1	The Renewable Energy Law	230
		9.2.2	Return Calculation	231
	9.3		illance, Monitoring and Visualization	235

X								ontents	S

Ind	ex			277
Ref	erenc	es		271
Ap	pendix	кВ		269
Ap	pendix	κ A		267
11	Exer	cises		257
	10.5	Conclu	sion	255
			Requirements of the Grids	254
			Options for Storing Electrical Energy	251
			Consideration of Future Scenarios	249
		10.4.1	Current Development in Renewable Energies	249
	10.4		hts on Future Energy Supply	249
	10.3	Price D	Development	248
	10.2		nt Promotion Instruments	247
			Photovoltaics versus Biomass	246
			Technical Electrical Energy Generation Potential	245
			Technically Useful Radiation Energy	243
	10.1		Theoretical Potential	243
10	Outle 10.1		al of Photovoltaics	243 243
			Tui Rooj from 2000	
		9.4.2	Flat Roof from 2008	241
		9.4.1	Pitched Roof Installation from 1996 Pitched Roof Installation from 2002	240
	9.4	-	ing Results of Actual Installations	239
	0.4		Visualization	238 239
		9.3.2	Monitoring PV Plants	235
		9.3.1	Methods of Plant Surveillance	235