Preface		xi
Acknowl	ledgments	xvii
Contribu	utors	xix
1. Persi	pectives and State of the Art in Producing Solar Fuels	3
_	Chemicals from CO ₂	1
	riele Centi and Siglinda Perathoner	
1.1	Introduction	1
	1.1.1 GHG Impact Values of Pathways of CO ₂ Cher	nical
	Recycling	3
	1.1.2 CO ₂ Recycling and Energy Vectors	7
1.2	Solar Fuels and Chemicals From CO ₂	8
	1.2.1 Routes for Converting CO ₂ to Fuels	9
	1.2.2 H ₂ Production Using Renewable Energy	11
	1.2.3 Converting CO ₂ to Base Chemicals	12
	1.2.4 Routes to Solar Fuels	14
1.3	Toward Artificial Leaves	16
	1.3.1 PEC Cells for CO ₂ Conversion	17
1.4	Conclusions	19
	Acknowledgments	20
	References	20
2. Tran	nsformation of Carbon Dioxide to Useable Products	
	ough Free Radical-Induced Reactions	25
G. R.	Dey	
2.1	Introduction	25
	2.1.1 Background	26
2.2		29
	2.2.1 Photochemical Reduction of CO ₂	29
	2.2.2 Electrochemical Reduction of CO ₂	38
2.3	-	46
,	Acknowledgments	46
	References	46

3.	•		Useful Compounds from CO ₂ Steven L. Suib	51
	3.1	Introdu		51
			nemical Reduction	53
			chemical Reduction	55
	3.4	Electro	catalytic Reduction	57
		3.4.1	Transition Metal Nanoparticle Catalysts	58
		3.4.2	Coordination Complexes	69
		3.4.3	Enzymes	70
	3.5	CO_2 Hy	ydrogenation	71
			Active Phases	71
			Products of CO ₂ Hydrogenation	74
			Deactivation and Regeneration	77
			Mechanisms of CO ₂ Hydrogenation	79
	3.6	_	eforming	84
	3.7	_	ets in CO ₂ Reduction	86
		Acknov Referen	wledgments	86 86
		Referen	ices	80
4.	Hydr	ogenatio	on of Carbon Dioxide to Liquid Fuels	99
			n Gnanamani, Gary Jacobs, Venkat Ramana Rao Pendyala, nd Burtron H. Davis	
	4.1	Introdu	ction	99
	4.2		nation of Carbon Dioxide	100
	4.3	Methan	nol and Higher Alcohol Synthesis by CO ₂	
			genation	102
	4.4		earbons Through Modified Fischer-Tropsch Synthesis	105
	4.5	Conclu		114
		Referen	nces	115
5.			esis of Organic Carbonates from CO ₂ and Alcohols ogeneous Oxide Catalysts	119
	,	_	gawa, Masayoshi Honda, and Keiichi Tomishige	11/
	5.1	Introdu	ection	120
	5.2	Ceria-F	Based Catalysts	122
		5.2.1	Choice of Ceria Catalysts in Direct DMC Synthesis	122
		5.2.2	Performances of the Ceria Catalyst in DMC	
			Synthesis	123
		5.2.3	Direct Synthesis of Various Organic Carbonates from	
			Alcohols and CO ₂ Without Additives	125
		5.2.4	Reaction Mechanism	125
		5.2.5	Ceria-Zirconia Catalysts Madification of Cario Resed Catalysts	128
		5.2.6	Modification of Ceria-Based Catalysts	129

		5.2.7	Use of Acetonitrile as a Dehydrating Agent for DMC Synthesis	129
		5.2.8	Use of Acetonitrile as Dehydrating Agent for Synthesis	129
			of Various Carbonates	132
		5.2.9	Use of Benzonitrile as Dehydrating Agent	133
		5.2.10	Deactivation of the Ceria Catalyst in the Presence	
			of Benzonitrile	135
		5.2.11	Use of Other Dehydrating Agents	136
	5.3	Zirconi	a-Based Catalysts	137
		5.3.1	Structure and Catalytic Performance of Zirconia	137
		5.3.2	Modification of Zirconia Catalysts	139
		5.3.3	Reaction Mechanism over Zirconia-Based Catalysts	140
		5.3.4	Combination of Dehydrating Agents with	
			Zirconia-Based Catalysts	144
	5.4		Metal Oxide Catalysts	145
	5.5		sions and Outlook	145
		Refere	nces	146
_	Uiah	Colon E	Efficiency Utilization of CO ₂ : the STEP (Solar	
ο.			etrochemical Production) of Energetic Molecules	149
	Stuart		enochemical Froduction) of Emergence Molecules	177
	-			1.46
	6.1 6.2	Introdu		149
	0.2		Thermal Electrochemical Production of Energetic ales: an Overview	151
		6.2.1 6.2.2	STEP Salar to Chamical Engage Conversion	151
		0.2.2	STEP Solar-to-Chemical Energy Conversion Efficiency	155
		6.2.3	Identification of STEP Consistent Endothermic	15.
		0.2.3	Processes	161
	6.3	Demon	astrated STEP Processes	165
	0.5	6.3.1	STEP Hydrogen	165
			STEP Carbon Capture	165
			STEP Iron	170
		6.3.4	STEP Chlorine and Magnesium Production (Chloride	170
		0.5.1	Electrolysis)	178
	6.4	STEP	Constraints	180
		6.4.1	STEP Limiting Equations	180
		6.4.2	Predicted STEP Efficiencies for Solar Splitting	100
		02	of CO ₂	182
		6.4.3	Scalability of STEP Processes	184
	6.5	Conclu		186
	0.0			
		Ackno	wledgments	186

7.	Elect	trocatalytic Reduction of CO ₂ in Methanol Medium	191
	M. Murugananthan, S. Kaneco, H. Katsumata, T. Suzuki		
	and M	1. Kumaravel	
	7.1	Introduction	191
	7.2	Electrocatalytic Reduction of CO ₂ in Methanol Medium	193
		7.2.1 Effect of Electrolyte Containing Salt	200
		7.2.2 Effect of Electrode Materials	204
		7.2.3 Effect of Potential	208
	7.3	Mechanisms of CO ₂ Reduction in Nonaqueous Protic	
		(CH ₃ OH) Medium	210
	7.4	Conclusions	211
		References	213
8.	Syntl	hetic Fuel Production from the Catalytic Thermochemical	
		version of Carbon Dioxide	215
		dol Laosiripojana, Kajornsak Faungnawakij,	
	and S	uttichai Assabumrungrat	
	8.1	Introduction	215
	8.2	1 2	218
	8.3	Catalyst Selection for CO ₂ Reforming Reaction	221
		8.3.1 Active Components	221
		8.3.2 Support and Promoter	226
	8.4		228
	8.5	Conversion of Synthesis Gas to Synthetic Fuels	230
		8.5.1 Gas-to-Liquid	231
		8.5.2 Methanol and DME	234
	8.6	Conclusions	239
		Acknowledgments	240
		References	240
9	Fuel	Production from Photocatalytic Reduction of CO₂	
		Water Using TiO ₂ -Based Nanocomposites	245
	Ying I	Li	
	9.1	Introduction	245
	9.2	CO ₂ Photoreduction: Principles and Challenges	246
	9.3	TiO ₂ -Based Photocatalysts for CO ₂ Photoreduction: Materi	al
		Innovations	247
		9.3.1 TiO ₂ Nanoparticles and High-Surface-Area Support	t 247
		9.3.2 Metal-Modified TiO ₂ Photocatalysts	248
		9.3.3 Metal-Modified TiO ₂ Supported on Mesoporous	_
		SiO ₂	249
		9.3.4 Nonmetal-Doped TiO ₂ Photocatalysts	251

	9.4	Photocatalysis Experiments	254
	9.5	CO ₂ Photoreduction Activity	255
		9.5.1 Cu/TiO ₂ – SiO ₂ and Ce-TiO ₂ /SBA-15 Catalysts	255
		9.5.2 Copper- and/or Iodine-Modified TiO ₂ Catalysts	258
		9.5.3 TiO ₂ Polymorphs Engineered with Surface Defects	258
	9.6	Reaction Mechanism and Factors Influencing Catalytic	
		Activity	259
		9.6.1 Effects of Cu and Iodine Modification on TiO ₂	259
		9.6.2 Effect of O ₂ on CO ₂ Photoreduction	261
		9.6.3 In Situ DRIFTS Analysis on Surface Chemistry	261
	9.7	Conclusions and Future Research Recommendations	265
		References	265
10.	Photo	ocatalytic Reduction of CO ₂ to Hydrocarbons	
	Using	g Carbon-Based AgBr Nanocomposites Under Visible Light	269
		r Abou Asi, Chun He, Qiong Zhang, Zuocheng Xu, Jingling Yang,	
	Linfei	Zhu, Yanling Huang, Ya Xiong, and Dong Shu	
	10.1	Introduction	269
	10.2	Mechanism of Photocatalytic Reduction for CO ₂	270
	10.3	Carbon Dioxide Reduction	271
	10.4	AgBr Nanocomposites	274
		10.4.1 Preparation of Catalyst	275
		10.4.2 Characterization of Carbon-Based AgBr	
		Photocatalysts	275
		10.4.3 Photocatalytic Reduction Activity of Carbon-Based	
		AgBr Nanocomposites	276
		10.4.4 Stability of Carbon-Based AgBr Nanocomposites	
		and Electron Transfer Mechanism	279
	10.5	Conclusions	283
		Acknowledgments	283
		References	284
11.	Use o	of Carbon Dioxide in Enhanced Oil Recovery and Carbon	
		ure and Sequestration	287
	_	u Uemura, Sĥohji Tsushima, and Shuichiro Hirai	
	11.1	Introduction	287
	11.2	Enhanced Oil Recovery	288
		11.2.1 Oil Production Stages	288
		11.2.2 Physicochemical Mechanism of CO ₂ EOR	290
		11.2.3 Phase Equilibrium of CO ₂ and Oil Binary Mixture	291
		11.2.4 Minimum Miscibility Pressure	292
		11.2.5 Implementation of EOR	293

	11.3	Carbon Capture and Sequestration	294
		11.3.1 Background and Basis of CCS	294
		11.3.2 CCS with Micronized CO ₂	295
		11.3.3 Experimental CO ₂ Micronization	295
		11.3.4 Experimental Results	296
		11.3.5 Droplet Diameter Distribution in the CO ₂ Emulsion	297
	11.4	Future Tasks	298
	11.5	Summary	298
		References	298
Inc	dex		301