## Contents

|                                             |                |                 | xiii<br>xvii                                        |   |  |
|---------------------------------------------|----------------|-----------------|-----------------------------------------------------|---|--|
| 1                                           | 1 Introduction |                 | ı                                                   | 1 |  |
|                                             | 1.1<br>1.2     | Backgr<br>About | ound 1<br>This Monograph 3                          |   |  |
| 2 Formulation of classical meshless methods |                |                 | of classical meshless methods                       | 5 |  |
|                                             | 2.1            | Introdi         | iction 5                                            |   |  |
|                                             | 2.2            | Fundar          | amentals of Meshless Methods 6                      |   |  |
|                                             |                |                 | on Steps of Meshless Method 7                       |   |  |
|                                             |                | 2.3.1           | Geometry creation 8                                 |   |  |
|                                             |                | 2.3.2           | Approximation of field variable 8                   |   |  |
|                                             |                | 2.3.3           | Discretisation of governing differential equation 9 |   |  |
|                                             |                | 2.3.4           | Assembly of system of equations 9                   |   |  |
|                                             |                | 2.3.5           | Solving assembled system of equations 10            |   |  |
|                                             | 2.4            | Classic         | al Meshless Methods 10                              |   |  |
|                                             |                | 2.4.1           | Smooth particle hydrodynamics 11                    |   |  |
|                                             |                | 2.4.2           | Diffuse element method 13                           |   |  |
|                                             |                | 2.4.3           | Element-free Galerkin method 16                     |   |  |
|                                             |                | 2.4.4           | Natural element method 18                           |   |  |
|                                             |                | 2.4.5           | Reproducing kernel particle method 20               |   |  |
|                                             |                | 2.4.6           | Partition of unity finite element method 25         |   |  |
|                                             |                | 2.4.7           | Finite point method 27                              |   |  |
|                                             |                | 2.4.8           | Meshless local Petrov-Galerkin method 30            |   |  |
|                                             |                | 2.4.9           | Local boundary integral equation method 35          |   |  |
|                                             |                | 2.4.10          | Point interpolation method 38                       |   |  |
|                                             |                | 2.4.11          | Gradient smoothing method 40                        |   |  |

|   |                 | 2.4.12   | Radial point interpolation-based finite difference method 42 |     |
|---|-----------------|----------|--------------------------------------------------------------|-----|
|   |                 | 2 4 13   | Generalized meshfree (GMF) approximation 47                  |     |
|   |                 | 2.4.14   |                                                              | 49  |
|   | 2.5             | Summa    |                                                              | 77  |
| 3 | Rece            | ent deve | lopments of meshless methods                                 | 53  |
|   | 3.1             | Introdi  | action 53                                                    |     |
|   | 3.2             | Hermit   | te-Cloud Method 53                                           |     |
|   |                 | 3.2.1    | Formulation of Hermite-cloud method 54                       |     |
|   |                 | 3.2.2    | Numerical implementation 60                                  |     |
|   |                 | 3.2.3    | Examples for validation 62                                   |     |
|   |                 | 3.2.4    | Remarks 72                                                   |     |
|   | 3.3             | Point V  | Weighted Least-Squares Method 73                             |     |
|   |                 | 3.3.1    | Formulation of PWLS method 73                                |     |
|   |                 | 3.3.2    | Numerical implementation of PWLS method 80                   |     |
|   |                 | 3.3.3    | Examples for validation 83                                   |     |
|   |                 | 3.3.4    | Remarks 92                                                   |     |
|   | 3.4             | Local I  | Kriging (LoKriging) Method 93                                |     |
|   |                 | 3.4.1    | Formulation of Kriging interpolation 94                      |     |
|   |                 | 3.4.2    | Numerical implementation of LoKriging method                 | 99  |
|   |                 | 3.4.3    | Examples for validation 103                                  |     |
|   |                 | 3.4.4    | Remarks 114                                                  |     |
|   | 3.5             | Variati  | on of Local Point Interpolation Method (vLPIM)               | 115 |
|   |                 | 3.5.1    | Meshless point interpolation 115                             |     |
|   |                 | 3.5.2    | Numerical implementation of vLPIM 117                        |     |
|   |                 | 3.5.3    | Examples for validation 122                                  |     |
|   |                 | 3.5.4    | Remarks 125                                                  |     |
|   | 3.6             | Rando    | m Differential Quadrature (RDQ) Method 125                   |     |
|   |                 | 3.6.1    | Formulation of fixed reproducing                             |     |
|   |                 |          | kernel particle method 128                                   |     |
|   |                 | 3.6.2    | Formulation of differential quadrature method 1              | 32  |
|   |                 | 3.6.3    | Development of RDQ method 134                                |     |
|   |                 | 3.6.4    | Remarks 143                                                  |     |
|   | 3.7 Summary 143 |          |                                                              |     |
| 4 | Con             | vergence | e and consistency analyses                                   | 145 |
|   | 4.1             | Introdi  | uction to Convergence Analysis 145                           |     |
|   | 4.2             | Develo   | pment of Superconvergence Condition 146                      |     |

|   | 4.3                | Convergence Analysis 148                               |                                                       |   |
|---|--------------------|--------------------------------------------------------|-------------------------------------------------------|---|
|   |                    | 4.3.1                                                  | Computation of convergence rate for                   |   |
|   |                    |                                                        | distribution of random field nodes 150                |   |
|   |                    | 4.3.2                                                  | Remarks about effects of random                       |   |
|   |                    |                                                        | nodes on convergence rate 150                         |   |
|   |                    | 4.3.3                                                  | One-dimensional test problems 152                     |   |
|   |                    | 4.3.4                                                  | Two-dimensional test problems 156                     |   |
|   |                    | 4.3.5                                                  | Elasticity problems 162                               |   |
|   | 4.4                | Applica                                                | ation of RDQ Method for Solving                       |   |
|   |                    |                                                        | Fixed and Cantilever Microswitches                    |   |
|   |                    | under 1                                                | Nonlinear Electrostatic Loading 173                   |   |
|   | 4.5                | Introduction to Consistency Analysis of RDQ Method 180 |                                                       |   |
|   | 4.6                | Consistency Analysis of Locally Applied DQ Method 181  |                                                       |   |
|   |                    | 4.6.1                                                  | Consistency analysis of one-dimensional wave          |   |
|   |                    |                                                        | equation by uniform distribution of virtual nodes 18. | 2 |
|   |                    | 4.6.2                                                  | Consistency analysis of one-dimensional wave          |   |
|   |                    |                                                        | equation by cosine distribution of virtual nodes 189  |   |
|   |                    | 4.6.3                                                  | Consistency analysis of one-dimensional Laplace       |   |
|   |                    |                                                        | equation by uniform distribution of virtual nodes 19. | 2 |
|   | 4.7                | Effect of                                              | of Uniform and Cosine Distributions of                |   |
|   |                    |                                                        | Nodes on Convergence of RDQ Method 195                |   |
|   |                    | 4.7.1                                                  | One-dimensional test problems 195                     |   |
|   |                    | 4.7.2                                                  | Two-dimensional test problems 203                     |   |
|   |                    | 4.7.3                                                  |                                                       |   |
|   | 4.8                | Summa                                                  | ry 209                                                |   |
|   |                    |                                                        |                                                       |   |
| 5 | Stability analyses |                                                        | 13                                                    |   |
|   | 5.1                | 5.1 Introduction 213                                   |                                                       |   |
|   |                    |                                                        | y Analysis of First-Order Wave                        |   |
|   |                    | Equation by RDQ Method 217                             |                                                       |   |
|   |                    | 5.2.1                                                  | Stability analysis of first-order wave equation by    |   |
|   |                    |                                                        | different schemes for discretisation of domains 217   |   |
|   |                    | 5.2.2                                                  | Consistency analysis of stable schemes and            |   |
|   |                    |                                                        | verification by numerically implementing              |   |
|   |                    |                                                        | first-order wave equation by locally                  |   |
|   |                    |                                                        | applied DQ method 226                                 |   |
|   |                    | 5.2.3                                                  | Implementation of RDQ method for                      |   |
|   |                    |                                                        | first-order wave equation by forward                  |   |
|   |                    |                                                        | time and central space scheme 230                     |   |
|   |                    |                                                        |                                                       |   |

|   |      | 5.2.4                                                     | Remarks on solution of first-order               |     |
|---|------|-----------------------------------------------------------|--------------------------------------------------|-----|
|   |      | 0 1 11                                                    | wave equation by RDQ method 232                  |     |
|   | 5.3  |                                                           | y Analysis of Transient Heat Conduction Equation | 235 |
|   |      |                                                           | Forward time and forward space scheme 235        |     |
|   |      | 5.3.2                                                     | ı                                                |     |
|   | 5.4  | Stability Analysis of Transverse Beam Deflection Equation |                                                  | 242 |
|   |      | 5.4.1                                                     | Explicit approach to solve the transverse beam   |     |
|   |      |                                                           | deflection equation by the RDQ method 242        |     |
|   |      | 5.4.2                                                     | Implicit approach to solving transverse beam     |     |
|   |      |                                                           | deflection equation by RDQ method 248            |     |
|   | 5.5  | Summa                                                     | ary 252                                          |     |
| 6 | Adap | otive an                                                  | alysis                                           | 255 |
|   | 6.1  | Introduction 255                                          |                                                  |     |
|   | 6.2  | Error I                                                   | Recovery Technique in ARDQ Method 259            |     |
|   | 6.3  |                                                           | ve RDQ Method 261                                |     |
|   |      | 6.3.1                                                     | Computation of error in ARDQ method 262          |     |
|   |      | 6.3.2                                                     | Adaptive refinement in ARDQ method 263           |     |
|   | 6.4  | . ,                                                       |                                                  |     |
|   |      |                                                           | One-dimensional test problems 268                |     |
|   |      | 6.4.2                                                     | Two-dimensional test problems 276                |     |
|   |      | 6.4.3                                                     |                                                  |     |
|   | 6.5  | Summa                                                     | ary 293                                          |     |
| 7 | Engi | neering                                                   | applications                                     | 295 |
|   | 7.1  | Introdi                                                   | roduction 295                                    |     |
|   | 7.2  | 7.2 Application of Meshless Methods to                    |                                                  |     |
|   |      | Microelectromechanical System Problems 295                |                                                  |     |
|   |      | 7.2.1                                                     | Fixed-fixed microswitches 297                    |     |
|   |      | 7.2.2                                                     | Cantilever microswitches 300                     |     |
|   |      |                                                           | Microoptoelectromechanical systems devices 304   |     |
|   |      |                                                           | Microtweezers 306                                |     |
|   | 7.3  | Application of Meshless Method in                         |                                                  |     |
|   |      | Submarine Engineering 309                                 |                                                  |     |
|   |      | 7.3.1                                                     |                                                  |     |
|   |      |                                                           | method 309                                       |     |
|   |      | 7.3.2                                                     | Numerical study of near-bed                      |     |
|   |      |                                                           | submarine pipeline under current 311             |     |
|   |      |                                                           |                                                  |     |

| 7.4 Application of RDQ Method for two-dimensional        |            |  |  |
|----------------------------------------------------------|------------|--|--|
| Simulation of pH-Sensitive Hydrogel 316                  |            |  |  |
| 7.4.1 Model development of two-                          |            |  |  |
| dimensional pH-sensitive hydrogel 320                    |            |  |  |
| 7.4.2 Two-dimensional simulation of                      |            |  |  |
| pH-sensitive hydrogels by RDQ method 33                  | 7          |  |  |
| 7.4.3 Effects of solution pH and initial fixed-          |            |  |  |
| charge concentration on swelling                         |            |  |  |
| of two-dimensional hydrogel 344                          |            |  |  |
| 7.4.4 Effects of Young's modulus and geometrical         |            |  |  |
| shape of hydrogel at dry state on swelling 34            |            |  |  |
| 7.5 Summary 363                                          |            |  |  |
| Appendix A: Derivation of characteristic polynomial      | o(z) = 367 |  |  |
| Appendix B: Definition of reduced polynomial $\phi_i(z)$ | 369        |  |  |
| Appendix C: Derivation of discretisation equation by     |            |  |  |
| Taylor series                                            | 371        |  |  |
| Appendix D: Derivation of ratio of successive amplitu-   | de         |  |  |
| reduction values for fixed-fixed beam us                 |            |  |  |
| explicit and implicit approaches                         | 373        |  |  |
| Appendix E: Source code development                      | 377        |  |  |
| References                                               |            |  |  |
| Index                                                    | 395<br>409 |  |  |