CONTENTS

Prefac	ce		xi
Ackno	owlea	gments	xiii
_			_
1.	Intro	duction to Power Quality	1
	1.1	Definition of power quality	4
	1.2	Causes of disturbances in power systems	4
	1.3	Classification of power quality issues	7
	1.4	Formulations and measures used for power quality	20
	1.5	Effects of poor power quality on power system devices	57
	1.6	Standards and guidelines referring to power quality	57
	1.7	Harmonic modeling philosophies	65
	1.8	Power quality improvement techniques	67
	1.9	Summary	89
	1.10	Problems	90
	Refer	ences	101
	Addit	ional bibliography	104
2.	Harr	nonic Models of Transformers	105
	2.1	Sinusoidal (linear) modeling of transformers	108
	2.2	Harmonic losses in transformers	109
	2.3	Derating of single-phase transformers	118
	2.4	Nonlinear harmonic models of transformers	128
	2.5	Ferroresonance of power transformers	145
	2.6	Effects of solar-geomagnetic disturbances on power systems and transformers	161
	2.7	Grounding	165
	2.8	Measurement of derating of three-phase transformers	179
	2.9	Summary	194
	2.10	Problems	195
	Refer	ences	201
	Addi	tional bibliography	205
3.	Mod	leling and Analysis of Induction Machines	207
	3.1	Complete sinusoidal equivalent circuit of a three-phase induction machine	211
	3.2	Magnetic fields of three-phase machines for the calculation of inductive	
	<u>-</u>	machine parameters	219

	3.3	Steady-state stability of a three-phase induction machine	225
	3.4	Spatial (space) harmonics of a three-phase induction machine	229
	3.5	Time harmonics of a three-phase induction machine	233
	3.6	Fundamental and harmonic torques of an induction machine	236
	3.7	Measurement results for three- and single-phase induction machines	242
	3.8	Inter- and subharmonic torques of three-phase induction machines	260
	3.9	Interaction of space and time harmonics of three-phase induction machines	268
	3.10	Conclusions concerning induction machine harmonics	272
	3.11	Voltage-stress winding failures of ac motors fed by variable-frequency,	
		voltage- and current-source pwm inverters	272
	3.12	Nonlinear harmonic models of three-phase induction machines	293
	3.13	Static and dynamic rotor eccentricity of three-phase induction machines	297
	3.14	Operation of three-phase machines within a single-phase power system	297
	3.15	Classification of three-phase induction machines	298
	3.16	Summary	300
	3.17	Problems	300
	Refer	ences	308
	Addit	cional bibliography	312
4.	Mod	leling and Analysis of Synchronous Machines	313
	4.1	Sinusoidal state-space modeling of a synchronous machine in the time	
		domain	317
	4.2	Steady-state, transient, and subtransient operation	322
	4.3	Harmonic modeling of a synchronous machine	384
	4.4	Summary	411
	4.5	Problems	411
	Refer	ences	424
	Addi	tional bibliography	427
5.	Inte	raction of Harmonics with Capacitors	429
_,	5.1	Application of capacitors to power-factor correction	431
	5.2	Application of capacitors to power factor confection Application of capacitors to reactive power compensation	443
	5.3	Application of capacitors to harmonic filtering	444
	5.4	Power quality problems associated with capacitors	448
	5.5	Frequency and capacitance scanning	470
	5.6	Harmonic constraints for capacitors	473
	5.7	Equivalent circuits of capacitors	478
	5.8	Summary	482
	5.9	Problems	483
		ences	487

Contents	vii
COMMENTS	* * * * * * * * * * * * * * * * * * * *

6.	Lifet	ime Reduction of Transformers and Induction Machines	489
	6.1	Rationale for relying on the worst-case conditions	492
	6.2	Elevated temperature rise due to voltage harmonics	492
	6.3	Weighted-harmonic factors	493
	6.4	Exponents of weighted-harmonic factors	508
	6.5	Additional losses or temperature rises versus weighted-harmonic factors	510
	6.6	Arrhenius plots	512
	6.7	Reaction rate equation	512
	6.8	Decrease of lifetime due to an additional temperature rise	514
	6.9	Reduction of lifetime of components with activation energy $E=1.1$ eV due to	
		harmonics of the terminal voltage within residential or commercial utility systems	515
	6.10	Possible limits for harmonic voltages	517
	6.11	Probabilistic and time-varying nature of harmonics	524
	6.12	The cost of harmonics	525
	6.13	Temperature as a function of time	525
	6.14	Various operating modes of rotating machines	528
	6.15	Summary	561
	6.16	Problems	562
	Refer	ences	569
7.	Pow	er System Modeling under Nonsinusoidal Operating Conditions	573
	7.1	Overview of a modern power system	575
	7.2	Power system matrices	578
	7.3	Fundamental power flow	594
	7.4	Newton-based harmonic power flow	623
	7.5	Classification of harmonic power flow techniques	659
	7.6	Summary	671
	7.7	Problems	671
	Refer	ences	679
8.	lmp	act of Poor Power Quality on Reliability, Relaying and Security	681
	8.1	Reliability indices	684
	8.2	Degradation of reliability and security due to poor power quality	687
	8.3	Tools for detecting poor power quality	720
	8.4	Tools for improving reliability and security	739
	8.5	Load shedding and load management	755
	8.6	Energy-storage methods	755
	8.7	Matching the operation of intermittent renewable power plants with energy storage	756
	8.8	Summary	757
	8.9	Problems	758
	Refe	rences	771
Additional bibliography			778

9.	The	Roles of Filters in Power Systems and Unified Power	
	Qual	ity Conditioners	779
	9.1	Types of nonlinear loads	782
	9.2	Classification of filters employed in power systems	785
	9.3	Passive filters as used in power systems	786
	9.4	Active filters	810
	9.5	Hybrid power filters	813
	9.6	Block diagram of active filters	818
	9.7	Control of filters	820
	9.8	Compensation devices at fundamental and harmonic frequencies	842
	9.9	Unified power quality conditioner (UPQC)	848
	9.10	The UPQC control system	854
	9.11	UPQC control using the park (DQO) transformation	855
	9.12	UPQC control based on the instantaneous real and imaginary power theory	859
	9.13	Performance of the UPQC	872
	9.14	Summary	882
	Refer	ences	885
		A District of the section of the Developing Abo	
10.	-	mal Placement and Sizing of Shunt Capacitor Banks in the ence of Harmonics	887
			890
	10.1 10.2	Reactive power compensation Common types of distribution shunt capacitor banks	893
	10.2	Classification of capacitor allocation techniques for sinusoidal operating conditions	897
	10.3	Optimal placement and sizing of shunt capacitor banks in the presence	091
	10.4	of harmonics	921
	10.5		957
		Summary ences	957
	Kelei	ences	937
11.	Pow	er Quality Solutions for Renewable Energy Systems	961
	11.1	Energy conservation and efficiency	964
	11.2	Photovoltaic and thermal solar (power) systems	975
	11.3	Horizontal – and vertical-axes wind power (WP) plants	990
	11.4	Complementary control of renewable plants with energy storage plants	1024
	11.5	AC transmission lines versus DC lines	1055
	11.6	Fast-charging stations for electric cars	1055
	11.7	Off-shore renewable plants	1056
	11.8	Metering	1056
	11.9	Other renewable energy plants	1057
	11.10	Production of automotive fuel from wind, water, and CO_2	1058
	11.1	1 Water efficiency	1058

		Contents	ix
11.12	Village with 2,600 inhabitants achieves energy independence	1058	
11.13	Summary	1060	
11.14	Problems	1060	
Refere	nces	1078	
Appendix 1		1085	
Appendix 2		1091	
Appendix 3		1101	
Appendix 4		1103	
Index		1105	