Contents

Preface XI
Abbreviations XIII

Introduction 1
Printed Circuits 3
Technology Presentation 3
Inner-Layer Processing 4
Materials Preparation 4
Lamination 5
Drilling 5
Making the Hole Conductive 6
Imaging 7
Electroplating 8
Copper Etching 9
Solder Masking 9
Surface Finishing 10
Routing 10
Testing and Inspection 10
Assembling 11
Problem Solving for Reliability and Quality 15
Conventional Paradigms 15
Complexity and Time Frames 18
Quasilinearity, Circularity, and Closure 21
Advance of Reliability Paradigms 23
Evolvable Designs of Experiments (EDOE) 27
Polystochastic Models 29
What Is PSM? 29
Basic Notions for Categorical Frame 32
Illustrative Examples of PSM and Categorical Frames 34

Evolvable Designs of Experiments: Applications for Circuits. Octavian Iordache Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32424-8

Contents	
3.3.1	Lumped Stochastic Chains 34
3.3.2	Conditional Stochastic Chains 35
4	First-Order Wave Equation 37
4.1	Algebraic Frames for Time "T" and Space "Z" 37
4.2	The First-Order Wave Equation 41
4.3	"Kinetic" Model: Walsh–Hadamard Matrices 42
4.4	"Convection" Model: Latin Squares 44
4.4.1	GF(3) Solution 45
4.4.2	GF(4) Solution 47
4.5	Spectral Analysis: Correlation 49
5	Informational Analysis: EDOE Matrices 51
5.1	Walsh–Hadamard Matrices and Latin Square Designs 51
5.2	Classification Procedures: Informational Criteria 52
5.3	Informational Entropy and Distances 53
5.4	Adaptability in Classification 54
5.5	Informational Results 55
5.5.1	Proposition 1 55
5.5.2	Proposition 2 56
5.5.3	Proposition 3 56
5.6	Relation with Thermodynamics 58
5.7	Ranking, Discarding, and Replication of the Columns 59
5.8	Lumping and Splitting Columns 60
5.9	Juxtaposing and Cutting 61
5.10	Tables of DOE Matrices 62
6	EDOE Methodology 65
6.1	Scientific and Engineering Methods 65
6.2	Center Design and Hierarchy 66
6.3	Recursivity and Focusing 66
6.4	Problem-Solving Framework for PCB Quality 67
6.5	Forward and Backward Search 69
6.6	Interactions: Dissociation–Integration 71
6.7	EDOE Basic Steps 73
6.7.1	Problem Statement 73
6.7.2	Propose the Preliminary Problem-Solving Framework 73
6.7.3	Select the DOE Matrices 73
6.7.4	Run Center Design 74
6.7.5	Analyze Results 74
6.7.6	Run Multiple Forward and Backward Steps 74
6.7.7	Perform Dissociation–Integration Experiments 74
6.7.8	Establish the New Center Design 75
6.7.9	Repeat the Testing Procedure from the New Center Design 75
6.7.10	Run Simulations: Analyze the Solutions of the Problem 75

6.8	EDOE Frame and SKUP Schema 75
6.9	Comparison of EDOE with other Methods 81
Part Three	Case Studies 85
7	Solder Wicking 87
7.1	Illustrative Failure Analysis 87
7.2	Illustrative EDOE Frame 91
7.3	SKUP Schema for Solder Wicking 92
8	Reliability Analysis 95
8.1	EDOE for Reliability 95
8.2	SKUP Schema for Reliability 99
8.3	Reliability Management System: Main Elements 100
8.4	Reliability Prediction Software 101
8.5	Minicoupons 103
8.6	Reliability Analysis 104
8.7	IST Electrical Resistance Analysis 105
	·
9	Drilling 111
9.1	Drilling Quality Framework 111
9.2	Test Coupons 111
9.3	Testing Small Plated Through Holes: SKUP Schema for
	Drilling 113
9.4	Reliability Tests 116
9.5	Lifetime Maps 117
9.6	Drilling Quality Evaluations 119
9.7	Testing the Design, D 121
9.8	Testing for Processing, P 122
9.9	Reliability Evaluations 123
10	Surface Finish Solderability 125
10.1	Finish Solderability Frame 125
10.2	SKUP Schema for Surface Finish 128
11	Direct Plate 131
11.1	Direct Plate Reliability 131
11.2	Microsectioning Results 132
11.3	Electrical Resistance versus the Number of Cycles
	Classification Method 132
11.4	Associated Vectors–Grids 135
11.5	First Step of Classification 136
11.6	Second Step of Classification 137
11.7	IST Lifetime and Electroplated Cu Thickness 138
11.8	Summary 138
11.9	SKUP Schema for Direct Plate 139

VIII	Contents

12	Plating Voids 141
12.1	Plating Voids Type 141
12.2	The SKUP Schema for Plating Voids 145
D4 F	Finduck!like 140
	Evolvability 149 Self-Adaptive Circuits 151
13	•
13.1	Evolvability Levels 151
13.2	Self-Adaptivity 152 Self-Adaptive Designs and Constructions 153
13.3	Self-Adaptive Designs and Constructions 152 Self-Adaptive Materials 153
13.4	*
13.5	Self-Adaptive Processing 155
13.6	Self-Adaptability to Testing and Field Conditions 156
14	Proactive Circuits 159
14.1	Proactiveness for Circuits 159
14.2	Evolutionary Hardware 160
14.3	Electrochemical Filament Circuits 161
14.3.1	ECFC Design 162
14.3.2	Materials for ECFC 163
14.3.3	ECFC Processing 163
14.3.4	Potential ECFC Products and Applications 164
	- 1 11 et 1 400
15	Evolvable Circuits 165
15.1	Evolvability Challenges 165
15.2	Molecular Electronics 166
15.3	Bacteriorhodopsin for Optoelectronic Circuitry 167
15.4	Embedded Symbolic-Connectionists Hybrids 168
15.5	Temporal Synchrony for Embedded Symbolic-Connectionist Hybrids 170
15.6	Embedded EDOE 172
15.7	Hybrid Controlled Microfluidic Circuits 173
15.8	Reconfigurable Microfluidic Circuits 174
15.9	Self-Constructed Molecular Circuits and Computing 175
15.10	Genetic Code-Like Mechanism for Molecular Circuitry 177
15.11	Conventional Circuits versus Evolvable Circuits 182
16	Evolvable Manufacturing Systems 185
16.1	Manufacturing Paradigms 185
16.2	Fractal Manufacturing System 187
16.3	Holonic Manufacturing System 187
16.4	Biologic Manufacturing System 189
16.5	Virtual Manufacturing System 190
16.6	SKUP Schema for Virtual Manufacturing Systems 190
16.7	Multiagent Manufacturing Systems: Architecture 192
16.8	Multiagent-Based Versus Conventional Manufacturing Systems 195

Cybernetics and the Cycle of Sciences 203

Index 211

References

205