Contents

	Pref	îace	<i>page</i> xi
1	A to	our of matroids	1
	1.1	Motivation	1
	1.2	Introduction to matroids	3
	1.3	Geometries	11
	1.4	Graphs and matroids	17
	1.5	Bipartite graphs and transversal matroids	26
	Exe	rcises	29
2	Cry	ptomorphisms	39
	2.1	From independent sets to bases and back again	40
	2.2	Circuits and independent sets	49
	2.3	Rank, flats, hyperplanes and closure	51
	2.4	Lattice of flats	61
	2.5	Tying it together with the rank function	67
	2.6	Cryptomorphisms between flats, hyperplanes and	
		closure	73
	2.7	Application to optimization: the greedy algorithm	81
	Exe	rcises	87
3	Nev	v matroids from old	100
	3.1	Matroid deletion and contraction	100
	3.2	Deletion and contraction in graphs and representab	le
		matroids	108
	3.3	Duality in matroids	112
	3.4	Duality in graphic and representable matroids	120
	3.5	Direct sums and connectivity	128
	Exe	rcises	139
4	Graphic matroids		152
	4.1	Graphs are matroids	153
	4.2	Graph versions of matroid theorems	158
	4.3	Duality and cocircuits in graphs	164

	4.4 Connectivity and 2-isomorphism Exercises	168 173
5	 Finite geometry 5.1 Affine geometry and affine dependence 5.2 Affine dependence 5.3 The projective plane PG(2, q) 5.4 Projective geometry 5.5 Counting k-flats and q-binomial coefficients 5.6 Abstract projective planes Exercises 	180 181 188 194 203 207 212 214
6	Representable matroids 6.1 Matrices are matroids 6.2 Representing representable matroids 6.3 How representations depend on the field 6.4 Non-representable matroids 6.5 Representations and geometry Exercises	221 221 231 240 244 249 253
7	 Other matroids 7.1 Transversal matroids 7.2 Transversal matroids, matching theory and geometry 7.3 Hyperplane arrangements and matroids 7.4 Cutting cheese; counting regions via deletion and contraction Exercises 	261 264 273 281 287
8	 Matroid minors 8.1 Examples, excluded minors and the Scum Theorem 8.2 Binary matroids 8.3 Summary of excluded minor results Exercises 	296 301 310 316
9	 The Tutte polynomial 9.1 Motivation and history 9.2 Definition and basic examples 9.3 Corank–nullity polynomial 9.4 Duality and direct sum 9.5 Tutte–Grothendieck invariants 9.6 The chromatic polynomial Exercises 	323 324 327 333 336 340 349
	Projects P.1 The number of matroids P.2 Matrix-Tree Theorem P.3 Relaxing a hyperplane	355 355 357 360

Contents ix

P.4	Bases and probability in affine and	
	projective space	363
P.5	Representing affine space – the characteristic	
	set of $AG(n,q)$	367
P.6	The card game SET ^(g) and affine geometry	371
P.7	More matroid constructions – truncation	377
Appendix	Matroid axiom systems	381
1 1	Matroid axiom systems Axiom lists	381 381
A.1	-	
A.1 A.2	Axiom lists	381