CONTENTS

Chapter 1	Introduction to Materials Science and Engineering 3
1-1	What is Materials Science and Engineering? 4
1-2	Classification of Materials 7
1-3	Functional Classification of Materials 10
1-4	Classification of Materials Based on Structure 12
1-5	Environmental and Other Effects 12
1-6	Materials Design and Selection 14
	Summary 15 Glossary 16 Problems 17

Chapter 2 Atomic Structure 21 The Structure of Materials: Technological Relevance 22 2-1 2-2 The Structure of the Atom 25 2-3 The Electronic Structure of the Atom 26 2-4 The Periodic Table 29 2-5 Atomic Bonding 31 Binding Energy and Interatomic Spacing 37 2-6 2-7 The Many Forms of Carbon: Relationships Between Arrangements of Atoms and Materials Properties 40 Summary 44 | Glossary 45 | Problems 47

onapier o	Acomic and fortic Arrangements 51	
3-1	Short-Range Order versus Long-Range Order 52	
3-2	Amorphous Materials 54	
3-3	Lattice, Basis, Unit Cells, and Crystal Structures 54	
3-4	Allotropic or Polymorphic Transformations 66	
3-5	Points, Directions, and Planes in the Unit Cell 67	
3-6 vale	Interstitial Sites 76	
205 3-7 Justy	Crystal Structures of Ionic Materials 78	
dell le 3-8 bel	Covalent Structures 84	
3-9 digre	Diffraction Techniques for Crystal Structure Analysis	87
	Summary 91 Glossary 92 Problems	94

Contents

Chapter 4 Imperfections in the Atomic and Ionic Arrangements 103 Point Defects 104 4-1 4-2 Other Point Defects 109 4-3 Dislocations 111 4-4 Significance of Dislocations 117 Schmid's Law 118 4-5 Influence of Crystal Structure 120 4-6 Surface Defects 122 4-7 Importance of Defects 128 4-8 Summary 131 | Glossary 131 | Problems 133

Chapter 5	Atom and Ion Movements in Materials 141
5-1	Applications of Diffusion 142
5-2	Stability of Atoms and Ions 145
5-3	Mechanisms for Diffusion 147
5-4	Activation Energy for Diffusion 148
walan 5-5 polon	Rate of Diffusion [Fick's First Law] 149
5-6	Factors Affecting Diffusion 153
5-7 mon	Permeability of Polymers 159
5-8	Composition Profile [Fick's Second Law] 160
5-9	Diffusion and Materials Processing 165
	Summary 169 Glossary 170 Problems 172

Chapter 6	Mechanical Properties: Part Une 181
6-1	Technological Significance 182
6-2	Terminology for Mechanical Properties 183
6-3	The Tensile Test: Use of the Stress Strain Diagram 185
6-4	Properties Obtained from the Tensile Test 190
6-5	True Stress and True Strain 197
6-6	The Bend Test for Brittle Materials 199
6-7	Hardness of Materials 202
6-8	Nanoindentation 203
6-9	Strain Rate Effects and Impact Behavior 207
6-10	Properties Obtained from the Impact Test 208
6-11	Bulk Metallic Glasses and Their Mechanical Behavior 210
6-12	Mechanical Behavior at Small Length Scales 213
6-13	Rheology of Liquids 215
	Summary 217 Glossary 218 Problems 220

Contents

Chapter 7 Mechanical Properties: Part Two 229 7-1 Fracture Mechanics 230 7-2 The Importance of Fracture Mechanics 233 7-3 Microstructural Features of Fracture in Metallic Materials 236 Microstructural Features of Fracture in Ceramics, Glasses, 7-4 and Composites 239 7-5 Weibull Statistics for Failure Strength Analysis 241 7-6 Fatigue 245 Results of the Fatigue Test 247 7-7 Application of Fatigue Testing 249 7-8 Creep, Stress Rupture, and Stress Corrosion 252 7-9 7-10 Evaluation of Creep Behavior 254 Use of Creep Data 256 7-11 Summary 257 | Glossary 258 | Problems 259

Chapter 8 Strain Hardening and Annealing 269 8-1 Relationship of Cold Working to the Stress Strain Curve 270 8-2 Strain-Hardening Mechanisms 274 Properties versus Percent Cold Work 8-3 8-4 Microstructure, Texture Strengthening, and Residual Stresses 278 Characteristics of Cold Working 282 8-5 8-6 The Three Stages of Annealing 285 Control of Annealing 287 8-7 8-8 Annealing and Materials Processing 289 Hot Working 291 8-9 Summary 292 | Glossary 293 | Problems 295

305

Chapter 9

9-1 Technological Significance 9-2 Nucleation 307 Applications of Controlled Nucleation 311 9-3 Growth Mechanisms 312 9-4 Solidification Time and Dendrite Size 314 9-5 9-6 Cooling Curves 318 Cast Structure 319 9-7 Solidification Defects 321 9-8 Casting Processes for Manufacturing Components 325 9-9 Continuous Casting and Ingot Casting 327 9-10

Principles of Solidification

9-11	Directional Solidification [DS], Single Crystal Growth,
	and Epitaxial Growth 331
9-12	Solidification of Polymers and Inorganic Glasses 332
9-13	Joining of Metallic Materials 333
	Summary 335 Glossary 336 Problems 338

Chapter 10 Solid Solutions and Phase Equilibrium 349

10-1	Phases and the Phase Diagram 350
10-2	Solubility and Solid Solutions 353
10-3	Conditions for Unlimited Solid Solubility 356
10-4	Solid-Solution Strengthening 357
10-5	Isomorphous Phase Diagrams 359
10-6	Relationship Between Properties and the Phase Diagram 367
10-7	Solidification of a Solid-Solution Alloy 368
10-8	Nonequilibrium Solidification and Segregation 370
	Summary 373 Glossary 374 Problems 376

Chapter 11 Dispersion Strengthening and Eutectic Phase Diagrams 385

11-1	Principles and Examples of Dispersion Strengthening 386
11-2	Intermetallic Compounds 387
11-3	Phase Diagrams Containing Three-Phase Reactions 389
11-4	The Eutectic Phase Diagram 391
11-5	Strength of Eutectic Alloys 401
11-6	Eutectics and Materials Processing 406
11-7	Nonequilibrium Freezing in the Eutectic System 407
11-8	Nanowires and the Eutectic Phase Diagram 408
	Summary 410 Glossary 411 Problems 412

Chapter 12 Dispersion Strengthening by Phase Transformations and Heat Treatment 421

12-1	Nucleation and Growth in Solid-State Reactions 422
12-2	Alloys Strengthened by Exceeding the Solubility Limit 426
12-3	Age or Precipitation Hardening and Its Applications 428
12-4	Microstructural Evolution in Age or Precipitation
	Hardening 429
12-5	Effects of Aging Temperature and Time 432
12-6	Requirements for Age Hardening 433
12-7	Use of Age-Hardenable Alloys at High Temperatures 433
12-8	The Eutectoid Reaction 434
12-9	Controlling the Eutectoid Reaction 438
12-10	The Martensitic Reaction and Tempering 443

12-11 The Shape-Memory Alloys [SMAs] 447

Summary 448 | Glossary 449 | Problems 450

Chapter 13 Heat Treatment of Steels and Cast Irons 461 13-1 Designations and Classification of Steels 462 13-2 Simple Heat Treatments 465 13-3 Isothermal Heat Treatments 468 13-4 Quench and Temper Heat Treatments 471 13-5 Effect of Alloying Elements 475 Application of Hardenability 477 13-6 13-7 Specialty Steels 480 13-8 Surface Treatments 482 13-9 Weldability of Steel 484 13-10 Stainless Steels 485 Cast Irons 488 13-11 Summary 493 | Glossary 494 | Problems 496

Chapter 14 Nonferrous Alloys 503 14-1 Aluminum Alloys 504 14-2 Magnesium and Beryllium Alloys 510 14-3 Copper Alloys 511 14-4 Nickel and Cobalt Alloys 515 14-5 Titanium Alloys 518 14-6 Refractory and Precious Metals 524 Summary 525 | Glossary 525 | Problems 526

Chapter 15 Ceramics 531

15-1	Bonding in Ceramics 533
15-2	Structures of Crystalline Ceramics 535
15-3	Defects in Crystalline Ceramics 538
15-4	Flaws in Ceramics 541
15-5	Synthesis and Processing of Crystalline Ceramics 544
15-6	Silica and Silicate Compounds 549
15-7	Inorganic Glasses 551
15-8	Glass-Ceramics 557
15-9	Processing and Applications of Clay Products 558
15-10	Refractories 560
15-11	Other Ceramic Materials 562
	Summary 564 Glossary 564 Problems 566

Chapter 16 Polymers 571

16-1	Classification of Polymers 572
16-2	Addition and Condensation Polymerization 575
16-3	Degree of Polymerization 579
16-4	Typical Thermoplastics 581
16-5	Structure—Property Relationships in Thermoplastics 583
16-6	Effect of Temperature on Thermoplastics 587
16-7	Mechanical Properties of Thermoplastics 593
16-8	Elastomers [Rubbers] 598
16-9	Thermosetting Polymers 602
16-10	Adhesives 604
16-11	Polymer Processing and Recycling 605
	Summary 610 Glossary 610 Problems 612

Chapter 17 Composites: Teamwork and Synergy in Materials 617

	Ni Widoci lais O 17
17-1	Dispersion-Strengthened Composites 619
17-2	Particulate Composites 621
17-3	Fiber-Reinforced Composites 625
17-4	Characteristics of Fiber-Reinforced Composites 629
17-5	Manufacturing Fibers and Composites 636
17-6	Fiber-Reinforced Systems and Applications 640
17-7	Laminar Composite Materials 646
17-8	Examples and Applications of Laminar Composites 647
17-9	Sandwich Structures 648
	Summary 650 Glossary 650 Problems 651

Chapter 18 Construction Materials 659

18-1	The Structure of Wood 660
18-2	Moisture Content and Density of Wood 662
18-3	Mechanical Properties of Wood 664
18-4	Expansion and Contraction of Wood 666
18-5	Plywood 666
18-6	Concrete Materials 667
18-7	Properties of Concrete 669
18-8	Reinforced and Prestressed Concrete 673
18-9	Asphalt 674
	Summary 674 Glossary 675 Problems 675

Contents

Chapter 19 Electronic Materials 679

19-1	Ohm's Law and Electrical Conductivity 681
19-2	Band Structure of Solids 685
19-3	Conductivity of Metals and Alloys 689
19-4	Semiconductors 692
19-5	Applications of Semiconductors 699
19-6	General Overview of Integrated Circuit Processing 702
19-7	Deposition of Thin Films 705
19-8	Conductivity in Other Materials 706
19-9	Insulators and Dielectric Properties 708
19-10	Polarization in Dielectrics 708
19-11	Electrostriction, Piezoelectricity, and Ferroelectricity 712
	Summary 715 Glossary 716 Problems 717

Chapter 20 Magnetic Materials 723

20-1	Classification of Magnetic Materials 724
20-2	Magnetic Dipoles and Magnetic Moments 724
20-3	Magnetization, Permeability, and the Magnetic Field 726
20-4	Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and Superparamagnetic Materials 729
20-5	Domain Structure and the Hysteresis Loop 731
20-6	The Curie Temperature 734
20-7	Applications of Magnetic Materials 735
20-8	Metallic and Ceramic Magnetic Materials 741
	Summary 746 Glossary 747 Problems 748

Chapter 21 Photonic Materials 753

21-1	The Electromagnetic Spectrum 754
21-2	Refraction, Reflection, Absorption, and Transmission 754
21-3	Selective Absorption, Transmission, or Reflection 766
21-4	Examples and Use of Emission Phenomena 766
21-5	Fiber-Optic Communications Systems 775
	Summary 775 Glossary 775 Problems 776

Chapter 22 Thermal Properties of Materials 781

22-1	Heat Capacity and Specific Heat	782
22.2	Thermal Expansion 784	

Thermal Conductivity 788
Thermal Shock 792
Summary 793 | Glossary 794 | Problems 794

Chapter 23 Corrosion and Wear 799

23-1	Chemical Corrosion 800
23-2	Electrochemical Corrosion 802
23-3	The Electrode Potential in Electrochemical Cells 805
23-4	The Corrosion Current and Polarization 809
23-5	Types of Electrochemical Corrosion 810
23-6	Protection Against Electrochemical Corrosion 815
23-7	Microbial Degradation and Biodegradable Polymers 820
23-8	Oxidation and Other Gas Reactions 821
23-9	Wear and Erosion 824
	Summary 826 Glossary 827 Problems 828

Appendix A: Selected Physical Properties of Metals 832

Appendix B: The Atomic and Ionic Radii of Selected Elements 835

Answers to Selected Problems 837

Index 848