Contents

Preface Preface to the SI Edition Acknowledgments			xi
			xvii
			xviii
l	Intr	oduction	1
	1,1	Joints	2
		1.1.1 <i>P</i> ₁ Joints	3
		The Pin Joint	3
		The Multiple Pin Joint	4
		The Sliding Joint	5
		The Circular Slider	6
		The Rolling Joint	6
		1.1.2 <i>P</i> ₂ Joints	8
		The Slipping Joint	8
	1.2	Skeleton Diagrams	9
		1.2.1 Examples of Skeleton Diagrams	10
	1.3	Mechanisms and Machines	26
	1.4	Gruebler's Criterion and Degrees of Freedom	28
	1.5	Mobility	33
	1.6	Grashof's Criterion	36
		1.6.1 Cranks and Rockers	36
		1.6.2 Grashof Four Bar Mechanisms	37
		1.6.3 Non-Grashof Four Bar Mechanisms	39
		1.6.4 Grashof's Criterion Applied to a Four Bar Kinematic	
		Chain with a Sliding Contact	41
	1.7	Problems	45
2	Kin	ematic Analysis Part I: Vector Loop Method	55
	2.1	Kinematic Analysis and the Vector Loop Method	55
	2.2	Hints for Choosing Vectors	61
		2.2.1 The Straight Sliding Joint	62
		2.2.2 The Circular Sliding Joint	63
		2.2.3 The Straight Pin in a Slot Joint	64
		2.2.4 The Pin in a Circular Slot Joint	65
		2.2.5 Externally Contacting Circular Bodies	65
		2.2.6 Internally Contacting Circular Bodies	66
		2.2.7 Circular Rodies Pinned at Their Centers	66

	2.2.8 Evaluating Vector Learns	67
2.3	2.2.8 Evaluating Vector Loops Closed-Form Solutions to the Position Equations	78
2.3		80
	2.4.1 Graphically Checking the Solution to the Position Problem	82
2.5	The Motion of Points of Interest	85
2.6	Problems	87
2.7	Programming Problems	96
	Programming Problem 1	96
	Programming Problem 2	97
	Programming Problem 3	98
2.8 2.9	Appendix I: Derivation of the Tangent of the Half Angle Formulas Appendix II: Matlab® Code Used in Example 2.10	99
	Demonstrating Newton's Method	100
3 Kin	ematic Analysis Part II: Rolling Contacts	103
3.1	Externally Contacting Rolling Bodies	104
3.2	Internally Contacting Rolling Bodies	105
3.3	One Body with a Flat Surface	106
3.4	Assembly Configuration	108
3.5	Geartrains	114
	3.5.1 Simple Geartrains	116
	3.5.2 A Two-Stage Simple Geartrain with Compound Gears	119
	A Manual Automotive Transmission	121
	3.5.3 Planetary Geartrains	125 129
	The Model T Semi-automatic Transmission A Two-Speed Automatic Automotive Transmission	131
	An Automotive Differential	134
	The Gear Ratio of a Differential	136
	Transaxles	136
	Comment	136
	3.5.4 Hybrid Geartrains	137
3.6	Problems	139
3.7	Appendix I: The Involute Tooth Profile	154
	3.7.1 Mechanics Review: Relative Velocity of Two Points on	
	the Same Rigid Body	154
	Geometric Interpretation for Planar Motion	155
	3.7.2 Meshing Theory	156
	The Involute Tooth Profile	160
	3.7.3 Pressure Angle	162
	3.7.4 Nomenclature	164
4 Kin	ematic Analysis Part III: Kinematic Coefficients	169
4.1	Time-Based Velocity and Acceleration Analysis of the	
	Four Bar Mechanism	169
4.2	Kinematic Coefficients	170
	4.2.1 Notation Used for the Kinematic Coefficients	171
	4.2.2 Units Associated with the Kinematic Coefficients	171

		4.2.3 Physical Meaning of the Kinematic Coefficients	172
		4.2.4 Use of Kinematic Coefficients in Velocity and	
		Acceleration Analysis	173
		4.2.5 Checking the Kinematic Coefficients	175
	4.3	Finding Dead Positions Using Kinematic Coefficients	176
	4.4	Finding Limit Positions Using Kinematic Coefficients	178
		4.4.1 Time Ratio	181
	4.5	Kinematic Coefficients of Points of Interest	182
	4.6	Kinematic Coefficients of Geartrains	184
	4.7	Problems	186
	4.8	Programming Problem	191
		Programming Problem 4	191
5	Mac	hine Dynamics Part I: The Inverse Dynamics Problem	192
	5.1	Review of Planar Kinetics	192
		5.1.1 Summing Moments about an Arbitrary Point	194
		5.1.2 Notation in Free Body Diagrams	196
		Simplifications in Moment Equations	201
		Effects of Gravity	208
	5.2	Three-Dimensional Aspects in the Force Analysis of Planar Machines	209
		5.2.1 Spatial Kinetics of a Rigid Body; The Newton–Euler Equations	210
		5.2.2 The Newton–Euler Equations Reduced for a Planar Motion	211
		5.2.3 Summing Moments about an Arbitrary Point for a	
		Partially Three-Dimensional Planar Rigid Body Motion	213
		Composite Bodies	214
		Comparison to Purely Planar Case	215
		5.2.4 Discussion of the Four Bar Linkage	215
		5.2.5 Equivalence of a Reaction Force and Moment to	210
		Two Reaction Forces	219
		5.2.6 Three-Dimensional Aspects of Planar Force Analysis	221
		in Section 5.2	221
		Determination of the Bearing Forces	224 227
	5.3	Static Force Analysis and Inertia Force Analysis	227
	5.4	Force Analysis of Rolling Contacts	234
	5.5	Problems Amendia I. Vinametia Analysis for Examples in Section 5.1	£3 4
	5.6	Appendix I: Kinematic Analysis for Examples in Section 5.1	256
	57	(Example 5.2) and Section 7.2 Appendix II: Computing the Accelerations of the Mass Centers	230
	5.7	of the Composite Shapes in Section 5.2.6	258
,	N.C.	•	259
0		chine Dynamics Part II: Joint Friction	
	6.1	Friction in a Pin Joint	259
		6.1.1 Computing the Direction Indicator D_{yx} for a Pin Joint	261 262
	60	Programming Friction in a Pin in a Slot Joint	263
	6.2	Friction in a Pin-in-a-Slot Joint 6.2.1. Computing the Direction Indicator D. for a Pin in a Slot Joint	265
		6.2.1 Computing the Direction Indicator D_{yx} for a Pin-in-a-Slot Joint	268
		Sign of the Direction Indicator for a Pin-in-a-Slot Joint	268
		Programming	200

10000	b
- SS-888	į
	ij
100	Š
- (S	9
	3
25000	ì

	6.3	Friction in a Straight Sliding Joint	268
		6.3.1 Computing the Direction Indicator D_{yx} for a Straight	272
		Sliding Joint Sign of the Direction Indicator for a Straight Sliding Laint	273
		Sign of the Direction Indicator for a Straight Sliding Joint Programming	274 274
		6.3.2 Cocking and Jamming in a Straight Sliding Joint	274
	6.4	Problems	284
7	Mac	chine Dynamics Part III: The Power Equation	290
	7.1	Development of the Power Equation	290
	.,,	7.1.1 The Rate of Change of Kinetic Energy	291
		Equivalent Inertia	292
		7.1.2 The Rate of Change of Potential Energy Due to Elevation	293
		7.1.3 The Rate of Change of Potential Energy in a Spring	296
		7.1.4 Power Dissipated by Viscous Damping	299
		7.1.5 Power Dissipated by Coloumb Friction	300
		The Pin Joint	300
		The Pin-in-a-Slot Joint	300
		The Straight Sliding Joint	300
	7.2	The Power Equation and the Inverse Dynamics Problem	301
		7.2.1 The Inverse Dynamics Problem Applied to Motor Selection	304
		7.2.2 Prime Movers	306
		7.2.3 AC Induction Motor Torque–Speed Curves	307
		7.2.4 DC Motor Torque–Speed Curves	310
	7.3	The Power Equation and the Forward Dynamics Problem	311
		7.3.1 The Forward Dynamics Problem Applied to Dynamic Simulation	311
		Including Joint Friction in a Dynamic Simulation	316
		Coefficient of Fluctuation	317
		Flywheels	318
	7.4	Mechanical Advantage	319
		7.4.1 Mechanical Advantage of a Geartrain	330
	7.5	Efficiency and Mechanical Advantage	330
	7.6	Problems	331
	7.7	Programming Problems	335
		Programming Problem 5	335
	7.0	Programming Problem 6	337
	7.8	Programming Problems—Designing the Drive System of an Air Compressor	220
			338
		7.8.1 Pump Operation Programming Problem 7	340 340
		Programming Problem 8	341
		Programming Problem 9	344
		Programming Problem 10	344
		Programming Problem 11	345
	7.9	Designing the Drive System of a Fail-Safe Quick Valve Shut-Off System	345
	,.,	Programming Problem 12	347
		Programming Problem 13	347

		Programming Problem 14	347
		Programming Problem 15	348
	7.10	Design Problems	348
		Design Problem 1	348
8	Mec	hanism Synthesis Part 1: Freudenstein's Equation	351
	8.1	Freudenstein's Equation for the Four Bar Mechanism	35
		8.1.1 Function Generation in Four Bar Mechanisms	350
		8.1.2 Point-Matching Method with Freudenstein's Equation	354
		8.1.3 Derivative-Matching Method with Freudenstein's Equation	35
		8.1.4 Design Procedure	36
		8.1.5 Number of Solutions	362
	8.2	Freudenstein's Equation for the Crank-Slider Mechanism	369
		8.2.1 Function Generation in Crank-Slider Mechanisms	37
		8.2.2 Point-Matching Method with Freudenstein's Equation	372
		8.2.3 Derivative-Matching Method with Freudenstein's Equation	375
		8.2.4 Design Procedure	37
		8.2.5 Number of Solutions	378
	8.3	Design Problems	380
		Design Problem 2	380
		Design Problem 3	383
		Design Problem 4	38.
9	Med	hanism Synthesis Part II: Rigid Body Guidance	380
	9.1	Mathematical Model of a Planar Rigid Body Displacement	38′
	9.2	The Three-Position Problem	389
		9.2.1 Given the Circling Point and Determining the Center Point	396
		9.2.2 Given the Center Point and Determining the Circling Point	39
		9.2.3 Crank-Slider Design	39:
		9.2.4 Inverted Crank-Slider Design	39:
	9.3	The Four-Position and Five-Position Problems	39
	9.4	Design Problems	39
	•	Design Problem 5	39
Ir	ıdex		39