Contents 4
Introduction: Organizing Data 31 a
Prelude: Designing Classes 35 Q)
Fncapsulation 36 ot
Specifying Methods 38 c

Comments 38 o
Preconditions and Postconditions 39 U
Assertions 40
Java Interfaces 41 (.
Writing an Interface 42 O
Implementing an Interface 43
An Interface as a Data Type 45 Q)
Extending an Interface 46 o
Named Constants Within an Interface 47 _Q
Choosing Classes 49 w
Identifying Classes 50
CRC Cards 51 H
The Unified Modeling Language 51
Reusing Classes 54
Chapter 1 Bags 61
The Bag 62
A Bag’s Behaviors 62
Specifying a Bag 63
An Interface 69
Using the ADT Bag 71
Using an ADT Is Like Using a Vending Machine 75
The ADT Set 77
Java Class Library: The Interface set 77

Java Interlude 1 Generics 83

Generic Data Types 83
Generic Types Within an Interface 84
Generic Classes 85

Chapter 2 Bag Implementations That Use Arrays 89

Using a Fixed-Size Array to Implement the ADT Bag 90
An Analogy 90
A Group of Core Methods 91
Implementing the Core Methods 92
Making the Implementation Secure 99
Testing the Core Methods 101
Implementing More Methods 103
Methods That Remove Entries 106

Using Array Resizing to Implement the ADT Bag 114
Resizing an Array 114
A New Implementation of a Bag 117

The Pros and Cons of Using an Array to Implement the ADT Bag 120

7]
st
=
Q)
e
=
Q
O
N
S
—
=
-

Java Interlude 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Exceptions

The Basics

Handling an Exception
Postpone Handling: The throws Clause
Handle It Now: The try-catch Blocks
Multiple catch Blocks

Throwing an Exception

A Bag Implementation That Links Data
Linked Data

Forming a Chain by Adding to Its Beginning
A Linked Implementation of the ADT Bag

The Private Class Node

An Outline of the Class LinkedBag

Defining Some Core Methods

Testing the Core Methods

The Method getFrequencyOf

The Method contains
Removing an Item from a Linked Chain

The Methods remove and clear
A Class Node That Has Set and Get Methods
The Pros and Cons of Using a Chain to Implement the ADT Bag

The Efficiency of Algorithms
Motivation
Measuring an Algorithm’s Efficiency
Counting Basic Operations
Best, Worst, and Average Cases
Big Oh Notation
The Complexities of Program Constructs
Picturing Efficiency
The Efficiency of Implementations of the ADT Bag
An Array-Based Implementation
A Linked Implementation
Comparing the Implementations

Stacks
Specifications of the ADT Stack
Using a Stack to Process Algebraic Expressions
A Problem Solved: Checking for Balanced Delimiters in an
Infix Algebraic Expression
A Problem Solved: Transforming an Infix Expression
to a Postfix Expression
A Problem Solved: Evaluating Postfix Expressions
A Problem Solved: Evaluating Infix Expressions
The Program Stack
Java Class Library: The Class Stack

Stack Implementations
A Linked Implementation
An Array-Based Implementation

125
126
128
128
129
130
131

133
134
135
137
137
138
139
143
144
145
146
147
151
154

159
160
161
163
165
166
168
170
173
173
175
176

183
184
188

189

194
199
201
203
204

211
211
215

Chapter 7

Java Interlude 3

Chapter 8

Chapter 9

A Vector-Based Implementation
Java Class Librarv: The Class Vector
Using a Vector to Implement the ADT Stack

Recursion

What Is Recursion?

Tracing a Recursive Method

Recursive Methods That Return a Value

Recursively Processing an Array

Recursively Processing a Linked Chain

The Time Efficiency of Recursive Methods
The Time Efficiency of countDown
The Time Efficiency of Computing x”

A Simple Solution to a Difficult Problem

A Poor Solution to a Simple Problem

Tail Recursion

Indirect Recursion

Using a Stack Instead of Recursion

More About Generics
The Interface Comparable
Generic Methods
Bounded Type Parameters
Wildcards

Bounded Wildcards

An Introduction to Sorting
Organizing Java Methods That Sort an Array
Selection Sort

[terative Selection Sort

Recursive Selection Sort

The Efficiency of Selection Sort
Insertion Sort

Iterative Insertion Sort

Recursive Insertion Sort

The Efficiency of Insertion Sort

Insertion Sort of a Chain of Linked Nodes
Shell Sort

The Algorithm

The Efficiency of Shell Sort
Comparing the Algorithms

Faster Sorting Methods
Merge Sort
Merging Arrays
Recursive Merge Sort
The Efficiency of Merge Sort
Iterative Merge Sort
Merge Sort in the Java Class Library
Quick Sort
The Efficiency of Quick Sort
Creating the Partition

»)
-
-
Q
s
o
Q
O
e
o
-
<
-

7)) Implementing Quick Sort 312

Yt Quick Sort in the Java Class Library 314
z Radix Sort 3

Q) Pseudocode for Radix Sort 315

o The Efficiency of Radix Sort 316

: Comparing the Aigorithms 316

o Java Interlude 4 More About Exceptions 323

Programmer-Defined Exception Classes 323

U Inheritance and Exceptions 327

(. The finally Block 328

o Chapter 10 Queunes, Deques, and Priority Queues 331

The ADT Queue 332

Q) A Problem Solved: Simulating a Waiting Line 336

y— A Problem Solved: Computing the Capital Gain in a Sale of Stock 342

_Q Java Class Library: The Interface Queue 345

w The ADT Deque 346

H A Problem Solved: Computing the Capital Gain in a Sale of Stock 349

Java Class Library: The Interface Deque 350

Java Class Library: The Class ArrayDeque 351

The ADT Priority Queue 351

A Problem Solved: Tracking Your Assignments 353

Java Class Library: The Class PriorityQueue 355

Chapter 11 Queue, Deque, and Priority Queue Implementations 361

A Linked Implementation of a Queue 362

An Array-Based Implementation of a Queue 366

A Circular Array 366

A Circular Array with One Unused Location 369

Circular Linked Implementations of a Queue 374

A Two-Part Circular Linked Chain 375

Java Class Library: The Class AbstractQueue 380

A Doubly Linked Implementation of a Deque 381

Possible Implementations of a Priority Queue 385

Chapter 12 Lists 391

Specifications for the ADT List 392

Using the ADT List 399

Java Class Library: The Interface List 403

Java Class Library: The Class ArrayList 403

Chapter 13 A List Implementation That Uses an Array 409

Using an Array to Implement the ADT List 410

An Analogy 410

The Java Implementation 412

The Efficiency of Using an Array to Implement the ADT List 420

Chapter 14 A List Implementation That Links Data 427

Operations on a Chain of Linked Nodes 428

Adding a Node at Various Positions 428

Removing a Node from Various Positions 432

The Private Method getNodeAt 433

Java Interlude 5

Chapter 15

Java Interlude 6

Chapter 16

Java Interlude 7

Beginning the Implementation
The Data Fields and Constructor
Adding to the End of the List
Adding at a Given Position Within the [ist
The Methods isEmpty and toArray
lesting the Core Methods
Continuing the Implementation
A Refined Implementation
The Tail Reference
The Efficiency of Using a Chain to Implement the ADT List
Java Class Library: The Class LinkedList

Iterators
What Is an Iterator?
The Interface Iterator
The Interface Iterable
Using the Interface Iterator
Iterable and for-each Loops
The Interface ListIterator
The Interface List Revisited
Using the Interface ListIterator

Iterators for the ADT List

Ways to Implement an lterator

A Separate Class lterator

An Inner Class lterator
A Linked Implementation
An Array-Based Implementation

Why Are lterator Methods in Their Own Class?

An Array-Based Implementation of the Interface ListIterator
The Inner Class

Mutable and Immutable Objects
Mutable Objects
Immutable Objects

Creating a Read-Only Class
Companion Classes

Sorted Lists
Specifications for the ADT Sorted 1.ist
Using the ADT Sorted List
A Linked Implementation
The Method add
The Efficiency of' the Linked Implementation
An Implementation That Uses the ADT List
Efficiency Issues

Inheritance and Polymorphism
Further Aspects of Inheritance
When to Use Inheritance
Protected Access
Abstract Classes and Methods
Interfaces Versus Abstract Classes
Polymorphism

434
433
437
438
439
441
442
445
445
448
450

457
457
459
461
461
465
466
469
470

473
474
474
477
478
481
484
486
487

499
500
502
502
504

507
508
51
12
513
520
520
523
529
529
529
530
531
533

534

7]
Sl
c
¥
-
o
Q
@)
o
o)
~
=
.-

s
Sl
c
¥
N
a
Q
@)
(-
Q
~
=
=

Chapter 17

Chapter 18

Java Interlude 8

Chapter 19

Chapter 20

Chapter 21

Inheritance and Lists
Using Inheritance to Implement a Sorted List
Designing a Base Class
Creating an Abstract Base Class
An Efficient Implementation of a Sorted L.ist
‘The Method add

Searching
The Problem
Searching an Unsorted Array
An lterative Sequential Search of an Unsorted Array
A Recursive Sequential Search of an Unsorted Array
The Efficiency of a Sequential Search of an Array
Searching a Sorted Array
A Sequential Search of a Sorted Array
A Binary Search of a Sorted Array
Java Class Library: The Method binarySearch
The Efficiency of a Binary Search of an Array
Searching an Unsorted Chain
An Iterative Sequential Search of an Unsorted Chain
A Recursive Sequential Search of an Unsorted Chain
The Efficiency of a Sequential Search of a Chain
Searching a Sorted Chain
A Sequential Search of a Sorted Chain
A Binary Search of a Sorted Chain
Choosing a Search Method

Generics Once Again
More Than One Generic Type

Dictionaries
Specifications for the ADT Dictionary
A Java Interface
Iterators
Using the ADT Dictionary
A Problem Solved: A Directory of Telephone Numbers
A Problem Solved: The Frequency of Words
A Problem Solved: A Concordance of Words
Java Class Library: The Interface Map

Dictionary Implementations
Array-Based Implementations

An Unsorted Array-Based Dictionary

A Sorted Array-Based Dictionary
Linked Implementations

An Unsorted Linked Dictionary

A Sorted Linked Dictionary

Introducing Hashing
What [s Hashing?
Hash Functions
Computing Hash Codes
Compressing a Hash Code into an Index for the Hash Table

Chapter 22

Chapter 23

Chapter 24

Resolving Collisions
Open Addressing with Linear Probing
Open Addressing with Quadratic Probing
Open Addressing with Double Hashing
A Potential Problem with Open Addressing
Separate Chaining

Hashing as a Dictionary Implementation
The Efficiency of Hashing
The Load Factor
The Cost of Open Addressing
The Cost of Separate Chaining
Rehashing
Comparing Schemes for Collision Resolution
A Dictionary Implementation That Uses Hashing
Entries in the Hash Table
Data Fields and Constructors
The Methods getvalue, remove. and add
[terators
Java Class Library: The Class HashMap
Jave Class Library: The Class HashSet

Trees
Tree Concepts
Hierarchical Organizations
Tree Terminology
Traversals of a Tree
Traversals of a Binary Tree
Traversals of a General Tree
Java Interfaces for Trees
Interfaces for All Trees
An Interface for Binary Trees
Examples of Binary Trees
Expression Trees
Decision Trees
Binary Search Trees
Heaps
Examples of General Trees
Parse Trees
Game Trees

Tree Implementations

The Nodes in a Binary Tree
A Class of Binary Nodes

An Implementation of the ADT Binary Tree
Creating a Basic Binary Tree
The Method privateSetTree
Accessor and Mutator Methods
Computing the Height and Counting Nodes
Traversals

An Implementation of an Expression Tree

7
his
-
Y
o
o
o
O
(-
o
_
g
-

7,]
ot
c
&
o
)
Q
@)
(-
)
i
o
e

Java Interlude 9

Chapter 25

Chapter 26

Chapter 27

General Trees
A Node for a General Tree
Using a Binary Tree to Represent a General Tree

Cloning

Cloneable Objects
Cloning an Array
Cloning a Chain
A Sorted List of Clones
Cloning a Binary Node

A Binary Search Tree Implementation
Getting Started
An Interface for the Binary Search Tree
Duplicate Entries
Beginning the Class Definition
Searching and Retrieving
Traversing
Adding an Entry
A Recursive Implementation
An Iterative Implementation
Removing an Entry
Removing an Entry Whose Node Is a Leaf
Removing an Entry Whose Node Has One Child
Removing an Entry Whose Node Has Two Children
Removing an Entry in the Root
A Recursive Implementation
An Iterative Implementation
The Efficiency of Operations
The Importance of Balance
The Order in Which Nodes Are Added
An Implementation of the ADT Dictionary

A Heap Implementation
Reprise: The ADT Heap

Using an Array to Represent a Heap
Adding an Entry

Removing the Root

Creating a Heap

Heap Sort

Balanced Search Trees
AVL Trees
Single Rotations
Double Rotations
Implementation Details
2-3 Trees
Searching a 2-3 Tree
Adding Entries to a 2-3 Tree
Splitting Nodes During Addition
2-4 Trees
Adding Entries to a 2-4 Tree
Comparing AVL, 2-3, and 2-4 Trees

718
718
719

727
727
733
736
739
741

743
744
745
747
748
749
750
751
752
755
756
757
757
758
761
762
765
769
770
770
770

783
784
784
787
790
793
796

805
806
806
809
813
817
818
819
821
822
823
825

Chapter 28

Chapter 29

Appendix A

Appendix B

Red-Black Trees
Properties of a Red-Black 'Iree
Adding Entries to a Red-Black Tree
Java Class library: The Class TreeMap
B-Trees

Graphs
Some Examples and Terminology
Road Maps
Airline Routes
Mazes
Course Prerequisites
Trees
Traversals
Breadth-First Traversal
Depth-First Traversal
Topological Order
Paths
Finding a Path
The Shortest Path in an Unweighted Graph
The Shortest Path in a Weighted Graph
Java Interfaces for the ADT Graph

Graph Implementations
An Overview of Two Implementations
The Adjacency Matrix
The Adjacency List
Vertices and Edges
Specifying the Class Vertex
The Inner Class Edge
Implementing the Class Vertex
An Implementation of the ADT Graph
Basic Operations
Graph Algorithms

Documentation and Programming Style
Naming Variables and Classes
Indenting
Comments
Single-Line Comments
Comment Blocks
When to Write Comments
Java Documentation Comments

Java Basics (online)
Introduction
Applications and Applets
Objects and Classes
A First Java Application Program
Elements of Java
Identifiers
Reserved Words
Variables

826
827
828
834
834
841
842
842
845
845
846
846
847
848
849
851
854
854
854
857
860

871
872
872
873
874
875
877
878
881
881
884

891
891
892
892
893
893
893
893

s
-
c
V)
-
c
o
O
i
)
-
o
-

Primtitive Types
Constants
Assignment Statements
Assignment Compatibilities
Type Casting
Arithmetic Operators and Expressions
Parentheses and Precedence Rules
Increment and Decrement Operators
Special Assignment Operators
Named Constants
The Class Math
Simple Input and Output Using the Keyboard and Screen
Screen Output
Keyboard Input Using the Class Scanner
The if-else Statement
Boolean Expressions
Nested Statements
Multiway i f-else Statements
The Conditional Operator (Optional)
The switch Statement
Enumerations
Scope
Loops
The while Statement
The for Statement
The do-whiTe Statement
Additional Loop Information
The Class String
Characters Within Strings
Concatenation of Strings
String Methods
The Class StringBuilder
Using Scanner to Extract Pieces of a String
Arrays
Array Parameters and Returned Values
Initializing Arrays
Array Index Out of Bounds
Use of = and == with Arrays
Arrays and the For-Each Loop
Multidimensional Arrays
Wrapper Classes

7]
s
c
V)
S
c
Q
@)
(-
)
i
<
-

Appendix C Java Classes (online)

Objects and Classes

Using the Methods in a Java Class
References and Aliases

Defining a Java Class
Method Definitions
Arguments and Parameters
Passing Arguments
A Definition of the Class Name

Appendix D

Appendix E

Constructors
The Method toString
Methods That Cail Other Methods
Methods That Return an Instance of Their Class
Static Fields and Methods
Overloading Methods
Enumeration as a Class
Packages
The Java Class Library

Creating Classes from Other Classes
Composition
Adapters
Inheritance
Invoking Constructors from Within Constructors
Private Fields and Methods of the Superclass
Overriding and Overloading Methods
Multiple Inheritance
Type Compatibility and Superclasses
The Class Object

File Input and Output (online)
Preliminaries
Why Files?
Streams
The Kinds of Files
File Names
Text Files
Creating a Text File
Reading a Text File
Changing Existing Data in a Text File
Defining a Method to Open a Stream
Binary Files
Creating a Binary File of Primitive Data
Reading a Binary File of Primitive Data
Strings in a Binary File
Object Serialization

Glossary (online)

Index

899
900
902
903
906
907
908
913
913
914

919

75
N
-
o
-
c
o
@)
(-
o)
>
=
=

