## **Contents**

|        | List o<br>Prefa | of contributors<br>ace                                                                     | page xvi<br>xxi |
|--------|-----------------|--------------------------------------------------------------------------------------------|-----------------|
| Part I | Commun          | ication architectures and models for green radio networks                                  | 1               |
| 1      |                 | amental trade-offs on the design of green radio                                            |                 |
|        | netwo           |                                                                                            | 3               |
|        |                 | hen, Shunqing Zhang, and Shugong Xu                                                        |                 |
|        | 1.1             | Introduction                                                                               | 3               |
|        | 1.2             | Insight from Shannon's capacity formula                                                    | 5               |
|        |                 | 1.2.1 SE–EE trade-off                                                                      | 6               |
|        |                 | 1.2.2 BW–PW trade-off                                                                      | 7               |
|        |                 | 1.2.3 DL-PW trade-off                                                                      | 8               |
|        |                 | 1.2.4 DE–EE trade-off                                                                      | 10              |
|        | 1.3             | 1.2.5 Summary Impact of practical constraints                                              | 10<br>12        |
|        | 1.3             | Latest research and future directions                                                      | 14              |
|        | 1.4             | 1.4.1 SE–EE trade-off                                                                      | 14              |
|        |                 | 1.4.2 BW–PW trade-off                                                                      | 16              |
|        |                 | 1.4.3 DL-PW trade-off                                                                      | 17              |
|        |                 | 1.4.4 DE–EE trade-off                                                                      | 18              |
|        | 1.5             | Conclusion                                                                                 | 20              |
| 2      | -               | rithms for energy-harvesting wireless networks<br>Sharma, Utpal Mukherji, and Vinay Joseph | 24              |
|        | 2.1             | Introduction                                                                               | 24              |
|        | 2.2             | Energy-harvesting technologies                                                             | 26              |
|        | 2.3             | Point-to-point channel                                                                     | 28              |
|        |                 | 2.3.1 Model and notation                                                                   | 28              |
|        |                 | 2.3.2 Stability                                                                            | 29              |
|        |                 | 2.3.3 Delay optimal policies                                                               | 30              |
|        |                 | 2.3.4 Generalizations                                                                      | 31              |
|        |                 | 2.3.5 Simulations                                                                          | 32              |

|   |       | 2.3.6 Model with sleep option                             | 34 |
|---|-------|-----------------------------------------------------------|----|
|   |       | 2.3.7 Fundamental limits of transmission                  | 37 |
|   | 2.4   | MAC policies                                              | 39 |
|   |       | 2.4.1 Orthogonal channels                                 | 40 |
|   |       | 2.4.2 Opportunistic scheduling for fading channels:       |    |
|   |       | orthogonal channels                                       | 40 |
|   |       | 2.4.3 Opportunistic scheduling for fading channels: CSMA  | 42 |
|   |       | 2.4.4 Simulations for MAC protocols                       | 42 |
|   | 2.5   | Multi-hop networks                                        | 44 |
|   |       | 2.5.1 Problem formulation                                 | 45 |
|   |       | 2.5.2 Simulations                                         | 48 |
|   | 2.6   | Conclusion                                                | 50 |
| 3 | PHY a | and MAC layer optimization for energy-harvesting wireless |    |
|   | netw  | orks                                                      | 53 |
|   | Neele | sh B. Mehta and Chandra R. Murthy                         |    |
|   | 3.1   | Introduction                                              | 53 |
|   | 3.2   | Physical layer design                                     | 55 |
|   |       | 3.2.1 No CSI at transmitter and retransmissions           | 55 |
|   |       | 3.2.2 Power management with channel state information     | 61 |
|   |       | 3.2.3 Simulation results                                  | 66 |
|   | 3.3   | Cross-layer implications in a multi-node network          | 67 |
|   |       | 3.3.1 Multiple access selection algorithms                | 69 |
|   |       | 3.3.2 Energy harvesting, storage, and usage model         | 70 |
|   |       | 3.3.3 Energy neutrality implication                       | 70 |
|   |       | 3.3.4 Performance analysis                                | 70 |
|   |       | 3.3.5 Numerical results                                   | 73 |
|   | 3.4   | Conclusion                                                | 74 |
| 4 | Mect  | nanical relaying techniques in cellular wireless networks | 78 |
|   | Panay | riotis Kolios, Vasilis Friderikos, and Katerina Papadaki  |    |
|   | 4.1   | Introduction                                              | 78 |
|   | 4.2   | Background                                                | 79 |
|   |       | 4.2.1 DTN architecture                                    | 79 |
|   |       | 4.2.2 Routing in DTNs                                     | 80 |
|   | 4.3   | Mechanical relaying                                       | 81 |
|   |       | 4.3.1 Mobile internet traffic mix                         | 83 |
|   |       | 4.3.2 Mechanical relaying strategies                      | 86 |
|   | 4.4   | Real-world measurements                                   | 89 |
|   | 4.5   | Related standardization efforts                           | 92 |
|   | 4.6   | Conclusion                                                | 93 |

| Part II | Physical | communications techniques for green radio networks                                                                                         | 97  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5       | wirel    | n modulation and coding schemes in energy-constrained<br>ess networks<br>nid Abouei, Konstantinos N. Plataniotis, and Subbarayan Pasupathy | 99  |
|         | 5.1      | Introduction                                                                                                                               | 99  |
|         | 5.2      | System model and assumptions                                                                                                               | 101 |
|         | 3.2      | 5.2.1 Performance metric                                                                                                                   | 101 |
|         |          | 5.2.2 Channel model                                                                                                                        | 102 |
|         | 5.3      | Energy consumption of uncoded scheme                                                                                                       | 103 |
|         |          | 5.3.1 M-ary FSK                                                                                                                            | 103 |
|         |          | 5.3.2 M-ary QAM                                                                                                                            | 106 |
|         |          | 5.3.3 Offset-QPSK                                                                                                                          | 108 |
|         |          | 5.3.4 Numerical evaluations                                                                                                                | 110 |
|         | 5.4      | Energy-consumption analysis of LT coded modulation                                                                                         | 113 |
|         |          | 5.4.1 Energy efficiency of coded system                                                                                                    | 114 |
|         |          | 5.4.2 Energy optimality of LT codes                                                                                                        | 116 |
|         | 5.5      | Numerical results                                                                                                                          | 118 |
|         |          | 5.5.1 Experimental setup                                                                                                                   | 118 |
|         |          | 5.5.2 Optimal configuration                                                                                                                | 119 |
|         | 5.6      | Conclusion                                                                                                                                 | 122 |
| 6       |          | erative techniques for energy-efficient wireless communications<br>a Amin, Sara Bavarian, and Lutz Lampe                                   | 125 |
|         | 6.1      | Introduction                                                                                                                               | 125 |
|         | 6.2      | Energy-efficiency metrics for wireless networks                                                                                            | 125 |
|         | 0.2      | 6.2.1 Instantaneous EE metrics                                                                                                             | 128 |
|         |          | 6.2.2 Average EE metrics                                                                                                                   | 129 |
|         | 6.3      | Energy-efficient cooperative networks                                                                                                      | 130 |
|         | 0.5      | 6.3.1 Single relay cooperative network                                                                                                     | 131 |
|         |          | 6.3.2 Multi-relay cooperative network                                                                                                      | 136 |
|         |          | 6.3.3 Multi-hop cooperative network                                                                                                        | 137 |
|         | 6.4      | Optimizing the EE performance of cooperative networks                                                                                      | 139 |
|         |          | 6.4.1 Modulation constellation size                                                                                                        | 139 |
|         |          | 6.4.2 Power allocation                                                                                                                     | 141 |
|         | 6.5      | Energy efficiency in cooperative base stations                                                                                             | 143 |
|         | 6.6      | Conclusion                                                                                                                                 | 146 |
| 7       | Effec    | t of cooperation and network coding on energy efficiency of                                                                                |     |
|         |          | ess transmissions                                                                                                                          | 150 |
|         | Nof At   | puzainab and Anthony Ephremides                                                                                                            |     |
|         | 7.1      | Introduction                                                                                                                               | 150 |
|         | 7.2      | Relay cooperation in single link wireless transmissions                                                                                    | 152 |

|         |            | 7.2.1         | System model                                                                                                      | 152 |
|---------|------------|---------------|-------------------------------------------------------------------------------------------------------------------|-----|
|         |            | 7.2.2         | Cooperation protocols                                                                                             | 153 |
|         | 7.3        | User co       | operation in wireless multicast transmissions                                                                     | 155 |
|         |            | 7.3.1         | System model                                                                                                      | 155 |
|         |            | 7.3.2         | Cooperation protocols                                                                                             | 156 |
|         | 7.4        | Energy-       | -cost minimization                                                                                                | 158 |
|         | 7.5        | Stable t      | hroughput computation                                                                                             | 158 |
|         | 7.6        | Perform       | nance evaluation                                                                                                  | 159 |
|         |            | 7.6.1         | Relay cooperation                                                                                                 | 159 |
|         |            | 7.6.2         | User cooperation                                                                                                  | 161 |
|         | 7.7        | Conclus       | sion                                                                                                              | 162 |
| Part II | l Base sta | ation pov     | ver-management techniques for green radio networks                                                                | 165 |
| 8       | Oliver     |               | spectrum and load management for green radio networks<br>pristian Facchini, A. Hamid Aghvami, Orlando Cabral, and | 167 |
|         | 8.1        | Introdu       | ection                                                                                                            | 167 |
|         | 8.2        |               | unistic spectrum and load management concepts                                                                     | 169 |
|         | 0.2        | 8.2.1         | Opportunistic load management to power down radio                                                                 |     |
|         |            | 0.2.1         | network equipment                                                                                                 | 169 |
|         |            | 8.2.2         | Opportunistic spectrum management to improve                                                                      |     |
|         |            | 9 <b>.2.2</b> | propagation characteristics                                                                                       | 171 |
|         |            | 8.2.3         | Power saving by channel bandwidth increase or                                                                     |     |
|         |            |               | better bandwidth balancing                                                                                        | 173 |
|         | 8.3        | Assessr       | ment of power-saving potential                                                                                    | 174 |
|         |            | 8.3.1         | Example reflecting GSM networks                                                                                   | 174 |
|         |            | 8.3.2         | Example reflecting LTE networks                                                                                   | 180 |
|         |            | 8.3.3         | Example reflecting HSDPA networks                                                                                 | 185 |
|         |            | 8.3.4         | Power saving by channel bandwidth increase or                                                                     |     |
|         |            |               | better bandwidth balancing                                                                                        | 187 |
|         | 8.4        | Conclu        | e e e e e e e e e e e e e e e e e e e                                                                             | 188 |
| 9       | Ener       | gy-saving     | techniques in cellular wireless base stations                                                                     | 190 |
|         | Tao C      | hen, Hongga   | ang Zhang, Yang Yang, and Kari Horneman                                                                           |     |
|         | 9.1        | Introdu       | action                                                                                                            | 190 |
|         | 9.2        |               | -consumption model of RBS                                                                                         | 191 |
|         | 9.3        | EE met        |                                                                                                                   | 192 |
|         | 9.4        |               | nergy-saving methods                                                                                              | 194 |
|         | <i>.</i>   | 9.4.1         | Time-domain approaches                                                                                            | 195 |
|         |            | 9.4.2         | Frequency-domain approaches                                                                                       | 196 |
|         |            | 9.4.3         | Spatial-domain approaches                                                                                         | 197 |
|         |            | 9.4.4         | Performance comparison                                                                                            | 198 |
|         |            |               |                                                                                                                   | -   |

| ^~ | -  | -   |
|----|----|-----|
| υu | ше | nts |

|    | 9.5   | Layered structure for energy saving                                                          | 199 |
|----|-------|----------------------------------------------------------------------------------------------|-----|
|    |       | 9.5.1 System model and assumptions                                                           | 199 |
|    |       | 9.5.2 Energy-consumption model of RBS                                                        | 200 |
|    |       | 9.5.3 Energy-aware handover mechanism                                                        | 201 |
|    |       | 9.5.4 Simulation study                                                                       | 203 |
|    | 9.6   | Conclusion                                                                                   | 206 |
| 10 |       | r management for base stations in a smart grid environment<br>u, Dusit Niyato, and Ping Wang | 209 |
|    | 10.1  | Introduction                                                                                 | 209 |
|    | 10.2  | Power management for wireless base station                                                   | 210 |
|    | 10.2  | 10.2.1 Green communications in centralized wireless                                          | 210 |
|    |       | networks                                                                                     | 210 |
|    |       | 10.2.2 Approaches for power management in a base station                                     | 210 |
|    |       | 10.2.3 Open research issues                                                                  | 212 |
|    | 10.3  | Power-consumption model for a base station                                                   | 213 |
|    | 10.5  | 10.3.1 Components of a base station                                                          |     |
|    |       | 10.3.1 Components of a base station 10.3.2 Assumptions and power-consumption model for a     | 216 |
|    |       | macro base station                                                                           | 210 |
|    |       | 10.3.3 Assumptions and power-consumption model for a                                         | 218 |
|    |       | micro base station                                                                           | 210 |
|    | 10.4  |                                                                                              | 218 |
|    | 10.4  | Optimization of power management in a smart grid environment 10.4.1 System model             | 220 |
|    |       | •                                                                                            | 220 |
|    |       | 10.4.2 Demand-response for base station in smart grid                                        | 222 |
|    |       | 10.4.3 Optimization formulation for power management 10.4.4 Performance evaluation           | 223 |
|    | 10.5  |                                                                                              | 226 |
|    | 10.5  | Conclusion                                                                                   | 230 |
| 11 |       | erative multicell processing techniques for energy-efficient cellular                        |     |
|    |       | ess communications                                                                           | 236 |
|    | Mohan | nmad Reza Nakhai, Tuan Anh Le, Auon Muhammad Akhtar, and Oliver Holland                      |     |
|    | 11.1  | Introduction                                                                                 | 236 |
|    | 11.2  | Cell splitting                                                                               | 238 |
|    | 11.3  | A multicell processing model                                                                 | 239 |
|    |       | 11.3.1 Transmission and channel model                                                        | 239 |
|    |       | 11.3.2 User-position-aware multicell processing                                              | 242 |
|    | 11.4  | Multicell beamforming strategies                                                             | 243 |
|    |       | 11.4.1 MBF using instantaneous CSIT                                                          | 243 |
|    |       | 11.4.2 MBF using second-order statistical CSIT                                               | 245 |
|    |       | 11.4.3 An iterative MBF using second-order statistical CSIT                                  | 246 |
|    | 11.5  | Coordinated beamforming                                                                      | 248 |
|    | 11.6  | Backhaul protocol                                                                            | 250 |
|    |       | 11.6.1 A protocol for information circulation in the backhaul                                | 250 |

|         |            | 11.6.2 Power calculation for the ring protocol                                                                        | 251 |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------|-----|
|         |            | 11.6.3 An effective sum-rate                                                                                          | 252 |
|         | 11.7       | Performance evaluation                                                                                                | 252 |
|         |            | 11.7.1 Performance evaluation under ideal backhaul                                                                    | 252 |
|         |            | 11.7.2 Performance evaluation under limited backhaul                                                                  | 254 |
|         | 11.8       | Cooperative routing                                                                                                   | 255 |
|         |            | 11.8.1 Power-aware cooperative routing algorithm                                                                      | 256 |
|         | 11.9       | Conclusion                                                                                                            | 258 |
| Part IV | / Wireless | access techniques for green radio networks                                                                            | 261 |
| 12      |            | -layer design of adaptive packet scheduling for green radio networks<br>Karmokar, Alagan Anpalagan, and Ekram Hossain | 263 |
|         | 12.1       | Introduction                                                                                                          | 263 |
|         | 12.2       | Related work                                                                                                          | 264 |
|         | 12.3       | Importance of cross-layer optimized design                                                                            | 265 |
|         | 12.4       | Why cross-layer adaptation is important for green radio networks                                                      | 266 |
|         | 12.5       | Cross-layer interactions, models, and actions                                                                         | 267 |
|         | 12.6       | Cross-layer vs. single-layer adaptation techniques                                                                    | 271 |
|         | 12.7       | How to solve the cross-layer design problem                                                                           | 273 |
|         | 12.8       | Power savings in the cross-layer optimized system                                                                     | 276 |
|         | 12.9       | Other literature on energy-efficient cross-layer techniques                                                           | 278 |
|         |            | Challenges and future directions                                                                                      | 281 |
|         | 12.11      | Conclusion                                                                                                            | 282 |
| 13      |            | y-efficient relaying for cooperative cellular wireless networks<br>ei, Mei Song, and F. Richard Yu                    | 286 |
|         | 13.1       | Introduction                                                                                                          | 286 |
|         | 13.2       | Energy saving in cellular wireless networks                                                                           | 288 |
|         |            | 13.2.1 Energy-saving techniques                                                                                       | 288 |
|         |            | 13.2.2 Energy-efficiency criteria                                                                                     | 289 |
|         | 13.3       | Energy-efficient cooperative communication based on                                                                   |     |
|         |            | selective relay                                                                                                       | 290 |
|         |            | 13.3.1 Relay selection schemes                                                                                        | 291 |
|         | 13.4       | System model for the relay selection problem                                                                          | 293 |
|         |            | 13.4.1 S2R channel                                                                                                    | 294 |
|         |            | 13.4.2 R2D channel                                                                                                    | 294 |
|         |            | 13.4.3 Energy model                                                                                                   | 295 |
|         | 42.7       | 13.4.4 Objectives                                                                                                     | 296 |
|         | 13.5       | Problem formulation                                                                                                   | 296 |
|         |            | 13.5.1 Relay states                                                                                                   | 296 |
|         |            | 13.5.2 System reward                                                                                                  | 297 |
|         |            | 13.5.3 Solution to the restless bandit problem                                                                        | 298 |

| เเกา | ıter | บร |  |
|------|------|----|--|

xiii

|    | 13.6  | Distributed relay selection scheme                             | 300 |
|----|-------|----------------------------------------------------------------|-----|
|    |       | 13.6.1 Available relay candidates                              | 300 |
|    |       | 13.6.2 Relay selection process                                 | 301 |
|    |       | 13.6.3 Cost evaluation                                         | 302 |
|    | 13.7  | Simulation results and discussions                             | 302 |
|    |       | 13.7.1 System reward                                           | 303 |
|    |       | 13.7.2 Error propagation mitigation                            | 303 |
|    |       | 13.7.3 Spectral efficiency improvement                         | 305 |
|    |       | 13.7.4 Network lifetime                                        | 305 |
|    | 13.8  | Conclusion                                                     | 306 |
| 14 |       | y performance in TDD-CDMA multi-hop cellular networks          | 309 |
|    |       | Thanh Long, Xue Jun Li, and Peter Han Joo Chong                |     |
|    | 14.1  | Introduction                                                   | 309 |
|    | 14.2  | Structure of relay stations and power consumption              | 309 |
|    |       | 14.2.1 Random relay station (RRS) structure                    | 311 |
|    | 14.3  | Time-slot allocation schemes                                   | 312 |
|    |       | 14.3.1 Fixed time-slot allocation (FTSA)                       | 313 |
|    |       | 14.3.2 Dynamic time-slot allocation (DTSA)                     | 313 |
|    |       | 14.3.3 Multi-link fixed time-slot allocation (ML-FTSA)         | 314 |
|    |       | 14.3.4 Multi-link dynamic time-slot allocation (ML-DTSA)       | 315 |
|    | 14.4  | System model                                                   | 315 |
|    | 14.5  | Simulation results and discussions                             | 317 |
|    |       | 14.5.1 Blocking and dropping probabilities for high and        |     |
|    |       | low data rate traffic                                          | 320 |
|    |       | 14.5.2 Energy consumption for single-hop and multi-hop         |     |
|    |       | transmission using FRS                                         | 322 |
|    |       | 14.5.3 Energy consumption for RRS structure                    | 325 |
|    | 14.6  | Conclusion                                                     | 328 |
| 15 | Resou | rce allocation for green communication in relay-based cellular |     |
|    | netwo | orks                                                           | 331 |
|    | Umesh | Phuyal, Satish C. Jha, and Vijay K. Bhargava                   |     |
|    | 15.1  | Introduction                                                   | 331 |
|    | 15.2  | Enabling green communication in cellular wireless networks     | 332 |
|    |       | 15.2.1 Component level                                         | 332 |
|    |       | 15.2.2 Equipment level                                         | 332 |
|    |       | 15.2.3 Network level                                           | 332 |
|    |       | 15.2.4 Computational complexity versus transmit-power-saving   | 333 |
|    | 15.3  | Relay-based green CCN                                          | 333 |
|    |       | 15.3.1 Implementation issues and challenges                    | 334 |
|    |       | 15.3.2 Advantages of fixed relay-based CCN                     | 336 |
|    |       | 15.3.3 Green performance metrics for resource allocation       | 337 |

|          | 15.4     | Resource-allocation schemes for CCN: a brief survey                              | 337 |
|----------|----------|----------------------------------------------------------------------------------|-----|
|          |          | 15.4.1 Throughput maximization schemes                                           | 338 |
|          |          | 15.4.2 QoS-aware transmit power minimization schemes                             | 338 |
|          |          | 15.4.3 Energy-aware green schemes                                                | 339 |
|          | 15.5     | Design of a green power allocation scheme                                        | 339 |
|          |          | 15.5.1 System model                                                              | 340 |
|          |          | 15.5.2 Green power allocation scheme                                             | 342 |
|          |          | 15.5.3 Performance analysis of GPA scheme                                        | 344 |
|          |          | 15.5.4 Adaptive interrupted transmission                                         | 345 |
|          |          | 15.5.5 Simulation results                                                        | 345 |
|          | 15.6     | Green performance versus system capacity                                         | 351 |
|          |          | 15.6.1 Performance analysis                                                      | 352 |
|          | 15.7     | Conclusion                                                                       | 354 |
| Part V G | ireen ra | dio test-bed, experimental results, and standardization activities               | 357 |
| 16       | How r    | nuch energy is needed to run a wireless network?                                 | 359 |
|          |          | er Auer, Vito Giannini, István Gódor, Oliver Blume, Albrecht Fehske,             |     |
|          |          | Ionso Rubio, Pål Frenger, Magnus Olsson, Dario Sabella, Manuel J. Gonzalez,      |     |
|          |          | nmad Ali Imran, and Claude Desset                                                |     |
|          | 16.1     | Introduction                                                                     | 359 |
|          | 16.1     | Energy-efficiency evaluation framework (E <sup>3</sup> F)                        | 360 |
|          | 10.2     | 16.2.1 Small-scale, short-term system-level evaluations                          | 361 |
|          |          | 16.2.2 Global E <sup>3</sup> F                                                   | 361 |
|          | 16.3     | Power model                                                                      | 363 |
|          | 10.5     | 16.3.1 Base station power-consumption breakdown                                  | 363 |
|          |          | 16.3.2 BS power consumption at variable load                                     | 366 |
|          | 16.4     | Traffic model                                                                    | 367 |
|          | 10.4     | 16.4.1 Deployment areas of Europe                                                | 367 |
|          |          | 16.4.2 Long-term large-scale traffic models                                      | 368 |
|          |          | 16.4.3 Statistical short-term traffic models                                     | 372 |
|          | 16.5     | Green metrics                                                                    | 372 |
|          | 10.5     | 16.5.1 Efficiency metrics vs. consumption metrics                                | 373 |
|          |          | 16.5.2 Energy-consumption metrics in cellular networks                           | 374 |
|          | 16.6     |                                                                                  | 375 |
|          | 10.0     | 16.6.1 Assessment methodology                                                    | 375 |
|          |          | 16.6.2 Small-scale short-term evaluations                                        | 376 |
|          |          | 16.6.3 Large-scale long-term evaluations                                         | 377 |
|          | 16.7     | LTE technology potential in real deployments                                     | 377 |
|          | 16.7     | 16.7.1 Global radio access networks                                              | 378 |
|          |          | 16.7.2 LTE system evaluation                                                     | 380 |
|          |          | 16.7.2 LTE system evaluation 16.7.3 Evolution of LTE energy-efficiency over time | 380 |
|          | 16.0     | Fundamental challenges and future potential                                      | 381 |
|          | 16.8     |                                                                                  | 382 |
|          | 16.9     | Conclusion                                                                       | 302 |

| 17 |       | ardization, fora, and joint industrial projects on green radio networks  Conte, Hakon Helmers, and Philippe Sehier | 385 |
|----|-------|--------------------------------------------------------------------------------------------------------------------|-----|
|    | 17.1  | Introduction                                                                                                       | 385 |
|    | 17.2  | Standardization fora                                                                                               | 386 |
|    |       | 17.2.1 ETSI                                                                                                        | 387 |
|    |       | 17.2.2 3GPP                                                                                                        | 389 |
|    |       | 17.2.3 TIA and 3GPP2                                                                                               | 394 |
|    |       | 17.2.4 ATIS                                                                                                        | 395 |
|    |       | 17.2.5 IETF/EMAN                                                                                                   | 395 |
|    |       | 17.2.6 CCSA                                                                                                        | 396 |
|    | 17.3  | Consortium and joint projects                                                                                      | 396 |
|    |       | 17.3.1 NGMN alliance                                                                                               | 396 |
|    |       | 17.3.2 FP7 EARTH project                                                                                           | 398 |
|    |       | 17.3.3 GreenTouch initiative                                                                                       | 400 |
|    | 17.4  | Synthesis and classification of energy-saving solutions for                                                        |     |
|    |       | wireless networks                                                                                                  | 403 |
|    |       | 17.4.1 Technology and component level                                                                              | 403 |
|    |       | 17.4.2 Base station adaptation to traffic load                                                                     | 404 |
|    |       | 17.4.3 Network architecture                                                                                        | 405 |
|    |       | 17.4.4 Heterogeneous networks                                                                                      | 405 |
|    |       | 17.4.5 Air interface                                                                                               | 406 |
|    |       | 17.4.6 Dynamic NW adaptation to traffic load                                                                       | 407 |
|    | 17.5  | Conclusion                                                                                                         | 407 |
|    | Index |                                                                                                                    | 409 |