Contents | List of Contributors Preface | ix
xi | 4. Structures, Functions, and Evolutionary Histories of DNA-Binding Domains of Plant-Specific Transcription Factors KAZUHIKO YAMASAKI | | |--|--|---|--| | GENERAL ASPECTS OF PLANT TRANSCRIPTION FACTORS | entendeliste (s.e.) | 4.1 Introduction4.2 Description of Respective DBDs4.3 Evolutionary History of Plant-Specific TFs
References | 57
59
65
69 | | Introduction to Transcription Factor Structure and Function DANIEL H. GONZALEZ | | 5. The Evolutionary Diversification of Genes that Encode Transcription Factor Proteins in Plants TOSHIFUMI NAGATA, AENI HOSAKA-SASAKI, SHOSHI KIKUCHI | | | Introduction: Transcription in Eukaryotes Structure of Transcription Factors DNA Recognition by Transcription Factors DNA-Binding Domains Protein-Protein Interactions Regulation of Transcription Factor Action Plant Transcription Factors Methods to Study Transcription Factor Methods to Study Transcription Factor Introduction Introduction Introduction In Vivo Functional Studies | 3
4
4
5
6
7
9
9 | 5.1 Introduction – Distinctive Features of TF Genes in Plants (Arabidopsis and Rice) 5.2 A Comparative Analysis of TF Genes between Plants and Animals 5.3 A Comparative Analysis of Transcription Factor Genes in 32 Diverse Organisms 5.4 The Appearance of New TF Gene Members During Evolution 5.5 The Different Evolutionary Methods of TF Genes in Animals and Plants 5.6 TF Gene Evolution and its Biological Function 5.7 Conclusion: the Regulatory Role of Individual Transcription Factors References | 73
76
76
92
93
94
96
96 | | 2.3 Methods for the Analysis of In Vitro Protein–DNA Interactions 2.4 Methods to Study Protein–DNA Interactions In Vivo | 18
21 | В | | | 2.5 Analysis of Protein–Protein Interactions References 3. General Aspects of Plant Transcription Factor Families JONG CHAN HONG | 25
29 | EVOLUTION AND
STRUCTURE OF DEFINED
PLANT TRANSCRIPTION
FACTOR FAMILIES | | | 3.1 Introduction 3.2 Overview of the Transcription Cycle in Eukaryotes 3.3 Components Involved in the Formation of the RNAPII Preinitiation Complex in Plants 3.4 Plant Transcription Factor Families 3.5 Major TF Families that are Conserved Across Eukaryotes 3.6 Plant-Specific TF Families 3.7 TFs without DBD but Interacting with DBD-Containing TFs 3.8 Conclusion References | 35
36
39
44
44
49
50
52
52 | 6. Structure and Evolution of Plant Homeobox Genes IVANA L. VIOLA, DANIEL H. GONZALEZ 6.1 Introduction 6.2 Structure of the Homeodomain 6.3 Specific Contacts with DNA 6.4 Plant Homeodomain Families 6.5 The Evolution of Plant Homeobox Genes References | 101
102
102
104
108
110 | vi CONTENIS | | 11. Structure and Evolution of WRKY Transcription Factors CHARLES L. RINERSON, ROEL C. RABARA, PRAHEK TRIPATHI, QINGXI L. SHEN, PAUL J. RUSHTON 11.1. Introduction | 163 | |---------------------------------|---|---| | 114
114
114 | 11.2 The Structure of the WRKY Domain 11.3 The Evolution of WRKY Genes 11.4 R Protein–WRKY Genes 11.5 Conclusion: a Reevaluation of WRKY Evolution References | 164
164
173
177
179 | | 115
117
122 | 12. Structure, Function, and Evolution of the Dof Transcription Factor Family shuichi yanagisawa | | | 123
124
124 | 12.1 Discovery and Definition of the Dof Transcription Factor Family 12.2 Structure and Molecular Characteristics of Dof Transcription Factors | 183
184 | | | 12.3 Molecular Evolution of the Dof TranscriptionFactor Family12.4 Physiological Functions of Dof Transcription Factors | 188
190
194 | | 127
128
132
136
137 | References 13. NAC Transcription Factors: From Structure to Function in Stress-Associated Networks DITTE H. WELNER, FARAH DEEBA, LEILA LO LEGGIO, KAREN SKRIVER | 194 | | 131 | 13.1 Introduction 13.2 NAC Structure 13.3 Evolution of NAC Proteins 13.4 NAC Proteins: from Structure to Interactions with DNA and other Proteins | 199
200
202
204 | | 139
139
142
147 | 13.5 NAC Networks in Abiotic Stress Responses13.6 ConclusionReferences | 207
209
210 | | 148
148
149
149 | FUNCTIONAL ASPECTS OF | | | | PLANT TRANSCRIPTION
FACTOR ACTION | | | 153
156
157
160
160 | 14. Homeobox Transcription Factors and the Regulation of Meristem Development and Maintenance KATSUTOSHI TSUDA, SARAH HAKE 14.1 Introduction 14.2 KNOX and BELL: TALE Superfamily Homeobox Genes | 215
216
225 | | | 114
114
115
117
122
123
124
124
124
124
132
136
137
139
142
147
148
148
149
149 | Transcription Factors CHARLES LRINERSON, ROFL C. RABARA. PRAFFER TRIPATIBL. QINGXIL SHEN, PAUL. J. RUSHTON 11.1 Introduction 11.2 The Structure of the WRKY Domain 11.3 The Evolution of WRKY Genes 114 11.4 R Protein–WRKY Genes 115 11.5 Conclusion: a Reevaluation of WRKY Evolution References 116 11.7 L. Structure, Function, and Evolution of the Dof Transcription Factor Family 117 SHUICHLYANAGISAWA 118 12.1 Discovery and Definition of the Dof Transcription 129 Factor Family 120 Factor Family 121 12.2 Structure and Molecular Characteristics of Dof Transcription Factors 121 Molecular Evolution of the Dof Transcription Factor Family 122 Physiological Functions of Dof Transcription Factors 123 Molecular Evolution of Dof Transcription Factors 124 Physiological Functions of Dof Transcription Factors 125 Perspective References 127 13. NAC Transcription Factors: From Structure 128 13. NAC Transcription Factors: From Structure 139 TOFTICH WELNER, FARAH DEEBA, LEILALO LEGGIO, 130 KAREN SKRIVER 131 Introduction 132 NAC Structure 133 Evolution of NAC Proteins 134 NAC Proteins: from Structure to Interactions with DNA and other Proteins 135 NAC Networks in Abiotic Stress Responses 136 Conclusion 137 References 138 C 149 FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION 149 FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION 140 Homeobox Transcription Factors and the 151 Regulation of Meristem Development and 152 Maintenance 153 KATSUTOSHI TSUDA, SARAH HAKE 160 14.1 Introduction 142 KNOX and BELL: TALE Superfamily Homeobox | CONTENTS vii | 15. CUC Transcription Factors: To the Meristem and Beyond | | 19. Functional Aspects of GRAS Family Proteins CORDELIA BOLLE | | |--|---------------------------------|---|---------------------------------| | AUDE MAUGARNY, BEATRIZ GONÇALVES. NICOLAS ARNAUD, PATRICK LAUFS 15.1 Introduction 15.2 Evolution and Structure of NAM/CUC3 Proteins 15.3 NAM/CUC3 Genes Define Boundaries in Meristems and Beyond | 230
230
234 | 19.1 The Role of GRAS Proteins in Development 19.2 The Role of GRAS Proteins in Signaling 19.3 General Principles of GRAS Function 19.4 Conclusion References | 296
301
303
307
307 | | 15.4 Multiple Regulatory Pathways Contribute to the Fine Regulation of NAM/CUC3 Genes | 236 | 20. DELLA Proteins, a Group of GRAS Transcription Regulators that Mediate | | | 15.5 NAM/CUC3 Control Plant Development Via
Modifications of the Cellular Behavior | 242 | Gibberellin Signaling | | | 15.6 Conclusion
References | 243
244 | FRANCISCO VERA-SIRERA, MARIA DOLORES GOMEZ,
MIGUEL A. PEREZ-AMADOR | | | 16. The Role of TCP Transcription Factors in Shaping Flower Structure, Leaf Morphology, and Plant Architecture | | 20.1 About DELLAs and Gibberellins 20.2 GA Signaling through DELLAs 20.3 The Molecular Mechanism of DELLA Action:
DELLA-Protein Interactions and Target Genes | 313
317
319 | | MICHAEL NICOLAS, PILAR CUBAS | | 20.4 Conclusion and Future Perspectives
References | 324
324 | | 16.1 Introduction 16.2 TCP Genes and the Control of Leaf Development 16.3 TCP Genes and the Control of Shoot Branching 16.4 TCP Genes and the Control of Flower Shape 16.5 TCP Genes Affect Flowering Time | 250
250
256
259
262 | 21. bZIP and bHLH Family Members Integrate
Transcriptional Responses to Light
MARÇAL GALLEMÍ, JAIME E MARTÍNEZ-GARCÍA | | | 16.6 Concluding Remarks References | 262
262
263 | 21.1 The Role of Light in the Control of Plant Development: A Brief Introduction | 329 | | 17. Growth-Regulating Factors, A Transcription Factor | | 21.2 PIFs: Factors that Link Light Perception, Changes in Gene Expression, and Plant Development | 333 | | Family Regulating More than Just Plant Growth | | 21.3 HFR1 and PAR1: Atypical bHLH Factors that Act | | | RAMIRO E. RODRIGUEZ, MARÍA FLORENCIA ERCOLI,
JUAN MANUEL DEBERNARDI, JAVIER F. PALATNIK | | as Transcriptional Cofactors 21.4 HY5: a Paradigm of a bZIP Member in Integrating Light Responses | 336
337 | | 17.1 Growth-Regulating Factors, a Plant-Specific Family of Transcription Factors | 269 | 21.5 Conclusions
References | 339
339 | | 17.2 Control of GRF Activity 17.3 Role of GRFs in Organ Growth and other | 272 | 22. What Do We Know about | | | Developmental Processes | 274 | Homeodomain-Leucine Zipper I Transcription | | | 17.4 Conclusion and Perspectives
References | 277
278 | Factors? Functional and Biotechnological
Considerations | | | 18. The Multifaceted Roles of miR156-targeted SPL Transcription Factors in Plant Developmental | | PAMELA A. RIBONE, MATÍAS CAPELLA, AGUSTÍN L. ARCE, RAQUEL L. CHAN | | | Transitions JIA-WEI WANG | | 22.1 HD–Zip Transcription Factors are Unique to Plants | 344 | | 18.1 Introduction to Developmental Transitions18.2 miR156 and its Targets | 281
282 | 22.2 Brief History of the Discovery of HD-Zip Transcription Factors22.3 Expression Patterns of HD-Zip I Genes | 344
344 | | 18.3 miR156-SPL Module in Timing Embryonic Development
18.4 miR156-SPL Module in Juvenile-to-Adult Phase | | 22.4 Environmental Factors Regulate the Expression of HD-Zip I Encoding Genes | 346 | | Transition in Higher Plants 18.5 The miR156-SPL Module Regulates Flowering Time | 283 | 22.5 The Function of HD-Zip I TFs from Model Plants22.6 HD-Zip I TFs from Nonmodel Species | 346
349 | | in Higher Plants 18.6 The miR156-SPL Module in Developmental Transitions | 285 | 22.7 Divergent HD-Zip I Proteins from Nonmodel Plants | 351 | | in Moss
18.7 The miR156-SPL Module in other Developmental Processes | 286
287 | 22.8 Knowledge Acquired from Ectopic Expressors 22.9 HD-Zip I TFs in Biotechnology | 352
352 | | 18.8 Perspectives | 290 | 22.10 Concluding Remarks | 353 | | References | 291 | References | 354 | viii CONTENTS | D | | 24.5 Redox Regulation of MYB Transcription Factors24.6 Redox Regulation of Homeodomain-Leucine Zipper | 379 | |---|-----------------|--|---------------------------------| | MODULATION OF PLANT
TRANSCRIPTION FACTOR
ACTION | Market (Market) | Transcription Factors 24.7 Rap2.4a is Under Redox Regulation 24.8 Redox Regulation of Class I TCP Transcription Factors 24.9 Conclusion References | 380
381
381
382
382 | | 23. Intercellular Movement of Plant Transcription Factors, Coregulators, and Their mRNAs DAVID J. HANNAPEL | | 25. Membrane-Bound Transcription Factors in Plants: Physiological Roles and Mechanisms of Action | | | 23.1 Introduction to Noncell-Autonomous Mobile Signals23.2 Mobile Transcription Factors of the Shoot Apex in | 359 | YUJI IWATA, NOZOMU KOIZUMI | | | Protein Form | 360 | 25.1 Introduction | 385 | | 23.3 Mobile Root Transcription Factors | 360 | 25.2 bZIP Transcription Factors | 386 | | 23.4 Transcription Factors and Coregulators that Move Long | 361 | 25.3 NAC Transcription Factors | 389
391 | | Distance through the Sieve Element System 23.5 Full-Length Mobile mRNAs and their Roles in Development | 363 | 25.4 Conclusions and Future Perspectives References | 393 | | 23.6 Conclusions
References | 369
369 | 26. Ubiquitination of Plant Transcription Factors SOPHIA L. STONE | | | 24. Redox-Regulated Plant Transcription Factors YUAN LI, GARY J. LOAKE | | 26.1 The Ubiquitin Proteasome System 26.2 The Ubiquitin Proteasome System and Regulation | 396 | | TOAN LI, OAKT J. DOUNE. | | of Transcription Factor Function | 400 | | 24.1 Introduction | 373 | References | 40. | | 24.2 Concept of Redox Regulation | 374 | | | | 24.3 Redox Regulation of NPR1 During Plant Immunity24.4 Redox Regulation of Basic Leucine Zipper | 377 | Index | 411 | | Transcription Factors | 378 | | |