Contents

Abou	out the Authors	xi	
Prefa	Preface		
Ackı	nowledgments	xv	
1	Characterization of Wireless Transmitter Distortions	1	
1.1	Introduction	1	
	1.1.1 RF Power Amplifier Nonlinearity	wth 2	
	1.1.2 Inter-Modulation Distortion and Spectrum Regro		
1.2	Impact of Distortions on Transmitter Performances	6	
1.3	Output Power versus Input Power Characteristic	9	
1.4	AM/AM and AM/PM Characteristics	10	
1.5	1 dB Compression Point	12	
1.6	Third and Fifth Order Intercept Points	15	
1.7	Carrier to Inter-Modulation Distortion Ratio	16	
1.8	Adjacent Channel Leakage Ratio	18	
1.9	Error Vector Magnitude	19	
	References	21	
2	Dynamic Nonlinear Systems	23	
2.1	Classification of Nonlinear Systems	23	
	2.1.1 Memoryless Systems	23	
	2.1.2 Systems with Memory	24	
2.2	Memory in Microwave Power Amplification Systems		
	2.2.1 Nonlinear Systems without Memory	25	
	2.2.2 Weakly Nonlinear and Quasi-Memoryless System	<i>is</i> 26	
	2.2.3 Nonlinear System with Memory	27	
23	Baseband and Low-Pass Equivalent Signals		

vì	Contents

2.4	Origins	and Types of Memory Effects in Power Amplification Systems	29	
	2.4.1	Origins of Memory Effects	29	
	2.4.2	Electrical Memory Effects	30	
		Thermal Memory Effects	33	
2.5	Volterra	a Series Models	38	
	Referer	nces	40	
3	Model	Performance Evaluation	43	
3.1	Introdu	ction	43	
3.2	Behavi	oral Modeling versus Digital Predistortion	43	
3.3	Time D	Oomain Metrics	46	
	3.3.1	Normalized Mean Square Error	46	
	3.3.2	Memory Effects Modeling Ratio	47	
3.4	Freque	ncy Domain Metrics	48	
	3.4.1	Frequency Domain Normalized Mean Square Error	48	
	3.4.2	Adjacent Channel Error Power Ratio	49	
	3.4.3	Weighted Error Spectrum Power Ratio	50	
	3.4.4	Normalized Absolute Mean Spectrum Error	51	
3.5	Static 1	Nonlinearity Cancelation Techniques	52	
	3.5.1	Static Nonlinearity Pre-Compensation Technique	52	
	3.5.2		56	
	3.5.3	5 00	59	
3.6	Discus	sion and Conclusion	61	
	Refere	nces	62	
4	Quasi-	Memoryless Behavioral Models	63	
4.1		Introduction		
4.2	Modeli	ing and Simulation of Memoryless/Quasi-Memoryless		
		ear Systems	63	
4.3	Bandpa	ass to Baseband Equivalent Transformation	67	
4.4	Look-U	Jp Table Models	69	
	4.4.1		69	
	4.4.2	, , , , , , , , , , , , , , , , , , ,	70	
4.5		c Nonlinear Amplifier Behavioral Model	71	
4.6	Empiri	cal Analytical Based Models	73	
	4.6.1	Polar Saleh Model	73	
	4.6.2	Cartesian Saleh Model	74	
	4.6.3	Frequency-Dependent Saleh Model	76	
	4.6.4	Ghorbani Model	76	
	4.6.5	Berman and Mahle Phase Model	7 7	
	4.6.6	Thomas-Weidner-Durrani Amplitude Model	77	
	4.6.7	Limiter Model	78	
	4.6.8	ARCTAN Model	79	

Contents

		Rapp Model	81
		White Model	82
4.7		ries Models	82
		Polynomial Model	82
		Bessel Function Based Model	83
		Chebyshev Series Based Model	84
		Gegenbauer Polynomials Based Model	84
		Zernike Polynomials Based Model	85
	Reference	es es	86
5	Memory	Polynomial Based Models	89
5.1	Introducti	on	89
5.2	Generic N	Memory Polynomial Model Formulation	90
5.3	Memory 1	Polynomial Model	91
5.4	Variants of	of the Memory Polynomial Model	91
	5.4.1	Orthogonal Memory Polynomial Model	91
	5.4.2	Sparse-Delay Memory Polynomial Model	93
	5.4.3	Exponentially Shaped Memory Delay Profile Memory	
		Polynomial Model	95
	5.4.4	Non-Uniform Memory Polynomial Model	96
	5.4.5	Unstructured Memory Polynomial Model	97
5.5	Envelope	Memory Polynomial Model	98
5.6	Generaliz	ed Memory Polynomial Model	101
5.7		Iemory Polynomial Model	106
5.8	-	Deviation Reduction Volterra Model	108
5.9	Comparis	son and Discussion	111
	Reference	es	113
6	Box-Orie	ented Models	115
6.1	Introducti		115
6.2		stein and Wiener Models	115
		Wiener Model	116
		Hammerstein Model	117
6.3		ed Hammerstein and Weiner Models	118
	_	Augmented Wiener Model	118
		Augmented Hammerstein Model	119
6.4		ox Wiener-Hammerstein Models	120
		Wiener-Hammerstein Model	120
		Hammerstein–Wiener Model	120
		Feedforward Hammerstein Model	121
6.5		Polynomial Models	123
		Models' Descriptions	123
		Identification Procedure	124

viii	Contents

6.6	Three-I	Box Polynomial Models	124
	6.6.1	Parallel Three-Blocks Model: PLUME Model	124
	6.6.2	Three Layered Biased Memory Polynomial Model	125
	6.6.3	Rational Function Model for Amplifiers	127
6.7		mial Based Model with I/Q and DC Impairments	128
	6.7.1	Parallel Hammerstein (PH) Based Model for the Alleviation	
		of Various Imperfections in Direct Conversion Transmitters	129
	6.7.2	Two-Box Model with I/Q and DC Impairments	129
	Referen	-	130
7	Neural	Network Based Models	133
7.1	Introdu	ction	133
7.2	Basics	of Neural Networks	133
7.3	Neural	Networks Architecture for Modeling of Complex Static	
	System	S	137
	7.3.1	Single-Input Single-Output Feedforward Neural Network	
		(SISO-FFNN)	137
	7.3.2	Dual-Input Dual-Output Feedforward Neural Network	
		(DIDO-FFNN)	138
	7.3.3	Dual-Input Dual-Output Coupled Cartesian Based Neural Network (DIDO-CC-NN)	139
7.4	Neural	Networks Architecture for Modeling of Complex Dynamic	
	System		140
	7.4.1	Complex Time-Delay Recurrent Neural Network (CTDRNN)	141
	7.4,2	Complex Time-Delay Neural Network (CTDNN)	142
	7.4.3	Real Valued Time-Delay Recurrent Neural Network	
		(RVTDRNN)	142
	7.4.4	Real Valued Time-Delay Neural Network (RVTDNN)	144
7.5	Trainir	ng Algorithms	147
7.6	Conclu	asion	150
	Refere	nces	151
8	Chara	cterization and Identification Techniques	153
8.1	Introdu	action	153
8.2	Test Si	gnals for Power Amplifier and Transmitter Characterization	155
	8.2.1	Characterization Using Continuous Wave Signals	155
	8.2.2	Characterization Using Two-Tone Signals	156
	8.2.3	Characterization Using Multi-Tone Signals	157
	8.2.4	Characterization Using Modulated Signals	158
	8.2.5	Characterization Using Synthetic Modulated Signals	160
	8.2.6	Discussion: Impact of Test Signal on the Measured AM/AM	
		and AM/PM Characteristics	160

8.3		e-Embedding in Modulated Signal Based Characterization	163
8.4		cation Techniques	170
	8.4.1	Moving Average Techniques	170
	8.4.2	Model Coefficient Extraction Techniques	172
8.5	Robusti	ness of System Identification Algorithms	179
	8.5.1	The LS Algorithm	179
	8.5.2	The LMS Algorithm	179
	8.5.3	The RLS Algorithm	180
8.6	Conclu	sions	181
	Referer	ices	181
9	Baseba	nd Digital Predistortion	185
9.1	The Pre	edistortion Concept	185
9.2	Adaptiv	e Digital Predistortion	188
	9.2.1	Closed Loop Adaptive Digital Predistorters	188
	9.2.2	Open Loop Adaptive Digital Predistorters	189
9.3	The Pre	edistorter's Power Range in Indirect Learning Architectures	191
	9.3.1	Constant Peak Power Technique	193
	9.3.2		193
	9.3.3	Synergetic CFR and DPD Technique	194
9.4	Small S	Signal Gain Normalization	194
9.5	Digital	Predistortion Implementations	201
	9.5.1	Baseband Digital Predistortion	201
	9.5.2	RF Digital Predistortion	204
9.6	The Ba	ndwidth and Power Scalable Digital Predistortion Technique	205
9.7	Summa		206
	Referer	nces	207
10	Advan	ced Modeling and Digital Predistortion	209
10.1		uadrature Impairment and Nonlinear Distortion Compensation	
		Multi-Input DPD	209
	10.1.1	Modeling of Quadrature Modulator Imperfections	210
	10.1.2	Dual-Input Polynomial Model for Memoryless Joint	
		Modeling of Quadrature Imbalance and PA Distortions	211
	10.1.3	Dual-Input Memory Polynomial for Joint Modeling of	
		Quadrature Imbalance and PA Distortions Including Memory	
		Effects	212
	10.1.4	Dual-Branch Parallel Hammerstein Model for Joint	
		Modeling of Quadrature Imbalance and PA Distortions with	
		Memory	213
	10.1.5	Dual-Conjugate-Input Memory Polynomial for Joint	
		Modeling of Quadrature Imbalance and PA Distortions	
		Including Memory Effects	216

10.2	Modelin	ng and Linearization of Nonlinear MIMO Systems	216
	10.2.1	Impairments in MIMO Systems	216
	10.2.2	Crossover Polynomial Model for MIMO Transmitters	221
	10.2.3	Dual-Input Nonlinear Polynomial Model for MIMO	
		Transmitters	222
	10.2.4	MIMO Transmitters Nonlinear Multi-Variable Polynomial	
		Model	223
10.3	Modeling and Linearization of Dual-Band Transmitters		227
	10.3.1	Generalization of the Polynomial Model to the Dual-Band	
		Case	228
	10.3.2	Two-Dimensional (2-D) Memory Polynomial Model for	
		Dual-Band Transmitters	230
	10.3.3	Phase-Aligned Multi-band Volterra DPD	231
10.4	Application of MIMO and Dual-Band Models in Digital Predistortion		
	10.4.1	Linearization of MIMO Systems with Nonlinear Crosstalk	236
	10.4.2	Linearization of Concurrent Dual-Band Transmitters Using a	
		2-D Memory Polynomial Model	238
	10.4.3	Linearization of Concurrent Tri-Band Transmitters Using	
		3-D Phase-Aligned Volterra Model	240
	References		242
Index			247