Contents | Preface | | Xi | | |---------|---|--|----| | Pai | rt I | HVDC with Current Source Converters | 1 | | 1 | Intr | roduction to Line-Commutated HVDC | 3 | | | 1.1 | HVDC Applications | 3 | | | 1.2 | Line-Commutated HVDC Components | 5 | | | 1.3 | DC Cables and Overhead Lines | 6 | | | 1.4 | LCC HVDC Topologies | 7 | | | 1.5 | Losses in LCC HVDC Systems | 9 | | | 1.6 | Conversion of AC Lines to DC | 10 | | | 1.7 | Ultra-High Voltage HVDC | 10 | | 2 | Thyristors | | 12 | | | 2.1 | Operating Characteristics | 12 | | | 2.2 | Switching Characteristic | 13 | | | 2.3 | Losses in HVDC Thyristors | 17 | | | 2.4 | Valve Structure and Thyristor Snubbers | 20 | | | 2.5 | Thyristor Rating Selection and Overload Capability | 22 | | 3 | Six- | Pulse Diode and Thyristor Converter | 23 | | | 3.1 | Three-Phase Uncontrolled Bridge | 23 | | | 3.2 | Three-Phase Thyristor Rectifier | 25 | | | 3.3 | Analysis of Commutation Overlap in a Thyristor Converter | 26 | | | 3.4 | Active and Reactive Power in a Three-Phase Thyristor Converter | 30 | | | 3.5 | Inverter Operation | 31 | | 4 | HVDC Rectifier Station Modelling, Control and Synchronization | | | | | witl | h AC Systems | 35 | | | 4.1 | HVDC Rectifier Controller | 35 | | | 42 | Phase-Locked Loop (PLL) | 36 | | 5 | HVDC Inverter Station Modelling and Control | 40 | | |----|--|-----|--| | | 5.1 Inverter Controller | 40 | | | | 5.2 Commutation Failure | 42 | | | 6 | HVDC System V-I Diagrams and Operating Modes | 45 | | | | 6.1 HVDC-Equivalent Circuit | 45 | | | | 6.2 HVDC V-I Operating Diagram | 45 | | | | 6.3 HVDC Power Reversal | 48 | | | 7 | HVDC Analytical Modelling and Stability | 53 | | | | 7.1 Introduction to Converters and HVDC Modelling | 53 | | | | 7.2 HVDC Analytical Model | 54 | | | | 7.3 CIGRE HVDC Benchmark Model | 56 | | | | 7.4 Converter Modelling, Linearization and Gain Scheduling | 56 | | | | 7.5 AC System Modelling for HVDC Stability Studies | 58 | | | | 7.6 LCC Converter Transformer Model | 62 | | | | 7.7 DC System Model | 63 | | | | 7.8 HVDC-HVAC System Model | 65 | | | | 7.9 Analytical Dynamic Model Verification | 65 | | | | 7.10 Basic HVDC Dynamic Analysis7.11 HVDC Second Harmonic Instability | 66 | | | | 7.12 Oscillations of 100 Hz on the DC Side | 70 | | | | 7.12 Osemations of 100 Hz oil the DC Side | 71 | | | 8 | HVDC Phasor Modelling and Interactions with AC System | 72 | | | | 8.1 Converter and DC System Phasor Model | 72 | | | | 8.2 Phasor AC System Model and Interaction with the DC System | 73 | | | | 8.3 Inverter AC Voltage and Power Profile as DC Current is Increasing | 75 | | | | 8.4 Influence of Converter Extinction Angle | 76 | | | | 8.5 Influence of Shunt Reactive Power Compensation | 78 | | | | 8.6 Influence of Load at the Converter Terminals | 78 | | | | 8.7 Influence of Operating Mode (DC Voltage Control Mode) | 78 | | | | 8.8 Rectifier Operating Mode | 80 | | | 9 | HVDC Operation with Weak AC Systems | 82 | | | | 9.1 Introduction | 82 | | | | 9.2 Short-Circuit Ratio and Equivalent Short-Circuit Ratio | 82 | | | | 9.3 Power Transfer between Two AC Systems | 85 | | | | 9.4 Phasor Study of Converter Interactions with Weak AC Systems | 89 | | | | 9.5 System Dynamics (Small Signal Stability) with Low SCR | 90 | | | | 9.6 HVDC Control and Main Circuit Solutions for Weak AC Grids 9.7 LCC HVDC with SVC (Static VAR Compensator) | 90 | | | | = = " The Compensator) | 91 | | | | • | 93 | | | | 9.9 AC System with Low Inertia | 93 | | | 10 | Fault Management and HVDC System Protection | | | | | 10.1 Introduction | 98 | | | | 10.2 DC Line Faults | 98 | | | | 10.3 AC System Faults | 101 | | | Contents | vii | |----------|------| | |
 | | | 10.4 Internal Faults | 102 | |-----|---|--------------| | | 10.5 System Reconfiguration for Permanent Faults | 102 | | | 10.6 Overvoltage Protection | 106 | | | | 700 | | 11 | LCC HVDC System Harmonics | 107 | | | 11.1 Harmonic Performance Criteria | 107 | | | 11.2 Harmonic Limits | 108 | | | 11.3 Thyristor Converter Harmonics | 109 | | | 11.4 Harmonic Filters | 110 | | | 11.5 Noncharacteristic Harmonic Reduction Using HVDC Controls | 118 | | Bib | liography Part I Line Commutated Converter HVDC | 119 | | Par | t II HVDC with Voltage Source Converters | 121 | | 12 | VSC HVDC Applications and Topologies, Performance and | | | 14 | Cost Comparison with LCC HVDC | 123 | | | 12.1 Voltage Source Converters (VSC) | 123 | | | 12.2 Comparison with Line-Commutated Converter (LCC) HVDC | 125 | | | 12.3 Overhead and Subsea/Underground VSC HVDC Transmission | 126 | | | 12.4 DC Cable Types with VSC HVDC | 129 | | | 12.5 Monopolar and Bipolar VSC HVDC Systems | 129 | | | 12.6 VSC HVDC Converter Topologies | 130 | | | 12.7 VSC HVDC Station Components | 135 | | | 12.8 AC Reactors | 139 | | | 12.9 DC Reactors | 139 | | 13 | IGBT Switches and VSC Converter Losses | 141 | | 15 | 13.1 Introduction to IGBT and IGCT | 141 | | | 13.2 General VSC Converter Switch Requirements | 142 | | | 13.3 IGBT Technology | 142 | | | 13.4 High Power IGBT Devices | 147 | | | 13.5 IEGT Technology | 148 | | | 13.6 Losses Calculation | 148 | | | 13.7 Balancing Challenges in Series IGBT Chains | 154 | | | 13.8 Snubbers Circuits | 155 | | 14 | Single-Phase and Three-Phase Two-Level VSC Converters | 156 | | 17 | 14.1 Introduction | 156 | | | 14.2 Single-Phase Voltage Source Converter | 156 | | | 14.3 Three-Phase Voltage Source Converter | 159 | | | 14.4 Square-Wave, Six-Pulse Operation | 159 | | 15 | To a Land DWM VCC C | 4 / 2 | | 15 | Two-Level PWM VSC Converters | 167 | | | 15.1 Introduction | 167 | | | 15.2 PWM Modulation | 167 | | | 15.3 Sinusoidal Pulse-Width Modulation (SPWM) | 168 | | | 15.4 Third Harmonic Injection (THI) | 171 | | | 15.5 | Selective Harmonic Elimination Modulation (SHE) | 172 | |----|-------|--|-----| | | 15.6 | Converter Losses for Two-Level SPWM VSC | 173 | | | 15.7 | Harmonics with Pulse-Width Modulation (PWM) | 175 | | | 15.8 | Comparison of PWM Modulation Techniques | 178 | | 16 | | level VSC Converters | 179 | | | 16.1 | Introduction | 179 | | | 16.2 | Modulation Techniques for Multilevel Converters | 181 | | | 16.3 | Neutral Point Clamped Multilevel Converter | 182 | | | 16.4 | Flying Capacitor Multilevel Converter | 184 | | | 16.5 | H-Bridge Cascaded Converter | 185 | | | 16.6 | Half Bridge Modular Multilevel Converter (MMC) | 186 | | | 16.7 | MMC Based on Full Bridge Topology | 199 | | | 16.8 | Comparison of Multilevel Topologies | 208 | | 17 | Two- | Level PWM VSC HVDC Modelling, Control and Dynamics | 209 | | | 17.1 | PWM Two-Level Converter Average Model | 209 | | | 17.2 | Two-Level PWM Converter Model in DQ Frame | 210 | | | 17.3 | VSC Converter Transformer Model | 212 | | | 17.4 | Two-Level VSC Converter and AC Grid Model in ABC Frame | 213 | | | 17.5 | Two-Level VSC Converter and AC Grid Model in DQ Rotating | | | | | Coordinate Frame | 213 | | | 17.6 | VSC Converter Control Principles | 214 | | | 17.7 | The Inner Current Controller Design | 215 | | | 17.8 | Outer Controller Design | 218 | | | 17.9 | Complete VSC Converter Controller | 221 | | | 17.10 | Small-Signal Linearized VSC HVDC Model | 224 | | | 17.11 | Small-Signal Dynamic Studies | 224 | | 18 | Two-l | Level VSC HVDC Phasor-Domain Interaction with AC Systems and | | | | | perating Diagrams | 226 | | | 18.1 | Power Exchange between Two AC Voltage Sources | 226 | | | 18.2 | Converter Phasor Model and Power Exchange with an AC System | 230 | | | 18.3 | Phasor Study of VSC Converter Interaction with AC System | 232 | | | 18.4 | Operating Limits | 234 | | | 18.5 | Design Point Selection | 235 | | | 18.6 | Influence of AC System Strength | 236 | | | 18.7 | Influence of Transformer Reactance | 236 | | | 18.8 | Operation with Very Weak AC Systems | 239 | | 19 | | Bridge MMC Converter: Modelling, Control and Operating PQ Diagrams | 246 | | | 19.1 | Half Bridge MMC Converter Average Model in ABC Frame | 246 | | | 19.2 | Half-Bridge MMC Converter-Static DQ Frame and Phasor Model | 249 | | | 19.3 | Differential Current at Second Harmonic | 254 | | | 19.4 | Complete MMC Converter DQ Model in Matrix Form | 255 | | | 19.5 | Second Harmonic Circulating Current Suppression Controller | 256 | | | 19.6 | DQ Frame Model of MMC with Circulating Current Controller | 259 | | | 19.7 | Phasor Model of MMC with Circulating Current Suppression Controller | 261 | | | 19.8 | Dynamic MMC Model Using Equivalent Series Capacitor C _{MMC} | 262 | | | 19.9 | Full Dynamic Analytical MMC Model | 265 | | | 19.10 | MMC Converter Controller | 267 | Contents | | 19.11 MMC Total Series Reactance in the Phasor Model | 267 | |-----|---|--| | | 19.12 MMC VSC Interaction with AC System | | | | and PQ Operating Diagrams | 269 | | 20 | VSC HVDC under AC and DC Fault Conditions | 271 | | | 20.1 Introduction | 271 | | | 20.2 Faults on the AC System | 271 | | | 20.3 DC Faults with Two-Level VSC | 272 | | | 20.4 Influence of DC Capacitors | 276 | | | 20.5 VSC Converter Modelling under DC Faults and VSC Diode Bridge | 277 | | | 20.6 Converter-Mode Transitions as DC Voltage Reduces | 284 | | | 20.7 DC Faults with Half-Bridge Modular Multilevel Converter | 286 | | | 20.8 DC Faults with Full-Bridge Modular Multilevel Converter | 287 | | 21 | VSC HVDC Application for AC Grid Support and Operation with | | | | Passive AC Systems | 291 | | | 21.1 VSC HVDC High-Level Controls and AC Grid Support | 291 | | | 21.2 HVDC Embedded inside an AC Grid | 292 | | | 21.3 HVDC Connecting Two Separate AC Grids | 293 | | | 21.4 HVDC in Parallel with AC | 293 | | | 21.5 Operation with a Passive AC System and Black Start Capability | 294 | | | 21.6 VSC HVDC Operation with Offshore Wind Farms | 294 | | | 21.7 VSC HVDC Supplying Power Offshore and Driving a MW-Size | | | | Variable-Speed Motor | 296 | | Bib | oliography Part II Voltage Source Converter HVDC | 298 | | Par | rt III DC Transmission Grids | 301 | | 22 | Introduction to DC Grids | 303 | | | 22.1 DC versus AC Transmission | 303 | | | 22.2 Terminology | 304 | | | 22.3 DC Grid Planning, Topology and Power-Transfer Security | 304 | | | 22.4 Technical Challenges | 305 | | | 22.5 DC Grid Building by Multiple Manufacturers | 306 | | | 22.6 Economic Aspects | 306 | | | | | | 23 | DC Grids with Line-Commutated Converters | 307 | | 23 | DC Grids with Line-Commutated Converters 23.1 Multiterminal HVDC | 307
307 | | 23 | | | | 23 | 23.1 Multiterminal HVDC | 307 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids | 307
308 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback | 307
308
309 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults | 307
308
309
311 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults 23.7 Reactive Power Issues | 307
308
309
311
311 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults | 307
308
309
311
311
313 | | 23 | 23.1 Multiterminal HVDC 23.2 Italy-Corsica-Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults 23.7 Reactive Power Issues 23.8 Large LCC Rectifier Stations in DC Grids DC Grids with Voltage Source Converters and Power-Flow Model | 307
308
309
311
311
313
315 | | | 23.1 Multiterminal HVDC 23.2 Italy–Corsica–Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults 23.7 Reactive Power Issues 23.8 Large LCC Rectifier Stations in DC Grids DC Grids with Voltage Source Converters and Power-Flow Model 24.1 Connecting a VSC Converter to a DC Grid | 307
308
309
311
311
313
315
315 | | | 23.1 Multiterminal HVDC 23.2 Italy-Corsica-Sardinia Multiterminal HVDC Link 23.3 Connecting LCC Converter to a DC Grid 23.4 Control of LCC Converters in DC Grids 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback 23.6 Managing LCC DC Grid Faults 23.7 Reactive Power Issues 23.8 Large LCC Rectifier Stations in DC Grids DC Grids with Voltage Source Converters and Power-Flow Model | 307
308
309
311
311
313
315
315 | | X | Contents | |-------------|-------------| | | | | 25 | DC G | rid Control | 324 | |-------|---|--|-----| | | 25.1 | Introduction | 324 | | | 25.2 | Fast Local VSC Converter Control in DC Grids | 324 | | | 25.3 | DC Grid Dispatcher with Remote Communication | 326 | | | 25.4 | Primary, Secondary and Tertiary DC Grid Control | 327 | | | 25.5 | DC Voltage Droop Control for VSC Converters in DC Grids | 328 | | | 25.6 | Three-Level Control for VSC Converters with Dispatcher Droop | 329 | | | 25.7 | Power Flow Algorithm When DC Powers are Regulated | 330 | | | 25.8 | Power Flow and Control Study of CIGRE DC Grid-Test System | 334 | | 26 | DC Grid Fault Management and DC Circuit Breakers | | | | | 26.1 | Introduction | 339 | | | 26.2 | Fault Current Components in DC Grids | 340 | | | 26.3 | DC System Protection Coordination with AC System Protection | 342 | | | 26.4 | Mechanical DC Circuit Breaker | 342 | | | 26.5 | Semiconductor Based DC Circuit Breaker | 345 | | | 26.6 | Hybrid DC Circuit Breaker | 349 | | | 26.7 | DC Grid-Protection System Development | 351 | | | 26.8 | DC Grid Selective Protection System Based on Current Derivative or | | | | | Travelling Wave Identification | 352 | | | 26.9 | Differential DC Grid Protection Strategy | 353 | | | | DC Grid Selective Protection System Based on Local Signals | 354 | | | 26.11 | DC Grids with DC Fault-Tolerant VSC Converters | 355 | | 27 | High Power DC/DC Converters and DC Power-Flow Controlling Devices | | | | | 27.1 | Introduction | 362 | | | 27.2 | Power Flow Control Using Series Resistors | 363 | | | 27.3 | Low Stepping-Ratio DC/DC Converters | 366 | | | 27.4 | DC/DC Converters with DC Polarity Reversal | 371 | | | 27.5 | High Stepping Ratio Isolated DC/DC Converter | 373 | | | 27.6 | High Stepping Ratio LCL DC/DC Converter | 373 | | | 27.7 | Building DC Grids with DC/DC Converters | 375 | | | 27.8 | DC Hubs | 377 | | | 27.9 | Developing DC Grids Using DC Hubs | 380 | | | 27.10 | North Sea DC Grid Topologies | 380 | | Bibl | liograp | hy Part III DC Transmission Grids | 384 | | App | endix | A Variable Notations | 386 | | Арр | endix | B Analytical Background for Rotating DQ Frame | 388 | | App | endix | C System Modelling Using Complex Numbers and Phasors | 399 | | Арр | endix | D Simulink Examples | 401 | | Index | | 419 | |