Contents

Pref	ace		ix
4cki	iowlea	lgments	xi
1.	Introduction		
	1.1	Cognitive dynamic systems	1
	1.2	The perception–action cycle	2
	1.3	Cognitive dynamic wireless systems: radar and radio	3
	1.4	Illustrative cognitive radar experiment	4
	1.5	Principle of information preservation	8
	1.6	Organization of the book	10
	Note	s and practical references	12
2.	The	perception–action cycle	14
	2.1	Perception	14
	2.2	Memory	17
	2.3	Working memory	20
	2.4	Attention	20
	2.5	Intelligence	21
	2.6	Practical benefits of hierarchy in the perception-action cycle	23
	2.7	Neural networks for parallel distributed cognitive information	
		processing	24
	2.8	Associative learning process for memory construction	29
	2.9	Back-propagation algorithm	31
	2.10	Recurrent multilayer perceptrons	34
	2.11	Self-organized learning	35
	2.12	Summary and discussion	38
	Note	es and practical references	40
3.	Power-spectrum estimation for sensing the environment		
	3.1	The power spectrum	43
	3.2	Power spectrum estimation	44
	3.3	Multitaper method	47
	3.4	Space–time processing	52
	3.5	Time-frequency analysis	56
	3.6	Cyclostationarity	64

	3./	Harmonic F-test for spectral line components	67	
	3.8	Summary and discussion	71	
	Note	s and practical references	73	
4.	Bayesian filtering for state estimation of the environment			
	4.1	Probability, conditional probability, and Bayes' rule	78	
	4.2	Bayesian inference and importance of the posterior	80	
	4.3	Parameter estimation and hypothesis testing: the MAP rule	83	
	4.4	State-space models	87	
	4.5	The Bayesian filter	90	
	4.6	Extended Kalman filter	95	
	4.7	Cubature Kalman filters	97	
	4.8	On the relationship between the cubature and		
		unscented Kalman filters	105	
	4.9	The curse of dimensionality	109	
	4.10	Recurrent multilayer perceptrons: an application		
		for state estimation	112	
		Summary and discussion	120	
	Note	s and practical references	121	
5.	Dynamic programming for action in the environment			
	5.1	Markov decision processes	126	
	5.2	Bellman's optimality criterion	129	
	5.3	Policy iteration	132	
	5.4	Value iteration	135	
	5.5	Approximate dynamic programming for problems		
		with imperfect state information	137	
	5.6	Reinforcement learning viewed as approximate		
		dynamic programming	141	
	5.7	Q-learning	141	
	5.8	Temporal-difference learning	144	
	5.9	On the relationships between temporal-difference		
		learning and dynamic programming	148	
		Linear function approximations of dynamic programming	150	
		Linear $GQ(\lambda)$ for predictive learning	151	
		Summary and discussion	161	
	Note	es and practical references	164	
6.	Cognitive radar			
	6.1	Three classes of radars defined	168	
	6.2	The perception-action cycle	169	
	6.3	Baseband model of radar signal transmission	170	
	6.4	System design considerations	175	
	6.5	Cubature Kalman filter for target-state estimation	176	

	6.6	Transition from perception to action	180
	6.7	Cost-to-go function	182
	6.8	Cyclic directed information-flow	184
	6.9	Approximate dynamic programming for optimal control	186
	6.10	The curse-of-dimensionality problem	190
	6.11	Two-dimensional grid for waveform library	191
	6.12	Case study: tracking a falling object in space	192
	6.13	Cognitive radar with single layer of memory	199
	6.14	Intelligence for dealing with environmental uncertainties	206
	6.15	New phenomenon in cognitive radar: chattering	209
	6.16	Cognitive radar with multiscale memory	211
	6.17	The explore-exploit strategy defined	214
	6.18	Sparse coding	215
	6.19	Summary and discussion	222
	Note	s and practical references	225
7.	Cogi	nitive radio	230
	7.1	The spectrum-underutilization problem	231
	7.2	Directed information flow in cognitive radio	232
	7.3	Cognitive radio networks	235
	7.4	Where do we find the spectrum holes?	237
	7.5	Multitaper method for spectrum sensing	240
	7.6	Case study I: wideband ATSC-DTV signal	242
	7.7	Spectrum sensing in the IEEE 802.22 standard	244
	7.8	Noncooperative and cooperative classes of	
		cognitive radio networks	244
	7.9	Nash equilibrium in game theory	246
	7.10	Water-filling in information theory for	
		cognitive control	248
	7.11	Orthogonal frequency-division multiplexing	251
	7.12	Iterative water-filling controller for cognitive	
		radio networks	252
		Stochastic versus robust optimization	256
	7.14	Transient behavior of cognitive radio networks,	
		and stability of equilibrium solutions	259
	7.15	Case study II: robust IWFC versus classic IWFC	260
		Self-organized dynamic spectrum management	265
		Cooperative cognitive radio networks	268
		Emergent behavior of cognitive radio networks	270
		Provision for the feedback channel	272
		Summary and discussion	273
	Note	es and practical references	276

viii Contents

8.	Epilogue		282
	8.1	The perception–action cycle	282
	8.2	Summarizing remarks on cognitive radar and	
		cognitive radio	283
	8.3	Unexplored issues	285
	Glo.	ssary	293
	References		297
	Inde	ex	306