Contents

Preface xi Nomenclature xv Abbreviations xviii

Chapter	Wood Buildings and Design Criteria	1
1.1	Introduction	1
1.2	Types of Buildings	2
1.3	Required and Recommended References	4
1.4	Building Codes and Design Criteria	7
1.5	ASD and LRFD	8
1.6	Organization of the Text	9
1.7	Structural Calculations	9
1.8	Detailing Conventions	11
1.9	Fire-Resistive Requirements	12
1.10	Industry Organizations	13
1.11	References	13
Chapter	2. Design Loads	15
2.1	Introduction	15
2.2	Dead Loads	17
2.3	Live Loads	21
2.4	Snow Loads	28
2.5	Soil Loads and Hydrostatic Pressure	35
2.6	Loads due to Fluids	35
2.7	Rain Loads	35
2.8	Flood Loads	36
2.9	Self-Straining Loads	36
2.10	Wind Loads—Introduction	37
2.11	Wind Forces—Main Wind Force Resisting System	42
2.12	Wind Forces—Components and Cladding	52
2.13	Seismic Forces—Introduction	57
2.14	Seismic Forces	62
2.15	Seismic Forces—Primary System	76
2.16	Seismic Forces—Wall Components	83

	Load Combinations	88
2.18	Serviceability/Deflection Criteria	93
2.19	References	98
2.20	Problems	99
Chapter	3. Behavior of Structures under Loads and Forces	107
3.1	Introduction	107
3.2	Structures Subject to Vertical Loads	107
3.3	Structures Subject to Lateral Forces	111
3.4	Lateral Forces in Buildings with Diaphragms and Shearwalls	118
3.5	Design Problem: Lateral Forces on One-Story Building	124
3.6	Design Problem: Lateral Forces on Two-Story Building	139
3.7	References	159
3.8	Problems	159
Chapter	4. Properties of Wood and Lumber Grades	167
4.1	Introduction	167
4.2	Design Specification	168
4.3	Methods of Grading Structural Lumber	170
4.4	In-Grade versus Clear Wood Design Values	172
4.5	Species and Species Groups	174
4.6	Cellular Makeup	175
4.7	Moisture Content and Shrinkage	178
4.8	Effect of Moisture Content on Lumber Sizes	186
4.9	Durability of Wood and the Need for Pressure Treatment	186
4.10	Growth Characteristics of Wood	189
4.11	Sizes of Structural Lumber	192
4.12	Size Categories and Commercial Grades	195
4.13	General Notation	199
4.14	Wet Service Factor C _M	205
4.15	Load Duration Factor C _D (ASD Only)	206
4.16	Time Effect Factor λ (LRFD Only)	210
4.17	Size Factor C _F	211
4.18	Repetitive Member Factor C,	212
4.19	Flat Use Factor C _{fu}	213
4.20	Temperature Factor C _t	213
4.21	Incising Factor C _i	214
4.22	Resistance Factor ϕ (LRFD Only)	214
4.23	Format Conversion Factor K_F (LRFD Only)	215
4.24	Design Problem: Adjusted Design Values	216
4.25	Future Directions in Wood Design	226
4.26	References	227
4.27	Problems	228
Chapter	r 5. Structural Glued Laminated Timber	235
5.1	Introduction	235
	Sizes of Glulam Members	235
	Resawn Glulam	238
	Fabrication of Glulams	239

	•	Contents	vii
5.5	Grades of Glulam Members		245
5.6	Adjustment Factors for Glulam		250
	Design Problem: Adjusted Design Values		253
5.8	References		257
5.9	Problems		258
Chapter	6. Beam Design		261
6.1	Introduction		261
6.2	Bending		262
6.3	Lateral Stability		274
6.4	Adjusted Bending Design Value Summary		283
6.5	Shear		289
6.6	Deflection		296
6.7	Design Summary		298
6.8	Bearing at Supports		300
6.9	Design Problem: Sawn Beam		307
6.10	Design Problem: Rough-Sawn Beam Using ASD		314
6.11	Design Problem: Notched Beam		316
6.12	Design Problem: Sawn-Beam Analysis		318
6.13	Design Problem: Glulam Beam with Full Lateral Support		322
6.14	Design Problem: Glulam Beam with Lateral Support at 8 ft-0 in.		328
6.15	Design Problem: Glulam Beam with Lateral Support at 48 ft-0 in.		332
6.16	Design Problem: Glulam with Compression Zone Stressed in Tension		335
6.17	Cantilever Beam Systems		339
6.18	Lumber Roof and Floor Decking		343
6.19	Fabricated Wood Components		345
6.20	References		354
6.21	Problems		355
Chanter	7. Axial Forces and Combined Bending and Axial Forces		367
7.1	Introduction		367
7.2	Axial Tension Members		368
7.2	Design Problem: Tension Member		373
7.4	Columns		373
7.5	Detailed Analysis of Slenderness Ratio		385
7.6	Design Problem: Axially Loaded Column		391
7.7	Design Problem: Axially Loaded Column Design Problem: Capacity of a Glulam Column		396
7.8	Design Problem: Capacity of a Bearing Wall		402
7.9	Built-Up Columns		404
7.10	Combined Bending and Tension		408
7.11	Design Problem: Combined Bending and Tension		413
7.12	Combined Bending and Compression		418
7.12	Design Problem: Beam-Column		425
7.14	Design Problem: Beam-Column Action in a Stud Wall Using LRFD		430
7.14	Design Problem: Glulam Beam-Column Using ASD		439
7.16	Design for Minimum Eccentricity		446
7.17	Design Problem: Column with Eccentric Load Using ASD		447
7.18	References		453
7.19	Problems		454

Chapter	8. Wood Structural Panels	463
8.1	Introduction	463
8.2	Panel Dimensions and Installation Recommendations	465
	Plywood Makeup	467
	Species Groups for Plywood	470
	Veneer Grades	473
	Exposure Durability Classifications	475
	Plywood Grades	476
	Other Wood Structural Panels	479
	Roof Sheathing	482
	Design Problem: Roof Sheathing	485
8.11	Floor Sheathing	489
	Design Problem: Floor Sheathing	492
	Wall Sheathing and Siding	494
	Stress Calculations for Wood Structural Panels References	498
	Problems	508
0.10	Froblems	509
Chapter	9. Diaphragms	513
9.1	Introduction	513
9.2	Basic Diaphragm Action	514
9.3	Shear Resistance	519
9.4	Diaphragm Chords	527
9.5	Design Problem: Roof Diaphragm	532
9.6	Distribution of Lateral Forces in a Shearwall	540
9.7	Collector (Strut) Forces	544
9.8	Diaphragm Deflections	549
9.9	Diaphragms with Interior Shearwalls	554
9.10	Interior Shearwalls with Collectors	559
9.11	Diaphragm Flexibility	563
9.12	References	566
9.13	Problems	566
Chapter	10. Shearwalls	573
10.1	Introduction	573
10.2	Basic Shearwall Action	574
10.3	Shearwalls Using Wood Structural Panels	575
10.4	Other Sheathing Materials	581
10.5	Shearwall Chord Members	583
10.6	Design Problem: Shearwall	585
10.7	Alternate Shearwall Design Methods	594
10.8	Anchorage Considerations	605
10.9	Vertical (Gravity) Loads	606
10.10	Lateral Forces Parallel to a Wall	607
10.11	Shearwall Deflection	611
10.12	Lateral Forces Perpendicular to a Wall	616
10.13	References	618
10.14	Problems	619

Chapter	11. Wood Connections—Background	627
11.1	Introduction	627
11.2	Types of Fasteners and Connections	627
11.3	Yield Model for Laterally Loaded Fasteners	634
11.4	Factors Affecting Strength in Yield Model	635
11.5	Dowel Bearing Strength	639
11.6	Plastic Hinge in Fastener	643
11.7	Yield Limit Mechanisms	647
11.8	References	652
11.9	Problems	652
Chapter	12. Nailed and Stapled Connections	655
12.1	Introduction	655
12.2	Types of Nails	656
12.3	Power-Driven Nails and Staples	659
12.4	Yield Limit Equations for Nails	661
12.5	Applications of Yield Limit Equations	668
12.6	Adjustment Factors for Laterally Loaded Nails	676
12.7	Design Problem: Nail Connection for Knee Brace	683
12.8	Design Problem: Top Plate Splice	688
12.9	Design Problem: Shearwall Chord Tie	696
12.10	Design Problem: Laterally Loaded Toenail	700
12.11	Design Problem: Laterally Loaded Connection in End Grain	704
12.12	Nail Withdrawal Connections	706
12.13	Combined Lateral and Withdrawal Loads	713
12.14	Spacing Requirements	714
12.15	Nailing Schedule	718
12.16	References	718
12.17	Problems	718
Chapter	13. Bolts, Lag Bolts, and Other Connectors	727
13.1	Introduction	727
13.2	Bolt Connections	728
13.3	Bolt Yield Limit Equations for Single Shear	731
13.4	Bolt Yield Limit Equations for Double Shear	740
13.5	Adjustment Factors for Bolts	744
13.6	Tension and Shear Stresses at a Multiple Fastener Connection	
13.7	Design Problem: Multiple-Bolt Tension Connection	760
13.8	Design Problem: Bolted Chord Splice for Diaphragm	766
13.9	Shear Stresses in a Beam at a Connection	773
13.10	Design Problem: Bolt Connection for Diagonal Brace	775
13.11	Lag Bolt Connections	781
13.12	Yield Limit Equations for Lag Bolts	785
13.13	Adjustment Factors for Lag Bolts in Shear Connections	788
13.14	Design Problem: Collector (Strut) Splice with Lag Bolts	793
13.15	Lag Bolts in Withdrawal	799
13.16	Combined Lateral and Withdrawal Loads	802
-	Split Ring and Shear Plate Connectors	803

x Contents

13.18	References	809
13.19	Problems	809
Chapter	14. Connection Details and Hardware	821
14.1	Introduction	821
14.2	Connection Details	821
14.3	Design Problem: Beam-to-Column Connection	839
14.4	Cantilever Beam Hinge Connection	848
14.5	Prefabricated Connection Hardware	850
14.6	References	853
Chapter	15. Diaphragm-to-Shearwall Anchorage	855
15.1	Introduction	855
15.2	Anchorage Summary	855
15.3	Connection Details—Diaphragm to Wood-Frame Wall	860
15.4	Connection Details—Diaphragm to Concrete or Masonry Walls	869
15.5	Subdiaphragm Anchorage of Concrete and Masonry Walls	885
15.6	Design Problem: Subdiaphragm	891
15.7	References	899
Chapter	16. Advanced Topics in Lateral Force Design	901
16.1	Introduction	901
16.2	Seismic Forces—Regular Structures	901
16.3	Seismic Forces—Irregular Structures	903
16.4	Overturning—Background	914
16.5	Overturning—Review	914
16.6	Overturning—Wind	919
16.7	Overturning—Seismic	923
16.8	Lateral Analysis of Nonrectangular Buildings	929
16.9	Rigid Diaphragm Analysis	934
16.10	Additional Topics in Diaphragm Design	944
16.11	References	944
Append	ix A. Equivalent Uniform Weights of Wood Framing	945
Append	ix B. Weights of Building Materials	947
Append	ix C. SI Units	951