Contents

Pre	face	pag	e xiii
For	ewor	d by Giulio Maier	xv
1	Intro	oduction	1
	1.1	Bifurcation and instability to explain pattern formation	2
	1.2	Bifurcations in elasticity: The elastic cylinder	6
	1.3	Bifurcations in elastoplasticity: The Shanley model	8
	1.4	Shear bands and strain localization	12
	1.5	Bifurcation, softening and size effect as the response of a structure	17
	1.6	Chains with softening elements	22
	1.7	Shear band saturation and multiple shear banding	31
	1.8	Brittle and quasi-brittle materials	33
	1.9	Coulomb friction and non-associative plasticity	37
	1.10	Non-associative flow rule promotes material instabilities	41
	1.11	A perturbative approach to material instability	42
	1.12	A summary	48
	1.13	Exercises, details and curiosities	52
		1.13.1 Exercise: The Euler elastica and the double supported beam	
		subject to compressive load	52
		1.13.2 Exercise: Bifurcation of a structure subject to tensile	
		dead load	69
		1.13.3 Exercise: Degrees of freedom and number of critical loads	
		of elastic structures	70
		1.13.4 Exercise: A structure with a trivial configuration unstable	
		at a certain load, returning stable at higher load	73
		1.13.5 Exercise: Flutter and divergence instability in an elastic	
		structure induced by Coulomb friction	80
2	Elei	nents of tensor algebra and analysis	91
	2.1	Components onto an orthonormal basis	92
	2.2	Dyads	93
	2.3	Second-order tensors	95
	24	Rotation tensors	98

viii Contents

	2.5		e definite second-order tensors, eigenvalues	0.0
	2.6	-	genvectors	99
	2.6	•	ocal bases: Covariant and contravariant components	101
	2.7	•	al representation theorem	102
	2.8	-	croot of a tensor	103
			decomposition theorem	104
			axiality between second-order tensors	104
			order tensors	105
			metric induced by semi-positive definite tensors	106
			acaulay bracket operator	107
			ential calculus for tensors	107
		Gradie		108
		Diverg		110
		-	rical coordinates	111
		_	gence theorem	113
			xity and quasi-convexity	114
	2.20	-	bles and details	116
		2.20.1	Example: Jordan normal form of a defective tensor with a double eigenvalue	116
		2.20.2	Example: Jordan normal form of a defective tensor with a	
			triple eigenvalue	117
		2.20.3	Example: Inverse of the acoustic tensor of isotropic	
			elasticity	117
		2.20.4	Example: Inverse of the acoustic tensor for a particular	
			class of anisotropic elasticity	118
		2.20.5	Example: A representation for the square root of a tensor	118
		2.20.6	Proof of a property of the scalar product between two	
			symmetric tensors	119
		2.20.7	Example: Inverse and positive definiteness of the	
			fourth-order tensor defining linear isotropic elasticity	120
		2.20.8	Example: Inverse and positive definiteness of a	
			fourth-order tensor defining a special anisotropic linear	101
		2 20 0	elasticity	121
		2.20.9	Example: Inverse of the elastoplastic fourth-order tangent tensor	121
		2.20.10	Example: Spectral representation of the elastoplastic	
			fourth-order tangent tensor	122
		2.20.11	Example: Strict convexity of the strain energy defining	
			linear isotropic elasticity	124
3	Soli	d mech	nanics at finite strains	125
	3.1	Kinen	natics	125
		3.1.1	Transformation of oriented line elements	127
		3.1.2	Transformation of oriented area elements	129
		3.1.3	Transformation of volume elements	129

Contents ix

		3.1.4	Angular changes	130			
		3.1.5	Measures of strain	131			
	3.2	On ma	aterial and spatial strain measures	135			
		3.2.1	Rigid-body rotation of the reference configuration	135			
		3.2.2	Rigid-body rotation of the current configuration	136			
	3.3	Motio	n of a deformable body	137			
	3.4	Mass	conservation	141			
	3.5	Stress	, dynamic forces	142			
	3.6	Power	r expended and work-conjugate stress/strain measures	146			
	3.7	Chang	ges of fields for a superimposed rigid-body motion	150			
4	Isot	Isotropic non-linear hyperelasticity 1					
	4.1	Isotro	pic compressible hyperelastic material	153			
		4.1.1	Kirchhoff-Saint Venant material	154			
	4.2	Incom	pressible isotropic elasticity	155			
		4.2.1	Mooney-Rivlin elasticity	156			
		4.2.2	Neo-Hookean elasticity	158			
		4.2.3	J_2 -Deformation theory of plasticity	158			
		4.2.4	The GBG model	159			
5		olutions of simple problems in finitely deformed non-linear astic solids					
	5.1	Uniax	ial plane strain tension and compression of an				
	5.1		apressible elastic block	162			
	5.2		tial plane strain tension and compression of Kirchhoff–Saint	.02			
			nt material	168			
	5.3	Uniax	tial tension and compression of an incompressible				
			c cylinder	170			
	5.4	Simpl	e shear of an elastic block	173			
	5.5	Finite	bending of an incompressible elastic block	179			
6	Cor	Constitutive equations and anisotropic elasticity					
	6.1	Constitutive equations: General concepts					
		6.1.1	Change in observer and related principle of invariance of material response	189			
		6.1.2	Indifference with respect to rigid-body rotation of the	105			
		0.1.2	reference configuration	192			
		6.1.3	Material symmetries	195			
		6.1.4	Cauchy elasticity	198			
		6.1.5	Green elastic or hyperelastic materials	201			
		6.1.6	Incompressible hyperelasticity and constrained materials	203			
	6.2		and incremental elastic constitutive equations	207			
	~	6.2.1	Elastic laws in incremental and rate form	207			
		6.2.2	Relative Lagrangean description	210			
			Hypoelasticity	220			

x Contents

7 Yie	eld func	tions with emphasis on pressure sensitivity	223
7.1	The H	laigh-Westergaard representation	225
7.2	The B	P yield function	229
	7.2.1	Smoothness of the BP yield surface	233
7.3	Reduc	ction of the BP yield criterion to known cases	234
	7.3.1	Drucker-Prager and von Mises yield criteria	236
	7.3.2	A comparison of the BP yield criterion with experimental	
		results	239
7.4	Conve	exity of yield function and yield surface	241
	7.4.1	A general convexity result for a class of yield functions	242
	7.4.2	Convexity of the BP yield function	246
	7.4.3	Generating convex yield functions	247
8 Ela	stoplas	tic constitutive equations	251
8.1	The th	neory of elastoplasticity at small strain	251
8.2	The es	ssential structure of rate elastoplastic constitutive equations	
	at larg	ge strain	257
	8.2.1	The small strain theory recovered	264
	8.2.2	A theory of elastoplasticity based on multiplicative	
		decomposition of the deformation gradient	265
	8.2.3	A simple constitutive model for granular materials	
		evidencing flutter instability	267
	8.2.4	Elastoplastic coupling in the modelling of granular	
0.2		materials and geomaterials	268
8.3	A sum	nmary on rate constitutive equations	273
	ving dis	scontinuities and boundary value problems	275
9.1	Movin	ng discontinuities in solids	275
	9.1.1	Local jump conditions for propagating discontinuity	
		surfaces	276
	9.1.2	Balance equations for regions containing a moving	
0.2	ъ	discontinuity surface	280
9.2		dary value problems in finite, rate and incremental forms	285
	9.2.1	Quasi-static first-order rate problems	287
	9.2.2	Incremental non-linear elasticity	289
10 Glo	obal cor	nditions of uniqueness and stability	293
10.1	Uniqu	neness of the rate problem	298
	10.1.1	Raniecki comparison solids	299
		Associative elastoplasticity	300
		'In-loading comparison solid'	302
10.2		ity in the Hill sense	303
		Associative elastoplasticity	304
	10.2.2	Stability of a quasi-static deformation process	305
	10.2.3	An example: Elastoplastic column buckling	306

Contents xi

11	Loca	l conditions for uniqueness and stability	310
	11.1	A local sufficient condition for uniqueness: Positive definiteness	
		of the constitutive operator	311
		11.1.1 Uniaxial tension	315
		11.1.2 The small strain theory	316
	11.2	Singularity of the constitutive operator	317
		11.2.1 Uniaxial tension	318
		11.2.2 The small strain theory	319
	11.3	Strong ellipticity	319
		11.3.1 The small strain theory	323
	11.4	Ellipticity, strain localisation and shear bands	323
		11.4.1 The small strain theory	326
	11.5	Flutter instability	331
		11.5.1 Onset of flutter	331
		11.5.2 Flutter instability for small strain elastoplasticity with	
		isotropic elasticity	332
		11.5.3 Physical meaning and consequences of flutter	335
		Other types of local criteria and instabilities	335
	11.7	A summary on local and global uniqueness and stability criteria	336
12	Incr	emental bifurcation of elastic solids	338
	12.1	The bifurcation problem	339
	12.2	Bifurcations of incompressible elastic solids deformed in	
		plane strain	340
		12.2.1 Local uniqueness and stability criteria for	
		Biot plane strain and incompressible elasticity	340
		12.2.2 Bifurcations of layered structures: General solution	351
		12.2.3 Surface bifurcation	353
		12.2.4 Interfacial bifurcations	355
		12.2.5 Bifurcations of an elastic incompressible block	358
		12.2.6 Incompressible elastic block on a 'spring foundation'	361
		12.2.7 Multi-layered elastic structures	363
	12.3	Bifurcations of an incompressible elastic cylinder	365
		12.3.1 Numerical results for bifurcations of an elastic cylinder	
		subject to axial compression	370
	12.4	Bifurcation under plane strain bending	375
13		olications of local and global uniqueness and stability criteria to	
		-associative elastoplasticity	385
	13.1	Local uniqueness and stability criteria for non-associative	385
		elastoplasticity at small strain	
	13.2	Axi-symmetric bifurcations of an elastoplastic cylinder under	
		uniaxial stress	388
		13.2.1 Results for the axi-symmetric bifurcations of a cylinder	391
	13.3	Flutter instability for a finite-strain plasticity model with	.
		anisotropic elasticity	396

xii Contents

	13.3.1 Examples of flutter instability for plane problems	396
	13.3.2 Spectral analysis of the acoustic tensor	400
14 Way	e propagation, stability and bifurcation	403
	Incremental waves and bifurcation	405
	Incremental plane waves	407
1 1.2	14.2.1 Non-linear elastic materials	407
14.3	Waves and material instabilities in elastoplasticity	409
	14.3.1 Instability of uniform flow	413
	14.3.2 A discussion on waves and instability in elastoplasticity	419
14.4	Acceleration waves	420
	14.4.1 Non-linear elastic material deformed incrementally	420
	14.4.2 Elastoplastic materials	420
15 Pos	-critical behaviour and multiple shear band formation	427
15.1	One-dimensional elastic models with non-convex energy	428
	Two-dimensional elastoplastic modelling of post-shear banding	434
	15.2.1 Post-shear banding analysis	436
	15.2.2 Sharp shear banding versus saturation	439
	15.2.3 Post-band saturation analysis	439
16 A p	erturbative approach to material instability	444
16.1	Infinite-body Green's function for a pre-stressed material	447
	16.1.1 Quasi-static Green's function	447
	16.1.2 The dynamic time-harmonic Green's function for general	
	non-symmetric constitutive equations	457
	16.1.3 Effects of flutter instability revealed by a pulsating	
	perturbing dipole	464
16.2	Finite-length crack in a pre-stressed material	469
	16.2.1 Finite-length crack parallel to an orthotropy axis	471
	16.2.2 The inclined crack	480
	16.2.3 Shear bands interacting with a finite-length crack	482
	16.2.4 Incremental energy release rate for crack growth	486
16.3	Mode I perturbation of a stiffener in an infinite non-linear elastic	
	material subjected to finite simple shear deformation	489
16.4	The stress state near a shear band and its propagation	498
Referen	es	507
Index		527

Color plates section is between pages 274 and 275