Contents

Preface to First Edition Preface to Second Edition Preface to Third Edition		xiii
		xv
		xvii
CHAPTER 1	Introduction	1
1.1	Function of a structure	1
1.2	Loads	2
1.3	Structural systems	2
	Beams	2
	Trusses	3
	Moment frames	3
	Arches	3
	Cables	4
	Shear and core walls	5
	Continuum structures	6
	Support systems	6
	Statically determinate and indeterminate structures	9
	Analysis and design	10
	Structural and load idealization	11
	Structural elements	12
1.9	Materials of construction	13
	Steel	13
	Concrete	14
	Timber	14
	Masonry	15
	Aluminium	15 16
	Cast iron, wrought iron	16
1 10	Composite materials The use of computers	16
1.10	The use of computers	10
CHAPTER 2	Principles of Statics	17
	Force	17
	Parallelogram of forces	19
	The resultant of a system of concurrent forces	22
	Equilibrant of a system of concurrent forces	23
	The resultant of a system of non-concurrent forces	24
2.2	2 Moment of a force	25
	Couples	26
	Equivalent force systems	28
	-	V

Vİ	Contents

	2.3 The resultant of a system of parallel forces	28
	2.4 Equilibrium of force systems	30
	2.5 Calculation of support reactions	31
	Problems	35
CHAPTER	3 Normal Force, Shear Force, Bending Moment and Torsio	on 38
	3.1 Types of load	38
	Axial load	38
	Shear load	38
	Bending moment	39
	Torsion	39
	3.2 Notation and sign convention	41
	3.3 Normal force	42
	3.4 Shear force and bending moment	47
	3.5 Load, shear force and bending moment relationships	61
	3.6 Torsion	68
	3.7 Principle of superposition	70
	Problems	71
CHAPTER	4 Analysis of Pin-Jointed Trusses	79
	4.1 Types of truss	79
	4.2 Assumptions in truss analysis	79
	4.3 Idealization of a truss	81
	4.4 Statical determinacy	82
	4.5 Resistance of a truss to shear force and bending moment	86
	4.6 Method of joints	88
	4.7 Method of sections	91
	4.8 Method of tension coefficients	93
	4.9 Graphical method of solution	97
	4.10 Compound trusses	99
	3.11 Space trusses	100
	12 A computer-based approach	103
Ι	Problems	104
CHAPTER	5 Cables	110
	5.1 Lightweight cables carrying concentrated loads	110
	5.2 Heavy cables	115
	Governing equation for deflected shape	115
	Cable under its own weight	116
	Cable subjected to a uniform horizontally distributed load	119
	Suspension bridges	123
	Problems	127

			Contents	vii
CHAPTER	6	Arches		130
• • • • • • • • • • • • • • • • • • • •	_	The linear arch		130
		The three-pinned arch		132
	0.2	Support reactions — supports on same horizontal level		132
		Support reactions — supports on different levels		135
	6.3	A three-pinned parabolic arch carrying a uniform horizontally		13)
		distributed load		138
	6.4	Bending moment diagram for a three-pinned arch		140
		plems		142
CHAPTER	7	Stress and Strain		146
OHAI TER	_	Direct stress in tension and compression		146
		Shear stress in shear and torsion		148
		Complementary shear stress		149
		Direct strain		150
		Shear strain		
				150
		Volumetric strain due to hydrostatic pressure		151
	7.7	Stress—strain relationships		152
		Hooke's law and Young's modulus Shear modulus		152 152
		Volume or bulk modulus		152
	7.8	Poisson effect		154
		Relationships between the elastic constants		156
-		Strain energy in simple tension or compression		160
		Deflection of a simple truss		164
		Composite structural members		166
		Thermal effects		168
		Initial stresses and prestressing		172
•	7.11	Plane stress		175
•	7.12	Plane strain		179
]	Probl	ems		179
CHAPTER	8	Properties of Engineering Materials		184
		Classification of engineering materials		184
		Ductility		184
		Brittleness		184
		Elastic materials		184
		Plasticity		185
		Isotropic materials		185
		Anisotropic materials		185
		Orthotropic materials		185
	8.2	Testing of engineering materials		185
		Tensile tests		185
		Compression tests		186

viii Contents

		Bending tests	186
		Shear tests	188
		Hardness tests	188
		Impact tests	189
	8.3	Stress-strain curves	190
		Low carbon steel (mild steel)	190
		Aluminium	192
		Brittle materials	193
		Composites	194
	8.4	Strain hardening	195
	8.5	Creep and relaxation	195
	8.6	Fatigue	195
		Crack propagation	200
	8.7	Design methods	205
	8.8	Material properties	206
	Prol	blems	207
CHAPTER	q	Bending of Beams	209
OIIAI ILIX		Symmetrical bending	210
	J. 1	Assumptions	211
		Direct stress distribution	211
		Elastic section modulus	214
	9.2	Combined bending and axial load	220
		Core of a rectangular section	223
		Core of a circular section	224
	9.3	Anticlastic bending	226
		Strain energy in bending	226
		Unsymmetrical bending	227
	•.•	Assumptions	227
		Sign conventions and notation	227
		Direct stress distribution	229
		Position of the neutral axis	231
	9.6	Calculation of section properties	231
		Parallel axes theorem	231
		Theorem of perpendicular axes	232
		Second moments of area of standard sections	232
		Product second moment of area	234
		Approximations for thin-walled sections	237
		Second moments of area of inclined and curved thin-walled sections	239
	9.7	Principal axes and principal second moments of area	242
	9.8	Effect of shear forces on the theory of bending	244
	9.9	Load, shear force and bending moment relationships, general case	245
	Pro	blems	245

			Contents	ix
CHAPTER	10	Shear of Beams		253
	10.1	Shear stress distribution in a beam of unsymmetrical section		253
		Shear stress distribution in symmetrical sections		255
		Strain energy due to shear		264
		Shear stress distribution in thin-walled open section beams		265
		Shear centre		268
	10.5	Shear stress distribution in thin-walled closed section beams		270
		Shear centre		274
	Probl	ems		279
CHAPTER	11	Torsion of Beams		287
	11.1	Torsion of solid and hollow circular section bars		287
		Torsion of a circular section hollow bar		290
		Statically indeterminate circular section bars under torsion		293
	11.2	Strain energy due to torsion		296
		Plastic torsion of circular section bars		297
	11.4	Torsion of a thin-walled closed section beam		300
	11.5	Torsion of solid section beams		303
	11.6	Warping of cross sections under torsion		307
	Prob			307
CHAPTER	12	Composite Beams		313
		Steel-reinforced timber beams		313
	12.2	Reinforced concrete beams		318
		Elastic theory		318
		Ultimate load theory		325
	12.3	Steel and concrete beams		332
	Prob	lems		335
CHAPTER	13	Deflection of Beams		337
		Differential equation of symmetrical bending		337
		Singularity functions		350
		Moment-area method for symmetrical bending		357
		Deflections due to unsymmetrical bending		365
		Deflection due to shear		369
		Statically indeterminate beams		372
		Method of superposition		373
		Built-in or fixed-end beams		375
		Fixed beam with a sinking support		380
	Prob			381
CHAPTER	14	Complex Stress and Strain		389
		Representation of stress at a point		389
		Determination of stresses on inclined planes		390

x Contents

		Biaxial stress system	391
		General two-dimensional case	394
	14.3	Principal stresses	396
	14.4	Mohr's circle of stress	400
	14.5	Stress trajectories	403
	14.6	Determination of strains on inclined planes	403
		Principal strains	405
	14.8	Mohr's circle of strain	407
	14.9	Experimental measurement of surface strains and stresses	409
•		Theories of elastic failure	415
		Ductile materials	416
		Brittle materials	424
1	Proble	ms	426
CHAPTER	15	Virtual Work and Energy Methods	433
	15.1	Work	433
	15.2	Principle of virtual work	435
		Principle of virtual work for a particle	435
		Principle of virtual work for a rigid body	436
		Virtual work in a deformable body	442
		Work done by internal force systems	442
		Virtual work due to external force systems	447
		Use of virtual force systems	448
	15.0	Applications of the principle of virtual work	448
	15.3	Energy methods	458
		Strain energy and complementary energy	458 461
		The principle of the stationary value of the total complementary energy	470
		Temperature effects Potential energy	470
		The principle of the stationary value of the total potential energy	473
	15.4	Reciprocal theorems	476
		Theorem of reciprocal displacements	476
		Theorem of reciprocal work	480
	Probl		481
CHAPTER	16	Analysis of Statically Indeterminate Structures	489
	16.1	Flexibility and stiffness methods	489
	16.2	Degree of statical indeterminacy	491
		Rings	491
		The entire structure	492
		The completely stiff structure	493
		Degree of statical indeterminacy	494
	400	Trusses	495
		Kinematic indeterminacy	496
		Statically indeterminate beams	499
	16.5	Statically indeterminate trusses	506
		Self-straining trusses	511

		Contents	хi
	16.6 Braced beams		514
	16.7 Portal frames		517
	16.8 Two-pinned arches		520
	Secant assumption		523
	Tied arches		526
	Segmental arches		526
	16.9 Slope—deflection method		527
1	6.10 Moment distribution		534
	Principle		534
	Fixed-end moments		535
	Stiffness coefficient		535
	Distribution factor		537
	Stiffness coefficients and carry over factors		537
	Continuous beams		540
1	6.11 Portal frames		546
I	Problems		556
CHAPTER	17 Matrix Methods of Analysis		571
	17.1 Axially loaded members		572
	17.2 Stiffness matrix for a uniform beam		581
	17.3 Finite element method for continuum structures		588
	Stiffness matrix for a beam-element		589
	Stiffness matrix for a triangular finite element		593
	Stiffness matrix for a quadrilateral element		599
	Problems		604
CHAPTER	18 Plastic Analysis of Beams and Frames		611
	18.1 Theorems of plastic analysis		611
	The uniqueness theorem		611
	The lower bound, or safe, theorem		611
	The upper bound, or unsafe, theorem		612
	18.2 Plastic analysis of beams		612
	Plastic bending of beams having a singly symmetrical cross s	section	612
	Shape factor		615
	Moment—curvature relationships		618
	Plastic hinges		621
	Plastic analysis of beams		622
	Plastic design of beams		629
	Effect of axial load on plastic moment		629
	18.3 Plastic analysis of frames		631
	Problems		639
CHAPTER	19 Yield Line Analysis of Slabs		646
	19.1 Yield line theory		646
	Yield lines		646
	Ultimate moment along a yield line		647
	·····		J 1/

xii Contents

		Internal virtual work due to an ultimate moment	648
		Virtual work due to an applied load	649
	19.2	Discussion	658
	Probl	ems	658
CHAPTER	20	Influence Lines	663
	20.1	Influence lines for beams in contact with the load	663
		R _A influence line	663
		R _B influence line	664
		$S_{\rm K}$ influence line	665
		$M_{\rm K}$ influence line	666
	20.2	Mueller-Breslau principle	669
	20.3	Systems of travelling loads	672
		Concentrated loads	672
		Distributed loads	678
		Diagram of maximum shear force	681
		Reversal of shear force	682
		Determination of the point of maximum bending moment in a beam	684
	20.4	Influence lines for beams not in contact with the load	687
		Maximum values of S_K and M_K	689
	20.5	Forces in the members of a truss	689
		Counterbracing	693
	20.6	Influence lines for continuous beams	694
	Probl	ems	699
CHAPTER	21	Structural Instability	706
	21.1	Euler theory for slender columns	706
		Buckling load for a pin-ended column	707
		Buckling load for a column with fixed ends	708
		Buckling load for a column with one end fixed and one end free	710
		Buckling of a column with one end fixed and the other pinned	712
	21.2	Limitations of the Euler theory	715
	21.3	Failure of columns of any length	716
		Rankine theory	716
		Initially curved column	718
	21.4	Effect of cross section on the buckling of columns	722
	21.5	Stability of beams under transverse and axial loads	723
	21.6	Energy method for the calculation of buckling loads in columns	
		(Rayleigh—Ritz Method)	728
	Prob	lems	731
Appendix A	۱: Tabl	le of Section Properties	737
* *		ding of Beams: Standard Cases	739
Index		-	741