CONTENTS

Pretace		XV
Acknowledgments		xvii
1 Intro	oduction	1
1.1	Beginning of Wireless	1
1.2	Current Radio Spectrum	4
1.3	Conventions Used in This Text	8
	Sections	8
	Equations	8
	Figures	8
	Exercises	8
	Symbols	8
	Prefixes	10
	Fonts	10
1.4	Vectors and Coordinates	11
1.5	General Constants and Useful Conversions	14
2 Revi	ew of AC Analysis and Network Simulation	16
2.1	Basic Circuit Elements	16
	The Resistor	16
	Ohm's Law	18
	The Inductor	19
	The Capacitor	20
2.2	Kirchhoff's Laws	22
2.3	Alternating Current (AC) Analysis	23
	Ohm's Law in Complex Form	26
2.4	Voltage and Current Phasors	26
2.5	Impedance	28
	Estimating Reactance	28
	Addition of Series Impedances	29
2.6	Admittance	30
	Admittance Definition	30

viii CONTENTS

	Addition of Parallel Admittances	30
	The Product over the Sum	32
2.7	LLFPB Networks	33
2.8	Decibels, dBW, and dBm	33
	Logarithms (Logs)	33
	Multiplying by Adding Logs	34
	Dividing by Subtracting Logs	34
	Zero Powers	34
	Bel Scale	34
	Decibel Scale	35
	Decibels—Relative Measures	35
	Absolute Power Levels—dBm and dBW	37
• •	Decibel Power Scales	38
2.9	Power Transfer	38
	Calculating Power Transfer	38
	Maximum Power Transfer	39
2.10	Specifying Loss	40
	Insertion Loss	40
	Transducer Loss	41
	Loss Due to a Series Impedance	42
	Loss Due to a Shunt Admittance	43
	Loss in Terms of Scattering Parameters	44
2.11	Real RLC Models	44
	Resistor with Parasitics	44
	Inductor with Parasitics	44
	Capacitor with Parasitics	44
2.12	Designing LC Elements	46
	Lumped Coils	46
	High μ Inductor Cores—the Hysteresis Curve	47
	Estimating Wire Inductance	48
	Parallel Plate Capacitors	49
2.13	Skin Effect	51
2.14	Network Simulation	53
3 <i>LC</i> I	Resonance and Matching Networks	59
3.1	LC Resonance	59
3.2	Series Circuit Quality Factors	60
	Q of Inductors and Capacitors	60
	Q_E , External Q	61
	Q_L , Loaded Q	62
3.3	Parallel Circuit Quality Factors	62
3.4	Coupled Resonators	63

			CONTENTS	ix
		Direct Coupled Resonators		63
		Lightly Coupled Resonators		63
	3.5	Q Matching		67
		Low to High Resistance		67
		Broadbanding the Q Matching Method		70
		High to Low Resistance		71
4	Distr	ibuted Circuits		78
	4.1	Transmission Lines		78
	4.2	Wavelength in a Dielectric		81
	4.3	Pulses on Transmission Lines		82
	4.4	Incident and Reflected Waves		83
	4.5	Reflection Coefficient		85
	4.6	Return Loss		86
	4.7	Mismatch Loss		86
	4.8	Mismatch Error		87
	4.9	The Telegrapher Equations		91
	4.10	Transmission Line Wave Equations		92
	4.11	Wave Propagation		94
	4.12	Phase and Group Velocities		97
	4.13	Reflection Coefficient and Impedance		100
	4.14	Impedance Transformation Equation		101
	4.15	Impedance Matching with One Transmission Line		108
	4.16	Fano's (and Bode's) Limit		109
		Type A Mismatched Loads		109
		Type B Mismatched Loads Impedance Transformation Not Included		112
		impedance Transformation Not included		113
5	The S	Smith Chart		119
	5.1	Basis of the Smith Chart		119
	5.2	Drawing the Smith Chart		124
	5.3	Admittance on the Smith Chart		130
	5.4	Tuning a Mismatched Load		132
	5.5	Slotted-Line Impedance Measurement		135
	5.6	VSWR = r		139
	5.7	Negative Resistance Smith Chart		140
	5.8	Navigating the Smith Chart		140
	5.9	Smith Chart Software		145
	5.10	Estimating Bandwidth on the Smith Chart		147
	5.11 5.12	Approximate Tuning May Be Better		148
	5.13	Frequency Contours on the Smith Chart Using the Smith Chart without Transmission Lines		150 150
	5.14	Constant Q Circles		150
	5.15	Transmission Line Lumped Circuit Equivalent		151
	2.14	remoniosion inte campea circuit iquivalent		122

X CONTENTS

6 Matr	ix Analysis	161
6.1	Matrix Algebra	161
6.2	Z and Y Matrices	164
6.3	Reciprocity	166
6.4	The ABCD Matrix	167
6.5	The Scattering Matrix	172
6.6	The Transmission Matrix	177
7 Elect	romagnetic Fields and Waves	183
7.1	Vector Force Fields	183
7.2	E and H Fields	185
7.3	Electric Field E	185
7.4	Magnetic Flux Density	187
7.5	Vector Cross Product	188
7.6	Electrostatics and Gauss's Law	193
7.7	Vector Dot Product and Divergence	194
7.8	Static Potential Function and the Gradient	196
7.9	Divergence of the B Field	200
7.10	Ampere's Law	201
7.11	Vector Curl	202
7.12	Faraday's Law of Induction	208
7.13	Maxwell's Equations	209
	Maxwell's Four Equations	209
	Auxiliary Relations and Definitions	210
	Visualizing Maxwell's Equations	211
7.14	Primary Vector Operations	214
7.15	The Laplacian	215
7.16	Vector and Scalar Identities	218
7.17	Free Charge within a Conductor	219
7.18	Skin Effect	221
7.19	Conductor Internal Impedance	224
7.20	The Wave Equation	227
7.21	The Helmholtz Equations	229
7.22	Plane Propagating Waves	230
7.23	Poynting's Theorem	233
7.24	Wave Polarization	236
7.25	EH Fields on Transmission Lines	240
7.26	Waveguides	246
	General Waveguide Solution	246
	Waveguide Types	250
	Rectangular Waveguide Fields	251
	Applying Boundary Conditions	252
	Propagation Constants and Waveguide Modes	253
	· · · · · · · · · · · · · · · · · · ·	200

			CONTENTS	хi
		Characteristic Wave Impedance for Waveguides		256
		Phase and Group Velocities		257
		TE and TM Mode Summary for Rectangular Waveguide	i.	257
	7.27	Fourier Series and Green's Functions		261
		Fourier Series		261
		Green's Functions		263
	7.28	Higher Order Modes in Circuits		269
	7.29	Vector Potential		271
	7.30	Retarded Potentials		274
	7.31	Potential Functions in the Sinusoidal Case		275
	7.32	Antennas		275
		Short Straight Wire Antenna		275
		Radiation Resistance		279
		Radiation Pattern		280
		Half-Wavelength Dipole		280
		Antenna Gain		283
		Antenna Effective Area		284
		Monopole Antenna		285
		Aperture Antennas		286
		Phased Arrays		288
	7.33	Path Loss		290
	7.34	Electromagnetic (EM) Simulation		294
8	Direc	tional Couplers		307
	8.1	Wavelength Comparable Dimensions		307
	8.2	The Backward Wave Coupler		307
	8.3	Even- and Odd-Mode Analysis		309
	8.4	Reflectively Terminated 3-dB Coupler		320
	8.5	Coupler Specifications		323
	8.6	Measurements Using Directional Couplers		325
	8.7	Network Analyzer Impedance Measurements		326
	8.8	Two-Port Scattering Measurements		327
	8.9	Branch Line Coupler		327
	8.10	Hybrid Ring Coupler		330
	8.11	Wilkinson Power Divider		330
9	Filter	Design		335
	9.1	Voltage Transfer Function		335
	9.2	Low-Pass Prototype		336
	9.3	Butterworth or Maximally Flat Filter		337
	9.4	Denormalizing the Prototype Response		339
	9.5	High-Pass Filters		343
	9.6	Bandpass Filters		345

xii CONTENTS

	9.7	Bandstop Filters	349
	9.8	Chebyshev Filters	351
	9,9	Phase and Group Delay	356
	9.10	Filter Q	361
	9.11	Diplexer Filters	364
	9.12	Top-Coupled Bandpass Filters	367
	9.13	Elliptic Filters	369
	9.14	Distributed Filters	370
	9.15	The Richards Transformation	374
	9.16	Kuroda's Identities	379
	9.17	Mumford's Maximally Flat Stub Filters	381
	9.18	Filter Design with the Optimizer	384
	9.19	Statistical Design and Yield Analysis	386
		Using Standard Part Values	386
		The Normal Distribution	387
		Other Distributions	391
10	Trans	sistor Amplifier Design	399
	10.1	Unilateral Design	399
		Evaluating S Parameters	399
		Transistor Biasing	400
		Evaluating RF Performance	403
	10.2	Amplifier Stability	405
	10.3	K Factor	409
	10.4	Transducer Gain	413
	10.5	Unilateral Gain Design	416
	10.6	Unilateral Gain Circles	422
		Input Gain Circles	422
		Output Gain Circles	424
	10.7	Simultaneous Conjugate Match Design	428
	10.8	Various Gain Definitions	431
	10.9	Operating Gain Design	433
	10.10	Available Gain Design	437
	10.11	Noise in Systems	442
		Thermal Noise Limit	442
		Other Noise Sources	444
		Noise Figure of a Two-Port Network	445
		Noise Factor of a Cascade	447
		Noise Temperature	448
	10.12	Low-Noise Amplifiers	450
		Amplifier Nonlinearity	455
		Gain Saturation	455
		Intermodulation Distortion	456

CONTE	ENTS	xiii
10.14 Broadbanding with Feedback		460
10.15 Cascading Amplifier Stages		466
10.16 Amplifier Design Summary		468
Appendices		
A. Symbols and Units		474
B. Complex Mathematics		478
C. Diameter and Resistance of Annealed Copper Wire by Gauge Si	ze	483
D. Properties of Some Materials		485
E. Standard Rectangular Waveguides		486
Frequently Used Relations		487
Index		491