Contents

Preface to the Second Edition ix	
Preface to the First Edition xi	
Acronyms, Abbreviations, and Symbols	X

1. Introduction

	-	n		\bigcirc 1	1 1	1
1		Bio	logical	\ VC	e	

- 1.2 Green Chemistry 3
- 1.3 Sustainability 5
- 1.4 Biorefinery 5
- 1.5 Biotechnology and Bioprocess Engineering 9
- 1.6 Mathematics, Biology, and Engineering 11
- 1.7 The Story of Penicillin: The Dawn of Bioprocess Engineering 12
- 1.8 Bioprocesses: Regulatory Constraints 15
- 1.9 The Pillars of Bioprocess Kinetics and Systems Engineering 17
- 1.10 Summary 18
- Bibliography 19
- Problems 20

An Overview of Biological Basics

- 2.1 Cells and Organisms 21
- 2.2 Stem Cell 38
- 2.3 Cell Chemistry 40
- 2.4 Cell Feed 71
- 2.5 Summary 77
- Bibliography 78
- Problems 79

An Overview of Chemical Reaction Analysis

- 3.1 Chemical Species 81
- 3.2 Chemical Reactions 83
- 3.3 Reaction Rates 86
- 3.4 Approximate Reactions 91
- 3.5 Rate Coefficients 92

- 3.6 Stoichiometry 95
- 3.7 Yield and Yield Factor 98
- 3.8 Reaction Rates Near Equilibrium 100
- 3.9 Energy Regularity 106
- 3.10 Classification of Multiple Reactions and Selectivity 108
- 3.11 Coupled Reactions 109
- 3.12 Reactor Mass Balances 113
- 3.13 Reaction Energy Balances 115
- 3.14 Reactor Momentum Balance 122
- 3.15 Ideal Reactors 124
- 3.16 Bioprocess Systems Optimization 126
- 3.17 Summary 128

Bibliography 133

Problems 133

4. Batch Reactor

- 4.1 Isothermal Batch Reactors 140
- 4.2 Batch Reactor Sizing 153
- 4.3 Nonisothermal Batch Reactors 157
- 4.4 Numerical Solutions of Batch Reactor Problems 163
- 4.5 Graphical Solutions of Batch Reactor Sizing From Concentration Profiles 169
- 4.6 Summary 172

Bibliography 173

Problems 174

Ideal Flow Reactors

- 5.1 Flow Rate, Residence Time, Space Time, Space Velocity, and Dilution Rate 180
- 5.2 Plug Flow Reactor 182
- 5.3 Gasification and Fischer-Tropsch Technology 191
- 5.4 Continuous Stirred Tank Reactor and Chemostat 195
- 5.5 Multiple Reactors 207
- 5.6 Recycle Reactors 212

vi CONTENTS

- 5.7 Distributed Feed and Withdraw 216
- 5.8 PFR or CSTR? 227
- 5.9 Steady Nonisothermal Flow Reactors 231
- 5.10 Reactive Extraction 238
- 5.11 Graphic Solutions Using Batch Concentration Data 240
- 5.12 Summary 243

Bibliography 245

Problems 245

6. Kinetic Theory and Reaction Kinetics

- 6.1 Elementary Kinetic Theory 260
- 6.2 Collision Theory of Reaction Rates 266
- 6.3 Reaction Rate Analysis/Approximation 269
- 6.4 Unimolecular Reactions 272
- 6.5 Free Radicals 273
- 6.6 Kinetics of Acid Hydrolysis 275
- 6.7 Parametric Estimation 278
- 6.8 Summary 287

Bibliography 287

Problems 288

Enzymes

- 7.1 How Enzymes Work 302
- 7.2 Simple Enzyme Kinetics 308
- 7.3 Multiple-Substrate and Competitive Enzyme Kinetics 314
- 7.4 pH Effects 329
- 7.5 Temperature Effects 333
- 7.6 Insoluble Substrates 334
- 7.7 Immobilized Enzyme Systems 335
- 7.8 Analysis of Bioprocess With Enzymatic Reactions 340
- 7.9 Large-Scale Production of Enzymes 347
- 7.10 Medical and Industrial Utilization of Enzymes 348
- 7.11 Kinetic Approximation: Why Michaelis-Menten Equation Works 351
- 7.12 Summary 363

Bibliography 364

Problems 365

8. Chemical Reactions on Solid Surfaces

- 8.1 Catalysis 376
- 8.2 How Does Reaction With Solid Occur? 379
- 8.3 Adsorption and Desorption 382

- 8.4 LHHW: Surface Reactions With Rate-Controlling Steps 414
- 8.5 Chemical Reactions on Nonideal Surfaces Based on the Distribution of Interaction Energy 431
- 8.6 Chemical Reactions on Nonideal Surfaces With the Multilayer Approximation 436
- 8.7 Kinetics of Reactions on Surfaces Where the Solid Is Either a Product or Reactant 437
- 8.8 Decline of Surface Activity: Catalyst Deactivation 439
- 8.9 Summary 440

Bibliography 444

Problems 445

Cell Metabolism

- 9.1 The Central Dogma 452
- 9.2 DNA Replication: Preserving and Propagating the Cellular Message 455
- 9.3 Transcription: Sending the Message 457
- 9.4 Translation: Message to Product 464
- 9.5 Metabolic Regulation 471
- 9.6 How a Cell Senses Its Extracellular Environment 488
- 9.7 Major Metabolic Pathways 494
- 9.8 Overview of Biosynthesis 514
- 9.9 Overview of Anaerobic Metabolism 515
- 9.10 Interrelationships of Metabolic Pathways 518
- 9.11 Overview of Autotrophic Metabolism 520
- 9.12 The Monod Equation: FES Approximation Through Metabolic Pathways 522
- 9.13 Summary 526

Bibliography 528

Problems 529

Interactive Enzyme and Molecular Regulation

- 10.1 Protein Oligomerization and Interactive Enzyme 538
- 10.2 Ligand Binding and Cooperativity 565
- 10.3 Competitive Multiligand Binding on an Interactive Enzyme 581
- 10.4 Catalytic Reaction Rate on Interactive Enzymes 598
- 10.5 Kinetics of Polymorphic Catalysis and Allosteric Modulation 604
- 10.6 Influence of a Competitive Effector on Interactive Enzymes 615

CONTENTS vii

COM	C. T. C.
10.7 Summary 618	13.6 The Product and Process Decisions 808
Bibliography 623	13.7 Host-Vector System Selection 810
Problems 624	13.8 Regulatory Constraints on Genetic Processes 820
How Cells Grow	13.9 Metabolic Engineering 823
Tiow Sens Stow	13.10 Protein Engineering 825
11.1 Quantifying Biomass 630	13.11 Summary 826
11.2 Batch Growth Patterns 633	Bibliography 827
11.3 Biomass Yield 638	Problems 827
11.4 Approximate Growth Kinetics and Monod	1 Toblems - 62 (
Equation 643	Contain Addison Humanitus Danama atina
11.5 Cell Death Rate 647	Sustainability: Humanity Perspective
11.6 Cell Maintenance and Endogenous	14.1 What is Sustainability? 830
Metabolism 649	14.2 Sustainability of Humanity 831
	14.3 Water 834
11.7 Product Yield 656	
11.8 Oxygen Demand for Aerobic	14.4 CO ₂ and Biomass 846
Microorganisms 657	14.5 Woody Biomass Use and Desired Sustainable
11.9 Effect of Temperature 661	State 852
11.10 Effect of pH 662	14.6 Solar Energy 860
11.11 Effect of Redox Potential 663	14.7 Geothermal Energy 863
11.12 Effect of Electrolytes and Substrate	14.8 Summary 864
Concentration 664	Bibliography 867
11.13 Heat Generation by Microbial Growth 664	Problems 867
11.14 Overview of Microbial Growth Kinetic	10 1d
Models 666	15. Sustainability and Stability
11.15 Summary 689	17.1 F 10.14: (CCTD 071
Bibliography 691	15.1 Feed Stability of a CSTR 873
Problems 692	15.2 Thermal Stability of a CSTR 892
	15.3 Approaching Steady State 900
Cell Cultivation	15.4 Catalyst Instability 905
	15.5 Genetic Instability 907
12.1 Batch Culture 700	15.6 Mixed Cultures 922
12.2 Continuous Culture 705	15.7 Summary 938
12.3 Choosing the Cultivation Method 717	Bibliography 939
12.4 Waste Water Treatment Process 732	Problems 939
12.5 Immobilized Cell Systems 738	
12.6 Solid Substrate Fermentations 744	Mass Transfer Effects: Immobilized
12.7 Fedbatch Operations 747	and Heterogeneous Reaction Systems
12.8 Summary 766	· ·
Bibliography 768	16.1 How Does Transformation Occur in a
Problems 769	Heterogeneous System? 950
	16.2 Molecular Diffusion and Mass Transfer
13. Evolution and Genetic Engineering	Rate 952
	16.3 External Mass Transfer 955
13.1 Mutations 784	16.4 Reactions in Isothermal Porous
13.2 Selection 791	Catalysts 963
13.3 Natural Mechanisms for Gene Transfer and	16.5 Mass Transfer Effects in Nonisothermal
Rearrangement 794	Porous Particles 979
13.4 Techniques of Genetic Engineering 798	16.6 External and Internal Mass Transfer
13.5 Applications of Genetic Engineering 806	Effects 985

viii CONTENTS

16.7 Encapsulation Immobilization 988	Combustion, Reactive Hazard, and
16.8 External and Internal Surface Effects 990	Bioprocess Safety
16.9 The Shrinking Core Model 991	Diopressos surse,
6.10 Summary 995	18.1 Biological Hazards 1060
iibliography 998	18.2 Identifying Chemical Reactivity
roblems 999	Hazards 1066
	18.3 Heat, Flames, Fires, and Explosions 1081
Bioreactor Design Operation	18.4 Probabilities, Redundancy, and Worst-Case
J .	Scenarios 1083
17.1 Bioreactor Selection 1008	18.5 Chain Reactions 1084
17.2 Reactor Operational Mode Selection 1014	18.6 Autooxidation and Safety 1086
17.3 Aeration, Agitation, and Heat Transfer 1016	18.7 Combustion 1090
17.4 Scale-Up 1020	18.8 Premixed Flames 1098
17.5 Scale-Down 1022	18.9 Heat Generation 1101
17.6 Bioinstrumentation and Controls 1023	18.10 Combustion of Liquids and Solids 1102
17.7 Sterilization of Process Fluids 1025	18.11 Solid and Liquid Explosives 1112
17.8 Aseptic Operations and Practical	18.12 Explosions and Detonations 1114
Considerations for Bioreactor System	18.13 Reactor Safety 1115
Construction 1038	18.14 Summary 1122
17.9 Effect of Imperfect Mixing 1042	Bibliography 1124
7.10 Summary 1050	Problems 1125
Bibliography 1054	
Problems 1055	Index 1129