CONTENTS | About the Authors Foreword | | XI | |----------------------------|---|----------| | | | xiii | | Prei | face | XV | | 1. | Nanotechnology for Water Cleanup | 1 | | | 1.1 Introduction | 1 | | | 1.2 Magnetic nanoparticles | 2 | | | 1.3 Layered double hydroxides (LDHs) for environmental applications | 6 | | | 1.4 Removal of inorganic contaminants by LDHs | 7 | | | 1.5 Removal of nuclear wastes | 8 | | | 1.6 Graphene-based adsorbents | 9 | | | 1.7 Metal organic frameworks (MOFs)1.8 Bimetallic nanoparticles | 11 | | | 1.9 Conclusions | 11
13 | | | References | 15 | | 2. | Remediation Technologies for Water Cleanup: New Trends | 19 | | | • | | | | 2.1 Introduction2.2 Remediation technologies for emerging pollutants | 19
20 | | | 2.3 Conclusions | 28 | | | References | 29 | | 3. | Advanced Oxidation Process–Based Nanomaterials | | | | for the Remediation of Recalcitrant Pollutants | 33 | | | 3.1 Advanced oxidation processes | 33 | | | 3.2 Main advanced oxidation processes | 33 | | | 3.3 Conclusions | 45 | | | References | 46 | | 4. | Graphene-Based Nanocomposites as Nanosorbents | 49 | | | 4.1 Introduction | 49 | | | 4.2 Graphene-based nanocomposites as nanosorbents | 50 | | | 4.3 Graphene oxide for removal of phenol and naphthol | 69 | | | 4.4 Graphene oxide for removal of algal toxins | 72 | | | 4.5 Graphene for removal of persistent organic pollutants | 72 | | | 4.6 Conclusions References | 73
74 | | | neierences | 14 | | 5. | Kinetics and Equilibrium Isotherm Modeling: Graphene-Based
Nanomaterials for the Removal of Heavy Metals From Water | 79 | |----|---|---| | | 5.1 Introduction 5.2 Kinetic studies and models 5.3 Other kinetic models 5.4 Modeling of equilibrium adsorption processes 5.5 Thermodynamic analyses 5.6 Adsorption of heavy metals 5.7 Conclusions References | 79
80
85
86
92
92
105 | | 6. | Sorption of Dyes on Graphene-Based Nanocomposites | 111 | | | 6.1 Adsorption of dyes 6.2 Graphene-based magnetic nanocomposites 6.3 Photocatalytic degradation 6.4 Graphene-based carbon nanotubes composites 6.5 Graphene-based sulfonic magnetic nanocomposites 6.6 Graphene-based polymer nanocomposites 6.7 Graphene-based sand composites 6.8 Graphene-based chitosan composites 6.9 Conclusions References | 111
115
118
126
127
128
130
131
132 | | 7. | Functionalized Magnetic Nanoparticles: Adsorbents and Applications | 139 | | | 7.1 Magnetic nanoparticles 7.2 Synthesis of magnetic nanoparticles 7.3 Magnetic nanoparticles in wastewater treatment 7.4 Modeling of adsorption: kinetic and isotherm models 7.5 Conclusions and future perspectives References | 139
140
146
153
154
156 | | 8. | Layered Double Hydroxides Nanomaterials | | | | for Water Remediation 8.1 Introduction 8.2 Synthesis of layered double hydroxides 8.3 Potential applications of LDHs 8.4 Conclusions References | 161
161
162
166
182
182 | | 9. | Magnetic Nanophotocatalysts for Wastewater Remediation | 189 | | | 9.1 Introduction9.2 Synthesis and characterization9.3 Applications of magnetically recyclable nanophotocatalysts9.4 ConclusionsReferences | 189
190
192
234
235 | | 10. Alumina Nanoparticles and Alumina-Based Adsorbents for Wastewater Treatment | 239 | |--|------------| | 10.1 Introduction10.2 Synthesis | 239
239 | | 10.3 Application | 243 | | 10.4 Conclusions | 269 | | References | 269 | | 11. Bimetallic Nanomaterials for Remediation of Water and Wastewater | 273 | | and wastewater | 2/3 | | 11.1 Introduction | 273 | | 11.2 Applications of bimetallic nanomaterials11.3 Conclusions | 274 | | References | 293
294 | | 42. Decembing Demonstration and Develop of New acceptable | 207 | | 12. Desorption, Regeneration, and Reuse of Nanomaterials | 297 | | 12.1 Introduction | 297 | | 12.2 Regeneration of photocatalysts12.3 Recovery of metals and regeneration of magnetic nanoparticles | 297
298 | | 12.4 Regeneration of graphene-based nanocomposites | 303 | | 12.5 Regeneration of nanosorbents used in dye removal | 304 | | 12.6 Desorption and regeneration of inorganic solid wastes | 306 | | 12.7 Management of spent eluents | 306 | | 12.8 Management of spent nanomaterials | 307 | | 12.9 Conclusions | 308 | | References | 308 | | 13. Nanomaterials in the Environment: Sources, Fate, Transport | | | and Ecotoxicology | 311 | | 13.1 Introduction | 311 | | 13.2 Release of nanomaterials into the environment | 311 | | 13.3 Titanium dioxide | 314 | | 13.4 Silicon dioxide | 315 | | 13.5 Iron oxide nanoparticles13.6 Graphene-based materials and their toxicity | 317
317 | | 13.7 Metal and semiconductor nanoparticles | 318 | | 13.8 Copper nanoparticles | 319 | | 13.9 Nickel nanoparticles | 319 | | 13.10 Silver nanoparticles | 320 | | 13.11 Magnetic nanoparticles in the environment | 320 | | 13.12 Environmental and safety concerns toward nanomaterials | 321 | | 13.13 Challenges in certain areas | 323 | | 13.14 Proposed actions to address these challenges | 323 | | 13.15 Conclusions | 324 | | References | 324 | | Subject Index | 327 |