Contents

1	Laws of thermodynamics				
	1.1	First and second laws of thermodynamics	1		
	1.2	Combined law of thermodynamics and equilibrium conditions	3		
	1.3	Stability at equilibrium and property anomaly	7		
	1.4	Gibbs-Duhem equation	11		
	Exercises				
2	Gibbs energy function				
	2.1	Phases with fixed compositions	18		
	2.2	Phases with variable compositions: random solutions	25		
		2.2.1 Random solutions	28		
		2.2.2 Binary random solutions	29		
		2.2.3 Ternary random solutions	33		
		2.2.4 Multi-component random solutions	36		
	2.3	Phases with variable compositions: solutions with ordering	36		
		2.3.1 Solutions with short-range ordering	36		
		2.3.2 Solutions with long-range ordering	40		
		2.3.3 Solutions with both short-range and long-range ordering	43		
		2.3.4 Solutions with charged species	43		
	2.4	Polymer solutions and polymer blends	43		
	2.5	Elastic, magnetic, and electric contributions to the free energy			
	Exercises				
3	Phase equilibria in heterogeneous systems				
	3.1	General condition for equilibrium	52		
	3.2	Gibbs phase rule			
	3.3	Potential phase diagrams	55		
		3.3.1 Potential phase diagrams of one-component systems	56		
		3.3.2 Potential phase diagrams of two-component systems	60		
		3.3.3 Sectioning of potential phase diagrams	62		
	3.4 Molar phase diagrams				
		3.4.1 Tie-lines and lever rule	65		
		3.4.2 Phase diagrams with both potential and molar quantities	66		

vi **Contents**

		3.4.3	Phase diagrams with only molar quantities	73
		3.4.4	Projection and sectioning of phase diagrams with potential and	
			molar quantities	75
	Exe	rcises		81
4	Expe	erimenta	al data for thermodynamic modeling	94
	4.1	Phase	equilibrium data	94
		4.1.1	Equilibrated materials	94
		4.1.2	Diffusion couples/multiples	96
		4.1.3	Additional methods	97
	4.2	Therm	nodynamic data	98
		4.2.1	Solution calorimetry	98
		4.2.2	Combustion, direct reaction, and heat capacity calorimetry	99
		4.2.3	Vapor pressure method	99
	Exe	rcises		100
5	First	-princip	oles calculations and theory	104
	5.1	Nicke	l as the prototype	105
		5.1.1	Helmholtz energy and quasi-harmonic approximation	105
		5.1.2	Volume, entropy, enthalpy, thermal expansion, bulk modulus,	
			and heat capacity	110
		5.1.3	Formation enthalpy of Ni ₃ Al	113
	5.2	First-p	principles formulation of thermodynamics	114
			Helmholtz energy	114
		5.2.2	Mermin statistics for the thermal electronic contribution	115
		5.2.3	Vibrational contribution by phonon theory	116
		5.2.4	· -	117
		5.2.5	System with multiple microstates (MMS model)	119
	5.3	um theory for the motion of electrons	120	
		5.3.1	Schrödinger equation	120
		5.3.2	Born-Oppenheimer approximation	121
		5.3.3	Hartree–Fock approximation to solve the Schrödinger equation	122
		5.3.4	Density functional theory (DFT) and zero temperature Kohn-Sham	
			equations	124
	5.4	Lattic	e dynamics	127
		5.4.1	Quantum theory for motion of atomic nuclei	127
		5.4.2	Normal coordinates, eigenenergies, and phonons	128
		5.4.3	Dynamical matrix and phonon mode	131
		5.4.4	Linear-response method versus supercell method	133
	5.5		principles approaches to disordered alloys	135
		5.5.1	Cluster expansions	136
		5.5.2	Special quasi-random structures	137
		5.5.3	Phonon calculations for SQSs	139
	Exe	rcises		140

Contents	vii

6	CALPHAD modeling of thermodynamics					
	6.1	Importance of lattice stability	151			
	6.2	Modeling of pure elements	156			
	6.3	Modeling of stoichiometric phases	157			
	6.4	Modeling of random solution phases	158			
	6.5	Modeling of solution phases with long-range ordering	160			
	6.6	Modeling of magnetic and electric polarizations	164			
7	Applications to chemical reactions					
	7.1 Internal process and differential and integrated driving forces					
	7.2	2 Ellingham diagram and buffered systems				
	7.3	3 Trends of entropies of reactions				
	7.4	Maximum reaction rate and chemical transport reactions	172			
	Exercises					
8	Applications to electrochemical systems					
	8.1	Electrolyte reactions and electrochemical reactions	182			
	8.2	2 Concentrations, activities, and reference states of electrolyte species				
	8.3	Electrochemical cells and half-cell potentials				
		8.3.1 Electrochemical cells	185			
		8.3.2 Half-cell potentials	188			
	8.4	Aqueous solution and Pourbaix diagram	191			
	8.5	8.5 Application examples				
		8.5.1 Metastability and passivation	196			
		8.5.2 Galvanic protection	198			
		8.5.3 Fuel cells	199			
		8.5.4 Ion transport membranes	200			
		8.5.5 Electrical batteries	200			
	Exercises					
9	Critical phenomena, thermal expansion, and Materials Genome®					
	9.1 MMS model applied to thermal expansion		206			
	9.2	Application to cerium	208			
	9.3	Application to Fe ₃ Pt	215			
	9.4	Concept of Materials Genome®	219			
	Appendix A: YPHON					
	Appendix B: SQS templates					
	References					
	Index					