Contents

Fore	wora		XIII
Prefa	ace		xv
Introduction Suggested Bibliography List of main symbols and definitions			1 7 9
1	Analyt Definit	cical Dynamics of Discrete Systems	13
1.1	_ •		14
1.1	1.1.1	ole of virtual work for a particle Nonconstrained particle	14
	1.1.2	Constrained particle	15
1.2		ion to a system of particles	17
1.2	1.2.1	•	17
	1.2.2	The kinematic constraints	18
	1.2.3	Concept of generalized displacements	20
1.3	Hamilt	on's principle for conservative systems and Lagrange equations	23
	1.3.1	Structure of kinetic energy and classification of inertia forces	27
	1.3.2	Energy conservation in a system with scleronomic constraints	29
	1.3.3	Classification of generalized forces	32
1.4	_	ge equations in the general case	36 39
1.5	Lagrange equations for impulsive loading		
	1.5.1	Impulsive loading of a mass particle	39
	1.5.2	Impulsive loading for a system of particles	42
1.6	-	nics of constrained systems	44
1.7	Exerci		46
	1.7.1	Solved exercises	46
	1.7.2		53
	Refere	nces	54
2	Undar	nped Vibrations of n-Degree-of-Freedom Systems	57
	Definit	tions	58
2.1	Linear	vibrations about an equilibrium configuration	59

	2.1.1	Vibrations about a stable equilibrium position	59
	2.1.2	Free vibrations about an equilibrium configuration corresponding	
		to steady motion	63
	2.1.3	Vibrations about a neutrally stable equilibrium position	66
2.2	Norma	I modes of vibration	67
	2.2.1	Systems with a stable equilibrium configuration	68
	2.2.2	Systems with a neutrally stable equilibrium position	69
2.3	Orthog	onality of vibration eigenmodes	70
	2.3.1	Orthogonality of elastic modes with distinct frequencies	70
	2.3.2	Degeneracy theorem and generalized orthogonality relationships	72
	2.3.3	Orthogonality relationships including rigid-body modes	75
2.4	Vector	and matrix spectral expansions using eigenmodes	76
2.5		brations induced by nonzero initial conditions	77
	2.5.1	Systems with a stable equilibrium position	77
	2.5.2	Systems with neutrally stable equilibrium position	82
2.6	Respon	ise to applied forces: forced harmonic response	83
	2.6.1	Harmonic response, impedance and admittance matrices	84
	2.6.2	Mode superposition and spectral expansion of the admittance matrix	84
	2.6.3	Statically exact expansion of the admittance matrix	88
	2.6.4	Pseudo-resonance and resonance	89
	2.6.5	Normal excitation modes	90
2.7	Respon	ise to applied forces: response in the time domain	91
	2.7.1	Mode superposition and normal equations	91
	2.7.2	Impulse response and time integration of the normal equations	92
	2.7.3	Step response and time integration of the normal equations	94
	2.7.4	Direct integration of the transient response	95
2.8		approximations of dynamic responses	95
	2.8.1	Response truncation and mode displacement method	96
	2.8.2	Mode acceleration method	97
	2.8.3	Mode acceleration and model reduction on selected coordinates	98
2.9		ise to support motion	101
	2.9.1	Motion imposed to a subset of degrees of freedom	101
	2.9.2	Transformation to normal coordinates	103
	2.9.3	Mechanical impedance on supports and its statically	105
		exact expansion	105
	2.9.4	System submitted to global support acceleration	108
	2.9.5	Effective modal masses	109
	2.9.6	Method of additional masses	110
2.10		onal methods for eigenvalue characterization	111
	2.10.1	Rayleigh quotient	111
	2.10.2	Principle of best approximation to a given eigenvalue	112
	2.10.3	Recurrent variational procedure for eigenvalue analysis	113
	2.10.4	Eigensolutions of constrained systems: general comparison	113
	2.1 0. F	principle or monotonicity principle	114
	2.10.5	Courant's minimax principle to evaluate eigenvalues independently	1 1 T
		of each other	116

	2.10.6	Rayleigh's theorem on constraints (eigenvalue bracketing)	117
2.11		vative rotating systems	119
	2.11.1	Energy conservation in the absence of external force	119
	2.11.2	Properties of the eigensolutions of the conservative rotating system	119
	2.11.3	State-space form of equations of motion	121
	2.11.4	Eigenvalue problem in symmetrical form	124
	2.11.5	Orthogonality relationships	126
	2.11.6	Response to nonzero initial conditions	128
	2.11.7	Response to external excitation	130
2.12	Exercise	•	130
	2.12.1	Solved exercises	130
	2.12.2	Selected exercises	143
	Referen	nces	148
3	Dampe	d Vibrations of n-Degree-of-Freedom Systems	149
	Definiti	ons	150
3.1	Dampe	d oscillations in terms of normal eigensolutions of the	
	undamp	ped system	151
	3.1.1	Normal equations for a damped system	152
	3.1.2	Modal damping assumption for lightly damped structures	153
	3.1.3	Constructing the damping matrix through modal expansion	158
3.2	Forced	harmonic response	160
	3.2.1	The case of light viscous damping	160
	3.2.2	Hysteretic damping	162
	3.2.3	Force appropriation testing	164
	3.2.4	The characteristic phase lag theory	170
3.3		pace formulation of damped systems	174
	3.3.1	Eigenvalue problem and solution of the homogeneous case	175
	3.3.2	General solution for the nonhomogeneous case	178
	3.3.3	Harmonic response	179
3.4		mental methods of modal identification	180
	3.4.1	The least-squares complex exponential method	182
	3.4.2	Discrete Fourier transform	187
	3.4.3	The rational fraction polynomial method	190
	3.4.4	Estimating the modes of the associated undamped system	195
	3.4.5	Example: experimental modal analysis of a bellmouth	196
3.5	Exercis		199
0.0	3.5.1	Solved exercises	199
3.6		ed exercises	207
5.0	Refere		208
4	Contir	nuous Systems	211
	Definit		212
4.1		atic description of the dynamic behaviour of continuous systems:	
		ton's principle	213
	4.1.1	Definitions	213

viii Contents

	4.1.2	Strain evaluation: Green's measure	214	
	4.1.3	Stress-strain relationships	219	
	4.1.4	Displacement variational principle	221	
	4.1.5	Derivation of equations of motion	221	
	4.1.6	The linear case and nonlinear effects	223	
4.2		brations of linear continuous systems and response to external	##J	
1.2	excitati		231	
	4.2.1	Eigenvalue problem	231	
	4.2.2	Orthogonality of eigensolutions	233	
	4.2.3	Response to external excitation: mode superposition (homogeneous	233	
	7.2.5	spatial boundary conditions)	234	
	4.2.4	Response to external excitation: mode superposition		
		(nonhomogeneous spatial boundary conditions)	237	
	4.2.5	Reciprocity principle for harmonic motion	241	
4.3		mensional continuous systems	243	
	4.3.1	The bar in extension	244	
	4.3.2	Transverse vibrations of a taut string	258	
	4.3.3	Transverse vibration of beams with no shear deflection	263	
	4.3.4	Transverse vibration of beams including shear deflection	277	
	4.3.5	Travelling waves in beams	285	
4.4		g vibrations of thin plates	290	
	4.4.1	Kinematic assumptions	290	
	4.4.2	Strain expressions	291	
	4.4.3	Stress-strain relationships	292	
	4.4.4	Definition of curvatures	293	
	4.4.5	Moment-curvature relationships	293	
	4.4.6	Frame transformation for bending moments	295	
	4.4.7	Computation of strain energy	295	
	4.4.8	Expression of Hamilton's principle	296	
	4.4.9	Plate equations of motion derived from Hamilton's principle	298	
	4.4.10	Influence of in-plane initial stresses on plate vibration	303	
	4.4.11	Free vibrations of the rectangular plate	305	
	4.4.12	Vibrations of circular plates	308	
	4.4.13	An application of plate vibration: the ultrasonic wave motor	311	
4.5	Wave p	propagation in a homogeneous elastic medium	316	
	4.5.1	The Navier equations in linear dynamic analysis	316	
	4.5.2	Plane elastic waves	318	
	4.5.3	Surface waves	320	
4.6	Solved	Solved exercises		
4.7		ed exercises	327 328	
	Refere		333	
5	Appro	ximation of Continuous Systems by Displacement Methods	335	
	Definit		337	
5.1		ayleigh-Ritz method	339	
		Choice of approximation functions	339	

Contents

	5.1.2	Discretization of the displacement variational principle	340	
	5.1.3	Computation of eigensolutions by the Rayleigh–Ritz method	342	
	5.1.4	Computation of the response to external loading by the		
		Rayleigh-Ritz method	345	
	5.1.5	The case of prestressed structures	345	
5.2	Applica	ations of the Rayleigh–Ritz method to continuous systems	346	
	5.2.1	The clamped-free uniform bar	347	
	5.2.2	The clamped–free uniform beam	350	
	5.2.3	The uniform rectangular plate	357	
5.3	The fin	ite element method	363	
	5.3.1	The bar in extension	364	
	5.3.2	Truss frames	371	
	5.3.3	Beams in bending without shear deflection	376	
	5.3.4	Three-dimensional beam element without shear deflection	386	
	5.3.5	Beams in bending with shear deformation	392	
5.4	Exercis	ses	399	
	5.4.1	Solved exercises	399	
	5.4.2	Selected exercises	406	
	Referei	nces	412	
6	Solutio	on Methods for the Eigenvalue Problem	415	
	Definit	ions	417	
6.1	Genera	l considerations	419	
	6.1.1	Classification of solution methods	420	
	6.1.2	Criteria for selecting the solution method	420	
	6.1.3	Accuracy of eigensolutions and stopping criteria	423	
6.2	Dynam	nical and symmetric iteration matrices	425	
6.3	Computing the determinant: Sturm sequences			
6.4				
	6.4.1	Reduction to a diagonal form: Jacobi's method	430	
	6.4.2	Reduction to a tridiagonal form: Householder's method	434	
6.5	Iteratio	on on eigenvectors: the power algorithm	436	
	6.5.1	Computing the fundamental eigensolution	437	
	6.5.2	Determining higher modes: orthogonal deflation	441	
	6.5.3	Inverse iteration form of the power method	443	
6.6	Solutio	on methods for a linear set of equations	444	
	6.6.1	Nonsingular linear systems	445	
	6.6.2	Singular systems: nullspace, solutions and generalized inverse	453	
	6.6.3	Singular matrix and nullspace	453	
	6.6.4	Solution of singular systems	454	
	6.6.5	A family of generalized inverses	456	
	6.6.6	Solution by generalized inverses and finding the nullspace N	457	
	6.6.7	Taking into account linear constraints	459	
6.7	Practical aspects of inverse iteration methods			
	6.7.1	Inverse iteration in presence of rigid body modes	460 460	
	6.7.2	Spectral shifting	463	
	J. / . ~	-r		

X Contents

	0.1			
6.8		ce construction methods	464	
	6.8.1	The subspace iteration method	464	
. 0	6.8.2	The Lanczos method	468	
6.9	-	ic reduction and substructuring	479	
	6.9.1	Static condensation (Guyan–Irons reduction)	481	
	6.9.2	Craig and Bampton's substructuring method	484	
	6.9.3	McNeal's hybrid synthesis method	487	
< 10	6.9.4	Rubin's substructuring method	488	
6.10		ounds to eigenvalues	488	
	6.10.1	Rayleigh and Schwarz quotients	489	
	6.10.2	Eigenvalue bracketing	491	
	6.10.3	Temple-Kato bounds	492	
6.11		vity of eigensolutions, model updating and dynamic optimization	498	
	6.11.1		501	
	6.11.2	Sensitivity of eigenfrequencies	502	
	6.11.3	Sensitivity of free vibration modes	502	
	6.11.4	Modal representation of eigenmode sensitivity	504	
6.12	Exercis		504	
	6.12.1		504	
	6.12.2	Selected exercises	505	
	Refere	nces	508	
7	Direct	Time-Integration Methods	511	
	Definit	ions	513	
7.1	Linear	multistep integration methods	513	
	7.1.1	Development of linear multistep integration formulas	514	
	7.1.2	One-step methods	515	
	7.1.3	Two-step second-order methods	516	
	7.1.4	Several-step methods	517	
	7.1.5	Numerical observation of stability and accuracy properties of		
		simple time integration formulas	517	
	7.1.6	Stability analysis of multistep methods	518	
7.2	One-st	ep formulas for second-order systems: Newmark's family	522	
	7.2.1	The Newmark method	522	
	7.2.2	Consistency of Newmark's method	525	
	7.2.3	First-order form of Newmark's operator – amplification matrix	525	
	7.2.4	Matrix norm and spectral radius	527	
	7.2.5	Stability of an integration method – spectral stability	528	
	7.2.6	Spectral stability of the Newmark method	530	
	7.2.7	Oscillatory behaviour of the Newmark response	533	
	7.2.8	Measures of accuracy: numerical dissipation and dispersion	535	
7.3	Equilibrium averaging methods			
	7.3.1	Amplification matrix	539 540	
	7.3.2	Finite difference form of the time-marching formula	541	
	7.3.3	Accuracy analysis of equilibrium averaging methods	542	
	7.3.4	Stability domain of equilibrium averaging methods	543	

Contents

Subje	ubject Index 58		
Auth	Author Index		577
	References		575
7.7	Exercises		573
	7.6.3	Time step size control	571
	7.6.2	The implicit case	565
	7.6.1	The explicit case	564
7.6	The nonlinear case		
	7.5.3	Restitution of the exact solution by the central difference method	561
	7.5.2	Application example: the clamped-free bar excited by an end load	559
	7.5.1	Algorithm in terms of velocities	556
7.5	Explici	t time integration using the central difference algorithm	556
	7.4.1	Application: the clamped-free bar excited by an end force	552
7.4	Energy conservation		
	7.3.6	Particular forms of equilibrium averaging	544
	7.3.5	Oscillatory behaviour of the solution	544