CONTENTS

Ac	Acknowledgments		
1.	Introduction to Computational Intelligence		1
	1.1	Welcome to Computational Intelligence	1
	1.2	What Makes This Book Special	1
	1.3	What This Book Covers	2
	1.4	How to Use This Book	2
	1.5	Final Thoughts Before You Get Started	3
PA	RT I	NEURAL NETWORKS	5
2.	Intro	oduction and Single-Layer Neural Networks	7
	2.1	Short History of Neural Networks	9
	2.2	Rosenblatt's Neuron	10
	2.3	Perceptron Training Algorithm	13
	2.4	The Perceptron Convergence Theorem	23
	2.5	Computer Experiment Using Perceptrons	25
	2.6	Activation Functions	28
	Exer	cises	30
3.	Multilayer Neural Networks and Backpropagation		35
	3.1	Universal Approximation Theory	35
	3.2	The Backpropagation Training Algorithm	37
	3.3	Batch Learning and Online Learning	45
	3.4	Cross-Validation and Generalization	47
	3.5	Computer Experiment Using Backpropagation	53
	Exercises		56
4.	Radial-Basis Function Networks		61
	4.1	Radial-Basis Functions	61
	4.2	The Interpolation Problem	62
	4.3	Training Algorithms For Radial-Basis Function Networks	64

viii c	ONTENTS
--------	---------

	4.4	Universal Approximation	69	
	4.5	Kernel Regression	70	
	Exer	cises	75	
5.	Recurrent Neural Networks			
	5.1	The Hopfield Network	77	
	5.2	The Grossberg Network	81	
	5.3	Cellular Neural Networks	88	
	5.4	Neurodynamics and Optimization	91	
	5.5	Stability Analysis of Recurrent Neural Networks	93	
	Exer	cises	99	
PA	RT I	FUZZY SET THEORY AND FUZZY LOGIC	101	
6.	Basi	c Fuzzy Set Theory	103	
	6.1	Introduction	103	
	6.2	A Brief History	107	
	6.3	Fuzzy Membership Functions and Operators	108	
	6.4	Alpha-Cuts, The Decomposition Theorem, and The Extension		
		Principle	117	
	6.5	Compensatory Operators	120	
	6.6	Conclusions	124	
	Exer	cises	124	
7.	Fuzzy Relations and Fuzzy Logic Inference		127	
	7.1	Introduction	127	
	7.2	Fuzzy Relations and Propositions	128	
	7.3	Fuzzy Logic Inference	131	
	7.4	Fuzzy Logic For Real-Valued Inputs	135	
	7.5	Where Do The Rules Come From?	138	
	7.6	Chapter Summary	142	
	Exercises		143	
8.	Fuzzy Clustering and Classification			
	8.1	Introduction to Fuzzy Clustering	147	
	8.2	Fuzzy c-Means	155	
	8.3	An Extension of The Fuzzy c-Means	167	
	8.4	Possibilistic c-Means	169	
	8.5	Fuzzy Classifiers: Fuzzy k-Nearest Neighbors	174	
	8.6	Chapter Summary	179	
	Exercises		180	

	CONTENTS	
9. Fu	izzy Measures and Fuzzy Integrals	18
9.	Fuzzy Measures	18
9.1	2 Fuzzy Integrals	18
9.3	3 Training The Fuzzy Integrals	19
9.4	8	20
Ex	ercises	20
PART	III EVOLUTIONARY COMPUTATION	20
10. Ev	volutionary Computation	20
10	.1 Basic Ideas and Fundamentals	20
10	.2 Evolutionary Algorithms: Generate and Test	21
10	.3 Representation, Search, and Selection Operators	22
	.4 Major Research and Application Areas	22
	.5 Summary	22
Ex	ercises	22
11. Ev	olutionary Optimization	22
11	.1 Global Numerical Optimization	22
	.2 Combinatorial Optimization	23
	.3 Some Mathematical Considerations	23
	.4 Constraint Handling	25
	.5 Self-Adaptation	25
	.6 Summary	26
Ex	ercises	26
12. Ev	olutionary Learning and Problem Solving	26
	.1 Evolving Parameters of A Regression Equation	27
	.2 Evolving The Structure and Parameters of Input–Output Systems	27
	.3 Evolving Clusters	29
	4 Evolutionary Classification Models	29
	.5 Evolutionary Control Systems	30
	.6 Evolutionary Games	31
	.7 Summary ercises	32
		32
	ollective Intelligence and Other Extensions of Evolutionary omputation	32
13	•	
	.2 Differential Evolution	32 32
	.3 Ant Colony Optimization	32 32
1.0	. The colony opinization	34

x CONTENTS

Index

ference	PS	343
Exercises		340
13.7	Summary	340
13.6	Multicriteria Evolutionary Optimization	335
13.5	Interactive Evolutionary Computation	333
13.4	Evolvable Hardware	331

361