Contents

	List	List of contributors		page xiv		
	Fore	eword		xvii		
	Ack	nowledg	gments	xix		
	Acre	onyms		xxii		
1	Intro	duction		1		
	1.1	Historical background		1		
		1.1.1	Industrial and technological revolution: from steam engines			
			to the Internet	1		
		1.1.2	Mobile communications generations: from 1G to 4G	2		
		1.1.3	From mobile broadband (MBB) to extreme MBB	6		
		1.1.4	IoT: relation to 5G	7		
	1.2			7		
	1.3	Ration	nale of 5G: high data volume, twenty-five billion connected			
	 1.3 Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements 1.3.1 Security 1.4 Global initiatives 					
		1.3.1	Security	11		
	1.4	Globa	l initiatives	12		
		1.4.1	METIS and the 5G-PPP	12		
		1.4.2	China: 5G promotion group	14		
		1.4.3	Korea: 5G Forum	14		
		1.4.4	Japan: ARIB 2020 and Beyond Ad Hoc	14		
		1.4.5	Other 5G initiatives	14		
		1.4.6	IoT activities	15		
	1.5	Standa	ardization activities	15		
			ITU-R	15		
		1.5.2	3GPP	16		
		1.5.3	IEEE	16		
	1.6	Scope	of the book	16		
	Refe	erences		18		
2	5G use cases and system concept					
	2.1	Use ca	ases and requirements	21		
		2.1.1	Use cases	21		
		2.1.2	Requirements and key performance indicators	30		

	2.2	5G system concept	32
		2.2.1 Concept overview	32
		2.2.2 Extreme mobile broadband	34
		2.2.3 Massive machine-type communication	36
		2.2.4 Ultra-reliable machine-type communication	38
		2.2.5 Dynamic radio access network	39
		2.2.6 Lean system control plane	43
		2.2.7 Localized contents and traffic flows	45
		2.2.8 Spectrum toolbox	46
	2.3	Conclusions	48
	Refe	erences	48
3	The	5G architecture	50
	3.1	Introduction	50
		3.1.1 NFV and SDN	50
		3.1.2 Basics about RAN architecture	53
	3.2	High-level requirements for the 5G architecture	56
	3.3	Functional architecture and 5G flexibility	57
		3.3.1 Functional split criteria	58
		3.3.2 Functional split alternatives	59
		3.3.3 Functional optimization for specific applications	61
		3.3.4 Integration of LTE and new air interface to fulfill 5G	
		requirements	63
		3.3.5 Enhanced Multi-RAT coordination features	66
	3.4	Physical architecture and 5G deployment	67
		3.4.1 Deployment enablers	67
		3.4.2 Flexible function placement in 5G deployments	71
	3.5	Conclusions	74
	Refe	erences	75
4	Mac	hine-type communications	77
	4.1	Introduction	77
		4.1.1 Use cases and categorization of MTC	77
		4.1.2 MTC requirements	80
	4.2	Fundamental techniques for MTC	83
		4.2.1 Data and control for short packets	83
		4.2.2 Non-orthogonal access protocols	85
	4.3	Massive MTC	86
		4.3.1 Design principles	86
		4.3.2 Technology components	86
		4.3.3 Summary of mMTC features	94
	4.4	Ultra-reliable low-latency MTC	94
		4.4.1 Design principles	94
		4.4.2 Technology components	96

		4.4.3 Summary of uMTC features	101
	4.5	Conclusions	102
	Refe	erences	103
5	Devi	ice-to-device (D2D) communications	107
	5.1	D2D: from 4G to 5G	
		5.1.1 D2D standardization: 4G LTE D2D	109
		5.1.2 D2D in 5G: research challenges	112
	5.2	Radio resource management for mobile broadband D2D	113
		5.2.1 RRM techniques for mobile broadband D2D	114
		5.2.2 RRM and system design for D2D	114
		5.2.3 5G D2D RRM concept: an example	115
	5.3	Multi-hop D2D communications for proximity and emergency	
		services	120
		5.3.1 National security and public safety requirements in 3GPP and METIS	121
		5.3.2 Device discovery without and with network assistance	122
		5.3.3 Network-assisted multi-hop D2D communications	122
		5.3.4 Radio resource management for multi-hop D2D	124
		5.3.5 Performance of D2D communications in the proximity	
		communications scenario	125
	5.4	Multi-operator D2D communication	127
		5.4.1 Multi-operator D2D discovery	127
		5.4.2 Mode selection for multi-operator D2D	128
		5.4.3 Spectrum allocation for multi-operator D2D	129
	5.5	Conclusions	133
	Refe	erences	134
6	Milli	imeter wave communications	137
	6.1	Spectrum and regulations	137
	6.2	Channel propagation	139
	6.3	Hardware technologies for mmW systems	139
		6.3.1 Device technology	139
		6.3.2 Antennas	142
		6.3.3 Beamforming architecture	143
	6.4	Deployment scenarios	144
	6.5	Architecture and mobility	146
		6.5.1 Dual connectivity	147
		6.5.2 Mobility	147
	6.6	Beamforming	149
		6.6.1 Beamforming techniques	149
		6.6.2 Beam finding	150
	6.7	Physical layer techniques	152
		6.7.1 Duplex scheme	152

		6.7.2 Transmission schemes	152
	6.8	Conclusions	155
	Refe	rences	156
7	The s	5G radio-access technologies	158
	7.1	Access design principles for multi-user communications	159
		7.1.1 Orthogonal multiple-access systems	160
		7.1.2 Spread spectrum multiple-access systems	164
		7.1.3 Capacity limits of multiple-access methods	165
	7.2	Multi-carrier with filtering: a new waveform	169
		7.2.1 Filter-bank based multi-carrier	169
		7.2.2 Universal filtered OFDM	175
	7.3	Non-orthogonal schemes for efficient multiple access	178
		7.3.1 Non-orthogonal multiple access (NOMA)	179
		7.3.2 Sparse code multiple access (SCMA)	181
		7.3.3 Interleave division multiple access (IDMA)	183
	7.4	Radio access for dense deployments	184
		7.4.1 OFDM numerology for small-cell deployments	186
		7.4.2 Small-cell sub-frame structure	188
	7.5	Radio access for V2X communication	192
		7.5.1 Medium access control for nodes on the move	192
	7.6	Radio access for massive machine-type communication	194
		7.6.1 The massive access problem	195
		7.6.2 Extending access reservation	198
		7.6.3 Direct random access	199
	7.7		202
	Refe	erences	202
8	Mas	sive multiple-input multiple-output (MIMO) systems	208
	8.1	Introduction	208
		8.1.1 MIMO in LTE	210
	8.2	Theoretical background	211
		8.2.1 Single user MIMO	212
		8.2.2 Multi-user MIMO	215
		8.2.3 Capacity of massive MIMO: a summary	217
	8.3	Pilot design for massive MIMO	217
		8.3.1 The pilot-data trade-off and impact of CSI	218
		8.3.2 Techniques to mitigate pilot contamination	220
	8.4	Resource allocation and transceiver algorithms for massive MIMO	225
		8.4.1 Decentralized coordinated transceiver design for massive	225
		MIMO	225
		8.4.2 Interference clustering and user grouping	228
	8.5	Fundamentals of baseband and RF implementations in massive	222
		MIMO	233

		8.5.1	Basic forms of massive MIMO implementation	233
		8.5.2	Hybrid fixed BF with CSI-based precoding (FBCP)	235
		8.5.3	Hybrid beamforming for interference clustering	
			and user grouping	238
	8.6	Channe	el models	241
	8.7	Conclu	sions	242
	Refe	rences		243
9	Coor		multi-point transmission in 5G	248
	9.1	Introdu		248
	9.2		MP enablers	250
			Channel prediction	252
		9.2.2	Clustering and interference floor shaping	253
			User scheduling and precoding	257
		9.2.4	Interference mitigation framework	257
		9.2.5	JT CoMP in 5G	258
	9.3	JT CoN	MP in conjunction with ultra-dense networks	259
	9.4		uted cooperative transmission	260
			Decentralized precoding/filtering design with local CSI	261
		9.4.2	Interference alignment	265
	9.5	JT CoN	MP with advanced receivers	268
			Dynamic clustering for JT CoMP with multiple antenna UEs	268
		9.5.2	Network-assisted interference cancellation	271
	9.6	Conclu	sions	272
	Refe	rences		273
10	Rela		wireless network coding	277
	10.1	The re	ole of relaying and network coding in 5G wireless networks	277
		10.1.1	The revival of relaying	278
		10.1.2		279
		10.1.3	New relaying techniques for 5G	279
		10.1.4	4 Key applications in 5G	281
	10.2	Multi	-flow wireless backhauling	284
		10.2.1	Coordinated direct and relay (CDR) transmission	285
		10.2.2	2 Four-way relaying (FWR)	287
		10.2.3	Wireless-emulated wire (WEW) for backhaul	288
	10.3	Highl	y flexible multi-flow relaying	290
		10.3.1	Basic idea of multi-flow relaying	290
		10.3.2	2 Achieving high throughput for 5G	293
		10.3.3	B Performance evaluation	294
	10.4	Buffe	r-aided relaying	295
		10.4.1	Why buffers?	296
		10.4.2	2 Relay selection	297
		10.4.3	3 Handling inter-relay interference	299

	10.4.4 Extensions	299		
	10.5 Conclusions	299		
	References	300		
11	Interference management, mobility management, and dynamic			
	reconfiguration			
	11.1 Network deployment types	304		
	11.1.1 Ultra-dense network or densification	305		
	11.1.2 Moving networks	305		
	11.1.3 Heterogeneous networks	306		
	11.2 Interference management in 5G	306		
	11.2.1 Interference management in UDN	307		
	11.2.2 Interference management for moving relay nodes	310		
	11.2.3 Interference cancelation	314		
	11.3 Mobility management in 5G	314		
	11.3.1 User equipment-controlled versus network-controlled			
	handover	315		
	11.3.2 Mobility management in heterogeneous 5G networks	317		
	11.3.3 Context awareness for mobility management	320		
	11.4 Dynamic network reconfiguration in 5G	323		
	11.4.1 Energy savings through control/user plane decoupling	323		
	11.4.2 Flexible network deployment based on moving networks	327		
	11.5 Conclusions	330		
	References	331		
12	Spectrum	336		
	12.1 Introduction	336		
	12.1.1 Spectrum for 4G	337		
	12.1.2 Spectrum challenges in 5G	339		
	12.2 5G spectrum landscape and requirements	341		
	12.2.1 Bandwidth requirements	343		
	12.3 Spectrum access modes and sharing scenarios	345		
	12.4 5G spectrum technologies	346		
	12.4.1 Spectrum toolbox	346		
	12.4.2 Main technology components	347		
	12.5 Value of spectrum for 5G: a techno-economic perspective	349		
	12.6 Conclusions	352		
	References	353		
13	The 5G wireless propagation channel models	357		
	13.1 Introduction	357		
	13.2 Modeling requirements and scenarios	358		
	13.2.1 Channel model requirements	359		
	13.2.2 Propagation scenarios	361		

13.3	The MI	ETIS channel models	362
	13.3.1	Map-based model	363
	13.3.2	Stochastic model	371
13.4	Conclus	sions	379
Refere	ences		379
Simul	ation me	ethodology	381
14.1	Evaluati	ion methodology	381
	14.1.1	Performance indicators	381
	14.1.2	Channel simplifications	383
14.2	Calibra	ition	387
	14.2.1	Link-level calibration	388
	14.2.2	System-level calibration	391
14.3	New ch	nallenges in the 5G modeling	392
	14.3.1	Real scenarios	393
	14.3.2	New waveforms	394
	14.3.3	Massive MIMO	395
	14.3.4	Higher frequency bands	396
	14.3.5	Device-to-device link	396
	14.3.6	Moving networks	397
14.4	Conclu	sions	397
Refer	ences		398
Index			401