Contents

	Preface	page xv
	Reference tables	xvii
	Table A Counting and combinatorics formulae	xvii
	Table B Useful integrals, expansions, and approximations	xvii
	Table C Extensive thermodynamic potentials	xviii
	Table D Intensive per-particle thermodynamic potentials for	
	single-component systems	xviii
	Table E Thermodynamic calculus manipulations	xix
	Table F Measurable quantities	XX
	Table G Common single-component statistical-mechanical ensembles	xxi
	Table H Fundamental physical constants	xxii
1	Introduction and guide for this text	1
2	Equilibrium and entropy	6
	2.1 What is equilibrium?	6
	2.2 Classical thermodynamics	7
	2.3 Statistical mechanics	11
	2.4 Comparison of classical thermodynamics and statistical mechan	ics 14
	2.5 Combinatorial approaches to counting	15
	Problems	18
3	Energy and how the microscopic world works	21
	3.1 Quantum theory	21
	3.2 The classical picture	25
	3.3 Classical microstates illustrated with the ideal gas	29
	3.4 Ranges of microscopic interactions and scaling with system size	32
	3.5 From microscopic to macroscopic	34
	3.6 Simple and lattice molecular models	37
	3.7 A simple and widely relevant example: the two-state system	38
	Problems	41
4	Entropy and how the macroscopic world works	
	4.1 Microstate probabilities	50
	4.2 The principle of equal a priori probabilities	51
	4.3 Ensemble averages and time averages in isolated systems	54
	4.4 Thermal equilibrium upon energy exchange	58
	4.5 General forms for equilibrium and the principle of maximum er	
	4.6 The second law and internal constraints	69
	4.7 Equivalence with the energy-minimum principle	70

	4.8	Ensemble averages and Liouville's theorem in classical systems	72
	Prob	lems	75
5	The	fundamental equation	82
	5.1	Equilibrium and derivatives of the entropy	82
	5.2	Differential and integrated versions of the fundamental equations	83
	5.3	Intensive forms and state functions	85
	Prob	lems	91
6	The first law and reversibility		
	6.1	The first law for processes in closed systems	93
	6.2	The physical interpretation of work	95
	6.3	A classic example involving work and heat	97
	6.4	Special processes and relationships to the fundamental equation	98
	6.5	Baths as idealized environments	101
	6.6	Types of processes and implications from the second law	101
	6.7	Heat engines	105
	6.8	Thermodynamics of open, steady-flow systems	107
	Prob	lems	114
7	Legendre transforms and other potentials		123
	7.1	New thermodynamic potentials from baths	123
	7.2	Constant-temperature coupling to an energy bath	123
	7.3	Complete thermodynamic information and natural variables	126
	7.4	Legendre transforms: mathematical convention	128
	7.5	Legendre transforms: thermodynamic convention	130
	7.6	The Gibbs free energy	132
	7.7	Physical rationale for Legendre transforms	133
	7.8	Extremum principles with internal constraints	134
	7.9	The enthalpy and other potentials	136
	7.10	Integrated and derivative relations	137
	7.11	Multicomponent and intensive versions	141
	7.12	Summary and look ahead	142
	Prob	olems	143
8	Maxwell relations and measurable properties		
	8.1	Maxwell relations	149
	8.2	Measurable quantities	151
	8.3	General considerations for calculus manipulations	154
	Prol	olems	156
9	Gases		
	9.1	Microstates in monatomic ideal gases	161
	9.2	Thermodynamic properties of ideal gases	165

	9.3	Ideal gas mixtures	167
	9.4	Nonideal or "imperfect" gases	170
	9.5	Nonideal gas mixtures	171
	Prob	lems	172
10	Phas	se equilibrium	176
	10.1	Conditions for phase equilibrium	176
	10.2	Implications for phase diagrams	181
	10.3	Other thermodynamic behaviors at a phase transition	184
	10.4	Types of phase equilibrium	187
	10.5	Microscopic view of phase equilibrium	188
	10.6	Order parameters and general features of phase equilibrium	194
	Prob	lems	195
11	Stab	ility	201
	11.1	Metastability	201
	11.2	Common tangent line perspective on phase equilibrium	202
	11.3	Limits of metastability	205
	11.4	Generalized stability criteria	209
	Prob	lems	212
12	Solutions: fundamentals		217
	12.1	Ideal solutions	217
	12.2	Ideal vapor-liquid equilibrium and Raoult's law	220
	12.3	Boiling-point elevation	221
	12.4	Freezing-point depression	224
	12.5	Osmotic pressure	224
	12.6	Binary mixing with interactions	227
	12.7	Nonideal solutions in general	230
	12.8	The Gibbs-Duhem relation	231
	12.9	Partial molar quantities	233
	Prob	lems	236
13	Solu	rtions: advanced and special cases	246
	13.1	Phenomenology of multicomponent vapor-liquid equilibrium	246
	13.2	Models of multicomponent vapor-liquid equilibrium	248
	13.3	Bubble- and dew-point calculations at constant pressure	250
	13.4	Flash calculations at constant pressure and temperature	252
	13.5	Relative volatility formulation	254
	13.6	Nonideal mixtures	255
	13.7	Constraints along mixture vapor-liquid phase boundaries	258
	13.8	Phase equilibrium in polymer solutions	260
	13.9	Strong electrolyte solutions	266
	Prob	olems	274

14	Solids		
	14.1 General properties of solids	280	
	14.2 Solid-liquid equilibrium in binary mixtures	281	
	14.3 Solid-liquid equilibrium in multicomponent solutions	287	
	14.4 A microscopic view of perfect crystals	290	
	14.5 The Einstein model of perfect crystals	292	
	14.6 The Debye model of perfect crystals	296	
	Problems	300	
15	The third law		
	15.1 Absolute entropies and absolute zero	305	
	15.2 Finite entropies and heat capacities at absolute zero	309	
	15.3 Entropy differences at absolute zero	310	
	15.4 Attainability of absolute zero	312	
	Problems	315	
16	The canonical partition function	319	
	16.1 A review of basic statistical-mechanical concepts	319	
	16.2 Microscopic equilibrium in isolated systems	320	
	16.3 Microscopic equilibrium at constant temperature	321	
	16.4 Microstates and degrees of freedom	328	
	16.5 The canonical partition function for independent molecules	332	
	Problems	335	
17	Fluctuations	343	
	17.1 Distributions in the canonical ensemble	343	
	17.2 The canonical distribution of energies	345	
	17.3 Magnitude of energy fluctuations	350	
	Problems	353	
18	Statistical mechanics of classical systems	357	
	18.1 The classical canonical partition function	357	
	18.2 Microstate probabilities for continuous degrees of freedom	361	
	18.3 The Maxwell–Boltzmann distribution	368	
	18.4 The pressure in the canonical ensemble	372	
	18.5 The classical microcanonical partition function	375	
	Problems	376	
19		387	
	19.1 The isothermal-isobaric ensemble	387	
	19.2 The grand canonical ensemble	392	
	19.3 Generalities and the Gibbs entropy formula	396 397	
	Problems		

20	Reaction equilibrium		404
	20.1	A review of basic reaction concepts	404
	20.2	Reaction equilibrium at the macroscopic level	405
	20.3	Reactions involving ideal gases	407
	20.4	Reactions involving ideal solutions	409
	20.5	Temperature and pressure dependence of K_{eq}	410
	20.6	Reaction equilibrium at the microscopic level	412
	20.7	Fluctuations	414
	Probl	ems	417
24	_		
21	Reac	tion coordinates and rates	425
	21.1	Kinetics from statistical thermodynamics	425
	21.2	Macroscopic considerations for reaction rates	426
	21.3	Microscopic origins of rate coefficients	428
	21.4	General considerations for rates of rare-event molecular processes	438
	Probl	ems	441
22	Mole	ecular simulation methods	444
	22.1	Basic elements of classical simulation models	445
	22,2	Molecular-dynamics simulation methods	450
	22.3	Computing properties	453
	22.4	Simulations of bulk phases	457
	22.5	Monte Carlo simulation methods	459
	Probl	ems	464
	Index		470
		-	