Contents

1	Introduction			
	1.1	Relativity as a coordinate symmetry	2	
		1.1.1 Coordinate transformations	3	
		1.1.2 The principle of relativity	6	
	1.2	Einstein and relativity	8	
		1.2.1 The new kinematics	8	
		1.2.2 GR as a field theory of gravitation	10	
	Revie	w questions	10	
2	Special Relativity: The New Kinematics			
	2.1	Einstein's two postulates and Lorentz transformation	12	
		2.1.1 Relativity of simultaneity and the new conception		
		of time	13	
		2.1.2 Coordinate-dependent time leads to Lorentz		
		transformation	15	
	2.2	Physics implications of Lorentz transformation	19	
		2.2.1 Time dilation and length contraction	19	
		2.2.2 The invariant interval and proper time	22	
	2.3	Two counterintuitive scenarios as paradoxes	25	
	Review questions		29	
3	Special Relativity: Flat Spacetime			
	3.1	Geometric formulation of relativity	32	
	3.2	Tensors in special relativity	34	
		3.2.1 Generalized coordinates: bases and the metric	34	
		3.2.2 Velocity and momentum 4-vectors	38	
		3.2.3 Electromagnetic field 4-tensor	45	
		3.2.4 The energy–momentum–stress 4-tensor for a field		
		system	49	
	3.3	The spacetime diagram	51	
		3.3.1 Invariant regions and causal structure	52	
		3.3.2 Lorentz transformation in the spacetime diagram	53	
	Revie	ew questions	56	
		Equivalence of Gravitation and Inertia		
4	Equi	valence of Gravitation and Inertia	57	
4	Equi 4.1	valence of Gravitation and Inertia Seeking a relativistic theory of gravitation	57 58	
4	_			

	4.2	The equivalence principle: from Galileo to Einstein	60	
		4.2.1 Inertial mass vs. gravitational mass	60	
		4.2.2 Einstein: "my happiest thought"	61	
	4.3	EP leads to gravitational time dilation and light deflection	63	
		4.3.1 Gravitational redshift and time dilation	63	
		4.3.2 Relativity and the operation of GPS	70	
		4.3.3 The EP calculation of light deflection	73	
		4.3.4 Energetics of light transmission in a gravitational		
		field	75	
	Revi	ew questions	78	
5	General Relativity as a Geometric Theory of Gravity			
	5.1	Metric description of a curved manifold	80	
		5.1.1 Gaussian coordinates and the metric tensor	80	
		5.1.2 The geodesic equation	85	
		5.1.3 Local Euclidean frames and the flatness theorem	90	
	5.2	From the equivalence principle to a metric theory of gravity	91	
		5.2.1 Curved spacetime as gravitational field	92	
		5.2.2 GR as a field theory of gravitation	94	
	5.3	Geodesic equation as the GR equation of motion	95	
		5.3.1 The Newtonian limit	96	
	Revi	ew questions	98	
6	Eins	stein Equation and its Spherical Solution	99	
	6.1	Curvature: a short introduction	101	
	6.2	Tidal gravity and spacetime curvature	106	
		6.2.1 Tidal forces—a qualitative discussion	106	
		6.2.2 Deviation equations and tidal gravity	107	
	6.3	The GR field equation	109	
		6.3.1 Einstein curvature tensor	109	
		6.3.2 Einstein field equation	111	
		6.3.3 Gravitational waves	112	
	6.4	Geodesics in Schwarzschild spacetime	114	
		6.4.1 The geometry of a spherically symmetric spacetime	117	
		6.4.2 Curved spacetime and deflection of light	121	
		6.4.3 Precession of Mercury's orbit	124	
	Revi	ew questions	131	
7	Black Holes		133	
	7.1	Schwarzschild black holes	134	
		7.1.1 Time measurements around a black hole	135	
		7.1.2 Causal structure of the Schwarzschild surface	137	
		7.1.3 Binding energy to a black hole can be extremely		
		large	142	

	7.2	Astrophysical black holes	144
		7.2.1 More realistic black holes	144
	-	7.2.2 Black holes in our universe	147
	7.3 I	Black hole thermodynamics and Hawking radiation	148
		7.3.1 Laws of black hole mechanics and thermodynamics	149
	-	7.3.2 Hawking radiation: quantum fluctuation around	
		the horizon	150
	Reviev	y questions	155
8	The	General Relativistic Framework for Cosmology	156
	8.1	The cosmos observed	157
		8.1.1 The expanding universe and its age	158
		8.1.2 Mass/energy content of the universe	163
	8.2	The homogeneous and isotropic universe	167
		8.2.1 Robertson-Walker metric in comoving	
		coordinates	168
		8.2.2 Hubble's law follows from the cosmological	
		principle	170
	8.3	Time evolution in FLRW cosmology	172
		8.3.1 Friedmann equations and their simple	
		interpretation	172
		8.3.2 Time evolution of model universes	178
	8.4	The cosmological constant Λ	181
		8.4.1 Λ as vacuum energy and pressure	182
		8.4.2 Λ-dominated universe expands exponentially	185
	Revie	ew questions	186
9	Big I	Bang Thermal Relics	187
	9.1	The thermal history of the universe	188
		9.1.1 Scale dependence of radiation temperature	188
		9.1.2 Different thermal equilibrium stages	190
	9.2	Primordial nucleosynthesis	193
	9.3	Photon decoupling and cosmic microwave background	197
		9.3.1 Universe became transparent to photons	197
		9.3.2 CMB anisotropy as a baby picture	
		of the universe	204
	Revie	ew questions	209
10	Inflation and the Accelerating Universe		210
	10.1	The cosmic inflation epoch	211
		10.1.1 Initial condition problems of FLRW cosmology	211
		10.1.2 The inflationary scenario	213
		10.1.3 Eternal inflation and the multiverse	222