Contents

Preface			page xi
		Part I Basic concepts: electrons and phonons	
1	Conc	3	
	1.1	Classification of solids	3
	1.2	A first model of a solid: interacting atoms	4
	1.3	A second model: elementary excitations	6
	1.4	Elementary excitations associated with solids and liquids	7
	1.5	External probes	8
	1.6	Dispersion curves	9
	1.7	Graphical representation of elementary excitations	
		and probe particles	13
	1.8	Interactions among particles	13
2	Electrons in crystals		20
	2.1	General Hamiltonian	20
	2.2	The Born-Oppenheimer adiabatic approximation	21
	2.3	The mean-field approximation	22
	2.4	The periodic potential approximation	22
	2.5	Translational symmetry, periodicity, and lattices	23
3	Elect	tronic energy bands	31
	3.1	Free electron model	31
	3.2	Symmetries and energy bands	33
	3.3	Nearly-free electron model	39
	3.4	Tight-binding model	43
	3.5	Electron (or hole) velocity in a band and the f-sum rule	48
	3.6	Periodic boundary conditions and summing over band	
		states	52
	3.7	Energy bands for materials	55
4	Latt	ice vibrations and phonons	63
	4.1	Lattice vibrations	63
	4.2	Second quantization and phonons	71

viii	Contents
------	----------

	4.3	Response functions: heat capacity	77
	4.4	Density of states	79
	4.5	Critical points and van Hove singularities	84
Pa	rt I Pr	oblems	91
		Part II Electron interactions, dynamics, and responses	
5	Elect	ron dynamics in crystals	101
	5.1	Effective Hamiltonian and Wannier functions	101
	5.2	Electron dynamics in the effective Hamiltonian approach	103
	5.3	Shallow impurity states in semiconductors	107
	5.4	Motion in external fields	108
	5.5	Effective mass tensor	113
	5.6	Equations of motion, Berry phase, and Berry curvature	114
6	Man	y-electron interactions: the homogeneous interacting electron gas	
	and	beyond	119
	6.1	The homogeneous interacting electron gas or jellium	
		model	121
	6.2	Hartree-Fock treatment of the interacting electron gas	123
	6.3	Ground-state energy: Hartree-Fock and beyond	126
	6.4	Electron density and pair-correlation functions	130
	6.5	$g(\mathbf{r}, \mathbf{r}')$ of the interacting electron gas	132
	6.6	The exchange-correlation hole	135
	6.7	The exchange-correlation energy	136
7	Dens	ity functional theory (DFT)	141
	7.1	The ground state and density functional formalism	142
	7.2	The Kohn–Sham equations	144
	7.3	Ab initio pseudopotentials and density functional theory	150
	7.4	Some applications of DFT to electronic, structural, vibrational,	
		and related ground-state properties	152
8	The	dielectric function for solids	159
	8.1	Linear response theory	159
	8.2	Self-consistent field framework	163
	8.3	The RPA dielectric function within DFT	164
	8.4	The homogeneous electron gas	166
	8.5	Some simple applications	169
	8.6	Some other properties of the dielectric function	173
Pa	rt II P	roblems	178

Part III Optical and transport phenomena

9	Flecti	onic transitions and optical properties of solids	185
	9.1	Response functions	185
	9.2	The Drude model for metals	189
	9.3	The transverse dielectric function	192
	9.4	Interband optical transitions in semiconductors and insulators	196
	9.5	Electron-hole interaction and exciton effects	201
10	Electi	on—phonon interactions	220
	10.1	The rigid-ion model	220
	10.2	Electron-phonon matrix elements for metals, insulators,	
		and semiconductors	224
	10.3	Polarons	229
11	Dyna	mics of crystal electrons in a magnetic field	235
	11.1	Free electrons in a uniform magnetic field and Landau levels	235
	11.2	Crystal electrons in a static B -field	237
	11.3	Effective mass and real-space orbits	239
	11.4	Quantum oscillations: periodicity in 1/B and the de Haas—van	
		Alphen effect in metals	241
12	Fund	amentals of transport phenomena in solids	248
	12.1	Elementary treatment of magnetoresistance and the Hall effect	248
	12.2	The integer quantum Hall effect	257
	12.3	The Boltzmann equation formalism and transport in real materials	264
	12.4	Electrical and thermal transport with the linearized	
		Boltzmann equation	271
Pai	rt III Pi	roblems	278
	P	art IV Many-body effects, superconductivity, magnetism, and lower-dimensional systems	
13	Using	many-body techniques	287
		General formalism	287
	13.2	Interacting Green's functions	291
	13.3	Feynman diagrams and many-body perturbation theory techniques	298
14	Supe	rconductivity	305
	14.1	Brief discussion of the experimental background	305
	14.2	Theories of superconductivity	311
	14.3	Superconducting quasiparticle tunneling	349

Contents

14.4	4 Spectroscopies of superconductors	356			
14.:	5 More general solutions of the BCS gap equation	360			
14.	Field theoretical methods and BCS theory	368			
15 Mag	netism	372			
15.	1 Background	372			
15.2	2 Diamagnetism	372			
15.	3 Paramagnetism	374			
15.4	4 Ferromagnetism and antiferromagnetism	377			
15.:	5 Magnetism in metals	386			
15.0	6 Magnetic impurities and local correlation effects	389			
16 Red	Reduced-dimensional systems and nanostructures				
16.	1 Density of states and optical properties	393			
16.2	2 Ballistic transport and quantization of conductance	399			
16.3	The Landauer formula	404			
16.	4 Weak coupling and the Coulomb blockade	406			
16.:	5 Graphene, carbon nanotubes, and graphene nanostructures	409			
16.	6 Other quasi-2D materials	421			
Part IV	Problems	424			
Refere	434				
Index	Index				