CONTENTS

12 Kinematics of a Particle 3

	Chapter Objectives 3
12.1	Introduction 3
12.2	Rectilinear Kinematics: Continuous Motion 5
12.3	Rectilinear Kinematics: Erratic Motion 20
12.4	General Curvilinear Motion 34
12.5	Curvilinear Motion: Rectangular Components 36
12.6	Motion of a Projectile 41
12.7	Curvilinear Motion: Normal and Tangential Components 56
12.8	Curvilinear Motion: Cylindrical Components 71
12.9	Absolute Dependent Motion Analysis of
	Two Particles 85
12.10	Relative-Motion of Two Particles Using Translating Axes 91

13 Kinetics of a Particle: Force and Acceleration 113

Mechanics 164

	Chapter Objectives 113
3.1	Newton's Second Law of Motion 113
3.2	The Equation of Motion 116
3.3	Equation of Motion for a System of
	Particles 118
3.4	Equations of Motion: Rectangular
	Coordinates 120
3.5	Equations of Motion: Normal and
	Tangential Coordinates 138
3.6	Equations of Motion: Cylindrical
	Coordinates 152
3.7	Central-Force Motion and Space

14 Kinetics of a Particle: Work and Energy 179

	Chapter Objectives 179
14.1	The Work of a Force 179
14.2	Principle of Work and Energy 184
14.3	Principle of Work and Energy for a System of Particles 186
14.4	Power and Efficiency 204
14.5	Conservative Forces and Potential
	Energy 213
14.6	Conservation of Energy 217

15 Kinetics of a Particle: Impulse and Momentum 237

15.8

*15.9

1011	Timespie of Emedi impaise and
	Momentum 237
15.2	Principle of Linear Impulse and Momentun
	for a System of Particles 240
15.3	Conservation of Linear Momentum for a
	System of Particles 254
15.4	Impact 266
15.5	Angular Momentum 280
15.6	Relation Between Moment of a Force and
	Angular Momentum 281
15.7	Principle of Angular Impulse and

Steady Flow of a Fluid Stream 295

Propulsion with Variable Mass 300

Chapter Objectives 237 15.1 Principle of Linear Impulse and

Momentum 284

16 Planar Kinematics of a Rigid Body 319

Chapter Objectives 319
16.1 Planar Rigid-Body Motion 319
16.2 Translation 321
16.3 Rotation about a Fixed Axis 322
16.4 Absolute Motion Analysis 338
16.5 Relative-Motion Analysis: Velocity 346
16.6 Instantaneous Center of Zero Velocity 360
16.7 Relative-Motion Analysis:

Acceleration 373

16.8 Relative-Motion Analysis Using Rotating Axes 389

17 Planar Kinetics of a Rigid Body: Force and Acceleration 409

Chapter Objectives 409
17.1 Mass Moment of Inertia 409
17.2 Planar Kinetic Equations of Motion 423
17.3 Equations of Motion: Translation 426
17.4 Equations of Motion: Rotation about a Fixed Axis 441

17.5 Equations of Motion: General Plane Motion 456

18 Planar Kinetics of a Rigid Body: Work and Energy 473

Chapter Objectives 473
18.1 Kinetic Energy 473

18.2 The Work of a Force 476

18.3 The Work of a Couple Moment 478

18.4 Principle of Work and Energy 480

18.5 Conservation of Energy 496

19 Planar Kinetics of a Rigid Body: Impulse and Momentum 517

Chapter Objectives 517

19.1 Linear and Angular Momentum 517

19.2 Principle of Impulse and Momentum 523

19.3 Conservation of Momentum 540

*19.4 Eccentric Impact 544

20 Three-Dimensional Kinematics of a Rigid Body 561

Chapter Objectives 561
20.1 Rotation about a Fixed Point 561
*20.2 The Time Derivative of a Vector Measured from Either a Fixed or Translating-Rotating

System 564 General Motion 569

20.3 General Motion 569*20.4 Relative-Motion Analysis Using Translating and Rotating Axes 578

21 Three-Dimensional Kinetics of a Rigid Body 591

Chapter Objectives 591
*21.1 Moments and Products of Inertia 591

21.2 Angular Momentum 601

21.3 Kinetic Energy 604

*21.4 Equations of Motion 612

*21.5 Gyroscopic Motion 626

21.6 Torque-Free Motion 632

22 Vibrations 643

	Chapter Objectives 643
*22.1	Undamped Free Vibration 643
*22.2	Energy Methods 657
*22.3	Undamped Forced Vibration 663
*22.4	Viscous Damped Free Vibration 667
*22.5	Viscous Damped Forced Vibration 670
*22.6	Electrical Circuit Analogs 673

Appendix

- A. Mathematical Expressions 682
- B. Vector Analysis 684
- C. The Chain Rule 689

Fundamental Problems Partial Solutions and Answers 692

Preliminary Problems

Dynamics Solutions 713

Review Problem Solutions 723

Answers to Selected Problems 733

Index 747