## **CONTENTS**

|   | Acknowledgement of Sources                                       | <i>page</i> xiv |
|---|------------------------------------------------------------------|-----------------|
|   | Preface                                                          | xix             |
| 1 | Energy in the Modern World                                       | 1               |
|   | Introduction                                                     | 1               |
|   | 1.1 Energy Use in the Modern World                               | 2               |
|   | Example 1.1 – Increase of Energy Use                             | 4               |
|   | 1.1.1 Exponential Growth                                         | 5               |
|   | Example 1.2 – Exponential Growth                                 | 6               |
|   | 1.2 Limiting Energy Use                                          | 7               |
|   | 1.2.1 Energy Efficiency                                          | 7               |
|   | 1.2.2 Economic Appraisal of Energy Efficiency Measures           | 9               |
|   | Example 1.3 – Economic Appraisal of an Energy Efficiency Measure | 10              |
|   | 1.2.3 Energy Conservation                                        | 11              |
|   | 1.2.4 Management of Energy Demand Only Through Price             | 11              |
|   | 1.2.5 Smart Meters                                               | 12              |
|   | 1.2.6 Demand Side Response and the Variable Value of Electricity | 12              |
|   | 1.3 The Need for Renewable Energy                                | 13              |
|   | 1.3.1 Reserves of Fossil Fuels                                   | 13              |
|   | 1.3.2 Environmental Impact of Burning Fossil Fuels               | 15              |
|   | 1.3.3 Low Carbon Electricity Generation                          | 18              |
|   | Example 1.4 – Achieving CO <sub>2</sub> Targets                  | 19              |
|   | Summary                                                          | 20              |
|   | Problems                                                         | 22              |
|   | Further Reading                                                  | 23              |
| 2 | Wind Energy                                                      | 25              |
|   | Introduction                                                     | 25              |
|   | 2.1 Wind Turbines                                                | 26              |
|   | 2.1.1 History                                                    | 26              |
|   | 2.1.2 Advantages and Disadvantages of Wind Energy                | 26              |
|   | 2.2 Operation of a Wind Turbine                                  | 28              |
|   | 2.2.1 Power Curve of a Wind Turbine                              | 30              |
|   | 2.3 Energy Output of a Wind Turbine                              | 31              |
|   | 2.4 Linear Momentum or Actuator Disk Theory of a Wind Turbine    | 33              |
|   | 2.4.1 The Betz Limit                                             | 35              |

|   |      | 2.4.2 Thrust Coefficient                                           | 36 |
|---|------|--------------------------------------------------------------------|----|
|   |      | 2.4.3 Limitations of the Momentum Theory                           | 37 |
|   |      | 2.4.4 Torque Coefficient                                           | 37 |
|   |      | 2.4.5 $C_P/\lambda$ Curve of a Rotor                               | 38 |
|   | 2.5  | Fixed Speed Wind Turbines                                          | 38 |
|   |      | 2.5.1 The Generator of a Fixed Speed Wind Turbine                  | 40 |
|   | Exai | mple 2.1 – Wind Turbine Operation                                  | 40 |
|   | 2.6  | Control of Power Above Rated Wind Speed                            | 41 |
|   |      | 2.6.1 Pitch and Stall Regulation                                   | 44 |
|   | 2.7  | Variable Speed Wind Turbines                                       | 46 |
|   |      | 2.7.1 Full Power Converter Variable Speed Generators               | 47 |
|   |      | 2.7.2 Variable Speed Wind Turbine Control                          | 48 |
|   |      | 2.7.3 Doubly Fed Induction Generators                              | 49 |
|   | 2.8  | Wind Structure and Statistics                                      | 49 |
|   | The  | Method of Bins                                                     | 52 |
|   |      | 2.8.1 Weibull and Raleigh Statistics                               | 53 |
|   |      | 2.8.2 Variations of Wind Speed with Height                         | 54 |
|   | Exar | mple 2.2 – Use of Weibull Parameters                               | 56 |
|   |      | 2.8.3 Turbulence                                                   | 57 |
|   |      | 2.8.4 Extreme Wind Speeds                                          | 58 |
|   | 2.9  | Wind Farm Development                                              | 58 |
|   |      | 2.9.1 Wind Farm Power Output                                       | 60 |
|   |      | 2.9.2 Detailed Site Investigations and the Environmental Statement | 62 |
|   |      | 2.9.3 Wind Turbine Noise                                           | 62 |
|   | Exar | mple 2.3 – Estimation of Sound Pressure Level at a Dwelling        | 64 |
|   | Exar | nple 2.4 – Estimation of Sound Power Level of a Turbine            | 65 |
|   | Sun  | nmary                                                              | 66 |
|   | Prol | olems                                                              | 68 |
|   | Furt | ther Reading                                                       | 71 |
| 3 | Нус  | dro Power                                                          | 72 |
|   | Intr | oduction                                                           | 72 |
|   | 3.1  | Hydro Power                                                        | 73 |
|   |      | 3.1.1 History                                                      | 73 |
|   |      | 3.1.2 Advantages and Disadvantages of Hydro Power                  | 75 |
|   | 3.2  | Operation of a Hydro Scheme                                        | 75 |
|   | Exar | mple 3.1 – Operation of a Hydro Power Scheme                       | 77 |
|   | 3.3  | Power Output of a Hydro Scheme                                     | 78 |
|   |      | 3.3.1 Annual Capacity Factor                                       | 82 |
|   | 3.4  | Types of Hydro Power Scheme                                        | 82 |
|   | 3.5  | Hydro Power Turbines                                               | 84 |
|   |      | 3.5.1 Impulse Turbines                                             | 85 |
|   |      | 3.5.2 Analysis of a Pelton Turbine                                 | 86 |

|   |                                                                      | Contents | vii |
|---|----------------------------------------------------------------------|----------|-----|
|   | Example 3.2 – Operation of an Impulse Turbine                        |          | 89  |
|   | 3.5.3 Reaction Turbines                                              |          | 93  |
|   | 3.5.4 Analysis of a Francis Turbine                                  |          | 95  |
|   | Example 3.3 – Operation of a Francis Turbine                         |          | 97  |
|   | 3.5.5 The Draft Tube and Cavitation                                  |          | 98  |
|   | 3.5.6 Bulb and Inclined Shaft Turbines                               |          | 98  |
|   | 3.6 Specific Speed of a Hydro Turbine                                |          | 99  |
|   | Example 3.4 – Use of Specific Speed                                  |          | 100 |
|   | 3.7 Operation of a Hydro Turbine at Reduced Flows and Variable Speed |          | 101 |
|   | 3.8 Net or Effective Head                                            |          | 104 |
|   | Example 3.5 – Determination of Penstock Diameter                     |          | 106 |
|   | 3.9 Transient Conditions                                             |          | 107 |
|   | Example 3.6 – Load Rejection of a Turbine Generator                  |          | 108 |
|   | 3.10 Development of Small Hydro Schemes                              |          | 109 |
|   | 3.10.1 Environmental Impact Assessment                               |          | 112 |
|   | 3.10.2 Generators for Small Hydro Schemes                            |          | 112 |
|   | 3.10.3 Governors for Stand-Alone Schemes                             |          | 113 |
|   | 3.10.4 Archimedes Screw Generators                                   |          | 113 |
|   | Summary                                                              |          | 115 |
|   | Problems                                                             |          | 117 |
|   | Further Reading                                                      |          | 119 |
| 4 | The Solar Energy Resource                                            |          | 120 |
|   | Introduction                                                         |          | 120 |
|   | 4.1 The Solar Resource                                               |          | 121 |
|   | 4.2 Examples of the Solar Resource                                   |          | 122 |
|   | 4.3 Sun–Earth Geometry                                               |          | 124 |
|   | Example 4.1 – Altitude of the Sun at Solar Noon                      |          | 128 |
|   | Example 4.2 – Location of the Sun                                    |          | 129 |
|   | 4.4 Orientation of Solar Panels                                      |          | 130 |
|   | 4.5 Solar Spectrum and Air Mass                                      |          | 131 |
|   | Example 4.3 – Air Mass at Solar Noon                                 |          | 133 |
|   | 4.6 Wave–Particle Duality of Light                                   |          | 133 |
|   | Example 4.4 – Wavelength of Light to Operate a Silicon Solar Cell    |          | 134 |
|   | Summary                                                              |          | 134 |
|   | Problems                                                             |          | 136 |
|   | Further Reading                                                      |          | 137 |
| 5 | Photovoltaic Systems                                                 |          | 138 |
|   | Introduction                                                         |          | 138 |
|   | 5.1 Photovoltaic Energy Conversion                                   |          | 139 |
|   | 5.1.1 History                                                        |          | 139 |
|   | 5.1.2 Advantages and Disadvantages of Photovoltaic Energy Convers    | sion     | 139 |

|   | 5.2 Standard Test Conditions                                                   | 141 |
|---|--------------------------------------------------------------------------------|-----|
|   | Example 5.1 – Estimate of the Performance of a Photovoltaic System             | 142 |
|   | 5.3 Photovoltaic Technology                                                    | 143 |
|   | 5.4 The Silicon Solar Cell                                                     | 143 |
|   | 5.4.1 The Bond Model of the Silicon Solar Cell                                 | 144 |
|   | 5.4.2 The Band Model of the Silicon Solar Cell                                 | 146 |
|   | 5.4.3 The p-n Junction                                                         | 146 |
|   | Example 5.2 – Forward Voltage Drop Across a Silicon Diode                      | 148 |
|   | 5.5 Operation of a Solar Cell                                                  | 148 |
|   | 5.6 Equivalent Circuit of a Solar Cell                                         | 149 |
|   | 5.7 Performance of the Solar Cell with Varying Irradiance and Cell Temperature | 151 |
|   | Example 5.3 – Performance of a Solar Cell at Increased Cell Temperature        | 153 |
|   | 5.8 The Solar Cell as a Current Source                                         | 153 |
|   | 5.9 Photovoltaic Modules                                                       | 154 |
|   | Example 5.4 – Performance of a Photovoltaic Module                             | 155 |
|   | 5.9.1 Module Bypass Diodes                                                     | 156 |
|   | 5.9.2 Blocking Diodes                                                          | 156 |
|   | 5.10 Performance of Photovoltaic Modules and Systems                           | 156 |
|   | 5.10.1 Estimation of Cell Temperature                                          | 156 |
|   | Example 5.5 – Reduction of Output with Cell Temperature                        | 157 |
|   | 5.10.2 Performance Assessment of Photovoltaic Systems                          | 157 |
|   | Example 5.6 – Performance of Photovoltaic Systems                              | 158 |
|   | 5.11 Stand-Alone, Off-Grid, Photovoltaic Systems                               | 158 |
|   | 5.11.1 Charge Regulator and LowVoltage Disconnect                              | 159 |
|   | 5.11.2 Operating Characteristics of a Stand-Alone System                       | 160 |
|   | Example 5.7 – Estimate of the Charge into the Battery of a Stand-Alone System  | 161 |
|   | 5.11.3 Self-Regulating Modules                                                 | 161 |
|   | 5.11.4 Battery Energy Storage                                                  | 162 |
|   | 5.12 Example of a Stand-Alone Off-Grid System                                  | 164 |
|   | 5.13 Grid-Connected Photovoltaic Systems                                       | 166 |
|   | 5.13.1 Grid Conditions for Operation                                           | 166 |
|   | 5.13.2 Maximum Power Point Tracking                                            | 167 |
|   | 5.13.3 Grid-Connected PV Inverters                                             | 168 |
|   | 5.14 The Technologies of Photovoltaic Cells                                    | 170 |
|   | Summary                                                                        | 175 |
|   | Problems                                                                       | 178 |
|   | Further Reading                                                                | 181 |
| 6 | Solar Thermal System                                                           | 182 |
|   | Introduction                                                                   | 182 |
|   | 6.1 Solar Thermal Energy                                                       | 183 |
|   | 6.1.1 Advantages and Disadvantages of Solar Thermal Energy Systems             | 184 |
|   | 6.2 Passive Solar Thermal Heating of Buildings                                 | 185 |
|   |                                                                                |     |

|   | Contents                                                                     | ix  |
|---|------------------------------------------------------------------------------|-----|
|   | 6.2.1 Solar Gain from Glazing                                                | 188 |
|   | Example 6.1 – Heat Gain Through a Window                                     | 188 |
|   | 6.3 Circuit Representation of Heat Transfer in Low Temperature Solar         |     |
|   | Thermal Systems                                                              | 189 |
|   | 6.4 Heat Loss of Buildings due to Ventilation                                | 191 |
|   | Example 6.2 – Estimation of the Heat Loss from a Small Building              | 192 |
|   | 6.5 Degree Days                                                              | 193 |
|   | 6.5.1 Monitoring the Thermal Performance of Buildings Using Degree Days      | 194 |
|   | Example 6.3(a) – Use of Degree Days to Monitor the Performance of a Building | 197 |
|   | Example 6.3(b) – Use of Degree Days to Predict Building Energy Consumption   | 198 |
|   | 6.6 Radiation and the Behaviour of Glass                                     | 199 |
|   | 6.7 Solar Water Heating                                                      | 201 |
|   | 6.8 Performance of a Flat Plate Solar Collector                              | 205 |
|   | Example 6.4 – Performance of a Flat Plate Solar Collector                    | 208 |
|   | 6.8.1 Selective Absorber Surface                                             | 209 |
|   | 6.9 High Temperature Concentrating Solar Thermal Systems                     | 210 |
|   | Summary                                                                      | 217 |
|   | Problems                                                                     | 221 |
|   | Further Reading                                                              | 224 |
| 7 | Marine Energy                                                                | 225 |
|   | Introduction                                                                 | 225 |
|   | 7.1 Tidal Range Generation                                                   | 227 |
|   | 7.1.1 The Tidal Energy Resource                                              | 229 |
|   | 7.1.2 Description of the Tides Using Harmonic Constituents                   | 232 |
|   | Example 7.1 – Type of a Tide                                                 | 235 |
|   | 7.1.3 Tidal Range Generation                                                 | 235 |
|   | Example 7.2 – Power Available in an Estuary                                  | 236 |
|   | 7.1.4 Ebb Generation                                                         | 236 |
|   | 7.1.5 Turbine Generators for a Tidal Range Generation Scheme                 | 238 |
|   | 7.1.6 Environmental Impact                                                   | 240 |
|   | 7.1.7 Tidal Lagoons                                                          | 241 |
|   | 7.2 Tidal Stream Generation                                                  | 242 |
|   | 7.2.1 The Tidal Stream Resource                                              | 242 |
|   | Example 7.3 – Variation of Tidal Stream with Depth                           | 245 |
|   | 7.2.2 Development of a Tidal Stream Project                                  | 246 |
|   | 7.2.3 Tidal Stream Turbines                                                  | 246 |
|   | 7.2.4 Comparison of a Tidal Stream Turbine with a Wind Turbine Using         |     |
|   | Linear Momentum Theory                                                       | 250 |
|   | Example 7.4 – Comparison of Tidal Stream and Wind Turbines                   | 251 |
|   | Example 7.5 – Performance of Tidal Stream Turbine                            | 253 |
|   | 7.3 Wave Power Generation                                                    | 254 |
|   | 7.3.1 Water Waves                                                            | 256 |

|   | Example 7.6 – Waves at Intermediate Depths                           | 259 |
|---|----------------------------------------------------------------------|-----|
|   | Example 7.7 – Power Monochromatic in Deep-Water Waves                | 262 |
|   | 7.3.2 The Wave Energy Resource                                       | 263 |
|   | Example 7.8 – Wavelength of Deep-Water Waves                         | 264 |
|   | 7.3.3 Devices for Wave Power Generation                              | 267 |
|   | Summary                                                              | 272 |
|   | Problems                                                             | 274 |
|   | Further Reading                                                      | 276 |
| 8 | Bioenergy                                                            | 277 |
|   | Introduction                                                         | 277 |
|   | 8.1 Bioenergy: Energy from Biomass                                   | 278 |
|   | 8.2 Photosynthesis                                                   | 280 |
|   | Example 8.1 – Land Required for Bioenergy                            | 282 |
|   | 8.3 Bioenergy Processes                                              | 282 |
|   | 8.4 Combustion of Solid Biomass                                      | 283 |
|   | 8.4.1 Properties of Solid Biomass                                    | 287 |
|   | Example 8.2 – Moisture Content of Biomass                            | 288 |
|   | 8.4.2 Combustion                                                     | 291 |
|   | Example 8.3 – Stoichiometric Combustion                              | 292 |
|   | 8.4.3 Burning of Biomass                                             | 293 |
|   | Example 8.4 – Combustion of Biomass                                  | 294 |
|   | 8.4.4 Analysis of the Combustion of Solid Biomass                    | 295 |
|   | Example 8.5 – Combustion of Biomass Analysed Using Ultimate Analysis | 296 |
|   | 8.4.5 Combustion of Biomass in Large Generating Stations             | 298 |
|   | 8.5 Gasification of Biomass                                          | 299 |
|   | 8.5.1 Gasification                                                   | 300 |
|   | 8.5.2 Gasifiers                                                      | 302 |
|   | 8.6 Anaerobic Digestion                                              | 306 |
|   | 8.6.1 Landfill Gas                                                   | 308 |
|   | 8.7 Conversion of Biomass into Fuel for Road Transport               | 309 |
|   | 8.7.1 Fermentation of Biomass into Ethanol                           | 309 |
|   | 8.7.2 Extraction of Natural Vegetable Oil and Biodiesel              | 310 |
|   | 8.7.3 Social and Environmental Impacts of Biomass Vehicle Fuel       | 311 |
|   | Summary                                                              | 312 |
|   | Problems                                                             | 313 |
|   | Further Reading                                                      | 315 |
| 9 | Development and Appraisal of Renewable Energy Projects               | 317 |
|   | Introduction                                                         | 317 |
|   | 9.1 Project Development                                              | 317 |
|   | 9.1.1 Phases of Project Development                                  | 318 |
|   | 9.1.2 Assessment of the Renewable Energy Resource                    | 320 |

| Conte                                                                  | nts xi     |
|------------------------------------------------------------------------|------------|
| 9.1.3 Aspects of Project Development                                   | 322        |
| 9.2 Economic Appraisal of Renewable Energy Schemes                     | 324        |
| 9.2.1 Simple DCF appraisal                                             | 324        |
| Example 9.1 – Economic Appraisal Using Discounted Cash Flow            | 326        |
| 9.3 Environmental Impact Assessment of Renewable Energy Projects       | 328        |
| 9.3.1 Uses of an Environmental Statement                               | 329        |
| 9.3.2 Contents of a Typical Environmental Statement                    | 329        |
| Summary                                                                | 330        |
| Problems                                                               | 331        |
| Further Reading                                                        | 332        |
| 10 Electrical Energy Systems                                           | 333        |
| Introduction                                                           | 333        |
| 10.1 Energy Systems                                                    | 334        |
| 10.2 Ac Power Systems                                                  | 336        |
| 10.3 Real and Reactive Power                                           | 338        |
| 10.4 Voltage of the Power System                                       | 340        |
| 10.4.1 Transformer Tap Changing                                        | 341        |
| 10.4.2 Voltage Drop and Power Flows                                    | 341        |
| 10.4.3 Changes of Local Voltage with $P$ and $Q$ Flows                 | 342        |
| 10.4.4 Voltage Control by Reactive Power                               | 344        |
| Example 10.1 – Voltage Rise at the Connection of a Renewable Generator | 345        |
| 10.5 Frequency                                                         | 347        |
| Example 10.2 – Effect of PV Generation on System Inertia               | 350        |
| 10.6 Operating the Power System                                        | 351        |
| 10.6.1 Generation Scheduling                                           | 351        |
| Example 10.3 – Cost Function                                           | 352        |
| Example 10.4 – Generator Scheduling                                    | 354        |
| Example 10.5 – Generator Scheduling with CO <sub>2</sub> Cost          | 356<br>357 |
| 10.6.2 Mismatches Between the Generation and Load                      | 358        |
| 10.6.3 Reserve Generation Requirements                                 | 359        |
| Example 10.6 – Reserve Requirement                                     | 359        |
| 10.6.4 Stability 10.7 Demand Side Participation                        | 360        |
| 10.8 Energy Storage                                                    | 362        |
| 10.8.1 Battery Energy Storage                                          | 363        |
| 10.8.2 Fuel Cells                                                      | 364        |
| 10.9 Renewable Energy Connections                                      | 365        |
| 10.9.1 Onshore Wind Farm Connections                                   | 365        |
| 10.9.2 Offshore Wind Farm Connections                                  | 365        |
| 10.9.3 PV Connection                                                   | 367        |
| Summary                                                                | 369        |
| Problems                                                               | 371        |
| Further Reading                                                        | 374        |

| Tutorial I Electrical Engineering                                         | 375 |
|---------------------------------------------------------------------------|-----|
| I.1 Direct Current (dc)                                                   | 375 |
| 1.2 Alternating Current (ac)                                              | 376 |
| Example 1.1 – Instantaneous Value of a Sinusoidal Signal                  | 377 |
| 1.2.1 Resistors                                                           | 378 |
| 1.2.2 Inductors                                                           | 379 |
| I.2.3 Capacitors                                                          | 381 |
| 1.2.4 Phasor Representation of Ac Quantities                              | 381 |
| 1.2.5 Inductive Loads                                                     | 383 |
| 1.2.6 Capacitive Loads                                                    | 384 |
| Example I.2 $-R$ , $L$ and $C$ circuit                                    | 385 |
| I.3 Power System Components                                               | 386 |
| 1.3.1 Generators                                                          | 386 |
| 1.3.2 Transformers                                                        | 389 |
| Example I.3 – Ideal Transformer                                           | 390 |
| 1.3.3 Connection of Generator and Transformer Windings                    | 390 |
| 1.3.4 Transmission Lines                                                  | 392 |
| 1.3.5 Three-Phase Loads                                                   | 393 |
| 1.4 Power in Three-Phase System                                           | 394 |
| Example I.4 – Three-Phase Loads                                           | 395 |
| 1.5 Power Electronics                                                     | 395 |
| Summary                                                                   | 396 |
| Problems                                                                  | 399 |
| Further Reading                                                           | 400 |
| Tutorial II Heat Transfer                                                 | 401 |
| II.1 Heat Transfer                                                        | 401 |
| II.2 Conduction                                                           | 402 |
| Example II.1 – Thermal Loss by Conduction                                 | 403 |
| Example II.2 – Heat Lost Through an Insulated Surface                     | 404 |
| II.3 Convection                                                           | 405 |
| Example II.3 – Thermal Resistance of Convection                           | 406 |
| II.4 Radiation                                                            | 408 |
| Example II.4 – Temperature of a Flat Metal Plate in Bright Sunlight       | 411 |
| Example II.5 – Heat Transfer Through Radiation and Convection             | 412 |
| Example II.6 – Thermal Resistance of Radiation                            | 414 |
| II.5 Heat Transfer Through Mass Flow of Fluid                             | 415 |
| Example II.7 – Heat Transfer in an Unglazed Flat Plate Solar Water Heater | 415 |
| II.6 Example of One-Dimensional Heat Transfer                             | 416 |
| Example II.8 – A Steam Pipe                                               | 417 |
| Summary                                                                   | 418 |
| Problems                                                                  | 420 |
| Further Reading                                                           | 421 |

|                                                       | Contents | Xii |
|-------------------------------------------------------|----------|-----|
| Tutorial III Simple Behaviour of Fluids               |          | 422 |
| III.1 Types of Flow                                   |          | 422 |
| III.1.1 Steady Flow                                   |          | 422 |
| III.1.2 Compressible and Incompressible Fluids        |          | 422 |
| III.1.3 Laminar and Turbulent Flow                    |          | 422 |
| 111.2 Viscosity and Ideal Flow                        |          | 423 |
| III.3 Mass Continuity Equation                        |          | 424 |
| Example III.1 – Continuity of Mass Flow               |          | 424 |
| III.4 Energy Balance: Bernoulli's Equation            |          | 425 |
| Example III.2 – Application of the Bernoulli Equation |          | 420 |
| Example III.3 – A Large Water Tank with Discharge     |          | 42  |
| Example III.4 – Turbine Operation                     |          | 428 |
| III.5 Angular Momentum                                |          | 429 |
| III.6 Flow Through Pipe Systems and the Moody Chart   |          | 430 |
| Example III.5 – Laminar Flow in a Pipc                |          | 432 |
| Summary                                               |          | 432 |
| Problems                                              |          | 435 |
| Further Reading                                       |          | 430 |
| Index                                                 |          | 43  |

Colour plates are to be found between pp. 244 and 245.