Table of contents

About the Author	i
Acknowledgements	i
Table of contents	ii
Before You Start Notes on hands-on exercises and functionality of SOLIDWORKS Simulation	1
Prerequisites Selected terminology	
1: Introduction	5
What is Finite Element Analysis?	
Finite Element Analysis used by Design Engineers	
Objectives of FEA for Design Engineers	
What is SOLIDWORKS Simulation?	
Fundamental steps in an FEA project	
Errors in FEA	
A closer look at finite elements	
What is calculated in FEA?	
How to interpret FEA results	
Units of measure	
Using online help	
Limitations of Static studies	
2: Static analysis of a plate	31
Using the SOLIDWORKS Simulation interface	
Linear static analysis with solid elements	
Controlling discretization error with the convergence process	
Finding reaction forces	
Presenting FEA results in a desired format	

3: Sta	tic analysis of an L-bracket	81
	Stress singularities	
	Differences between modeling errors and discretization errors	
	Using mesh controls	
	Analysis in different SOLIDWORKS configurations	
	Nodal stresses, element stresses	
4: Sta	tic and frequency analyses of a pipe support	101
	Use of shell elements	
	Frequency analysis	
	Bearing load	
5: Sta	tic analysis of a link	125
	Symmetry boundary conditions	
	Preventing rigid body motions	
	Limitations of the small displacements theory	
6: Fre	equency analysis of a tuning fork and a plastic part	135
	Frequency analysis with and without supports	
	Rigid body modes	
	The role of supports in frequency analysis	
	Symmetric and anti-symmetric modes	
7: The	ermal analysis of a pipe connector and a heater	143
	Analogies between structural and thermal analysis	
	Steady state thermal analysis	
	Analysis of temperature distribution and heat flux	
	Thermal boundary conditions	
	Thermal stresses	
	Vector plots	
8: The	ermal analysis of a heat sink	163
	Analysis of an assembly	
	Global and local Contact conditions	
	Steady state thermal analysis	
,	Transient thermal analysis	
	Thermal resistance layer	
	Use of section views in result plots	

9: Static analysis of a hanger	
Global and local Contact conditions	
Hierarchy of Contact conditions	
10: Thermal stress analysis of a bi- metal loop	195
Thermal deformation and thermal stress analysis	
Eliminating rigid body motions	
Converting Sheet Metal bodies to Solid bodies	
"Parasolid" round trip	
Saving model in deformed shape	
11: Buckling analysis of an I-beam	205
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
12: Static analysis of a bracket using adaptive solution methods	213
h-adaptive solution method	
p-adaptive solution method	
Comparison between h-elements and p-elements	
13: Drop test	231
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
14: Selected nonlinear problems	243
Large displacement analysis	
Analysis with shell elements	
Membrane effects	
Following and non-following load	
Nonlinear material analysis	
Residual stress	
15: Mixed meshing problem	287
Using solid and shell elements in the same mesh	
Mixed mesh compatibility	
Manual and automatic finding of contact sets Shell Manager	

16: Analysis of weldments using beam and truss elements			
Different levels of idealization implemented in finite elements			
Preparation of a SOLIDWORKS model for analysis with beam elements			
Beam elements and truss elements			
Analysis of results using beam elements			
Limitations of analysis with beam elements			
17: Review of 2D problems	329		
Classification of finite elements			
2D axi-symmetric element			
2D plane stress element			
2D plane strain element			
18: Vibration analysis - modal time history and harmonic	367		
Modal Time History analysis (Time Response)			
Harmonic analysis (Frequency Response)			
Modal Superposition Method			
Damping			
19: Analysis of random vibration	397		
Random vibration			
Power Spectral Density			
RMS results			
PSD results			
Modal excitation			