CONTENTS | Contributors | | xii | |--------------|--|--| | 1. | Rationale and Organisation Rhys Jones, Neil Matthews, Alan A. Baker, Victor Champagne Jr. | 1 | | | References
Further Reading | 12
15 | | 2. | Fatigue Requirements for Aircraft Structures Russell J.H. Wanhill | 17 | | | 1 Evolution of Fatigue Requirements 2 Continuing Developments 3 Fatigue Lifing Methods for Metallic Airframe Structures 4 Fatigue Lifing Analyses for Metallic Airframe Structures 5 Testing Requirements 6 Summary Acknowledgements References | 18
22
25
27
33
37
37 | | 3. | Typical Fatigue-Nucleating Discontinuities in Metallic Aircraft Structures Simon A. Barter, Lorrie Molent, Russell J.H. Wanhill | 41 | | | Introduction Examples of Discontinuities Fatigue Crack Nucleation in High Strength Aluminium Alloys Discussion and Conclusion References | 41
43
56
62 | | 4. | Practical Computational Fracture Mechanics for Aircraft
Structural Integrity
Daren Peng, Pu Huang, Rhys Jones | 67 | | | 1 Introduction 2 The SIFs for Surface Cracks at Notches 3 Validation: Semielliptical Surface Crack 4 Quarter-Elliptical Corner Cracks 5 Complex Through Thickness Crack Geometries 6 Conclusion | 67
70
75
80
89 | | | | | | | Appendix A Determining the Stress Intensity Factor Appendix B Flow Chat for Determining the Stress Intensity Factors From | 100 | |----|--|---| | | an Uncracked Finite Element Model Appendix C Comparison of Stress Intensity Factors Obtained Using Finite | 108 | | | Element Analysis for Small Cracks at a Fastener Hole | 109 | | | References | 124 | | | Further Reading | 128 | | 5. | Crack Growth From Naturally Occurring Material Discontinuities | 129 | | | Rhys Jones, Daren Peng, Alison J. McMillan | | | | 1 Introduction | 129 | | | 2 Damage Tolerant Ab Initio Design and Aircraft Sustainment | 132 | | | 3 Computing Crack Growth Associated With Aircraft Sustainment-Related | | | | Problems | 139 | | | 4 The Short-Crack da/dN Versus ΔK Curve | 150 | | | 5 Implications for Small-Crack Growth | 160 | | | 6 Which Crack Growth Curve? | 163 | | | 7 Log-Linear (Exponential) Crack Growth | 171 | | | 8 The USAF Approach to Assessing Risk of Failure and the Cubic Rule | 179 | | | 9 Conclusion | 182 | | | Acknowledgements | 183 | | | References | 183 | | 6. | Adhesively Bonded Repair/Reinforcement of Metallic Airframe | | | | C Duting I Durant | | | | Components: Materials, Processes, Design and Proposed | | | | Through-Life Management | 191 | | | • | 191 | | | Through-Life Management Alan A. Baker, John Wang | 191 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction | | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements | 191 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure | 191
194 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection | 191
194
195 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies | 191
194
195
196 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design | 191
194
195
196
199 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies | 191
194
195
196
199
203 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design 7 Through-Life Management of Repairs General Considerations | 191
194
195
196
199
203
216 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design 7 Through-Life Management of Repairs General Considerations 8 Multiload Path Structure: Lockheed C141 | 191
194
195
196
199
203
216 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design 7 Through-Life Management of Repairs General Considerations 8 Multiload Path Structure: Lockheed C141 9 Assuring Bond Structural Integrity in Single Load Path | 191
194
195
196
199
203
216
219 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design 7 Through-Life Management of Repairs General Considerations 8 Multiload Path Structure: Lockheed C141 9 Assuring Bond Structural Integrity in Single Load Path Damage Tolerant Structure | 191
194
195
196
199
203
216
219 | | | Through-Life Management Alan A. Baker, John Wang Introduction Scope of Applications for Bonded Repairs and Reinforcements Design and Certification Issues for Repairs to Primary Structure Materials Selection Application Technologies Patch Design Through-Life Management of Repairs General Considerations Multiload Path Structure: Lockheed C141 Assuring Bond Structural Integrity in Single Load Path Damage Tolerant Structure Management of Repairs in Single-Load Path Damage-Tolerant Structure | 191
194
195
196
199
203
216
219 | | | Through-Life Management Alan A. Baker, John Wang 1 Introduction 2 Scope of Applications for Bonded Repairs and Reinforcements 3 Design and Certification Issues for Repairs to Primary Structure 4 Materials Selection 5 Application Technologies 6 Patch Design 7 Through-Life Management of Repairs General Considerations 8 Multiload Path Structure: Lockheed C141 9 Assuring Bond Structural Integrity in Single Load Path Damage Tolerant Structure 10 Management of Repairs in Single-Load Path Damage-Tolerant Structure 11 Management of Reinforcements | 191
194
195
196
199
203
216
219
222
235
238 | | 7. | urface Treatment and Repair Bonding | 253 | |----|---|-------| | | ndrew N. Rider, David R. Arnott, James J. Mazza | | | | 1 Introduction | 253 | | | 2 Mechanical Tests | 258 | | | 3 Standard Tests | 260 | | | 4 Fundamentals of Durable Bonding | 262 | | | 5 Requirements of Surface Preparation | 272 | | | 5 Adhesive Application | 281 | | | 7 Surface Treatment Quality Control | 283 | | | 3 Surface Preparations for Aluminium Adherends | 286 | | | 9 Surface Preparations for Titanium Adherends | 295 | | | O Surface Preparations for Steel Adherends | 299 | | | 1 Surface Preparations for Thermosetting-Matrix Composites | 301 | | | 2 Environmental Durability of Fielded Repairs | 303 | | | eferences | 314 | | 8. | nalysis, Design and Assessment of Composite | | | | epairs to Operational Aircraft | 325 | | | nys Jones, David Hui | | | | I Introduction | 325 | | | Composite Repairs: Failure Mechanisms—First Ply Failure | 334 | | | 3 Structural Response of Thin Film Adhesives | 348 | | | The Matrix Stress Strain Response of Composite Materials | 353 | | | Is the Failure of Adhesively Bonded Lap Joints Strain Rate Dependent? | 358 | | | 5 So Why Does the PABST/CMH-17-3G Formulae for the Load Bearing | | | | Capacity of an Adhesively Bonded Joint Work? | 359 | | | 7 The Nature of the Patch and Wing Skin Stresses in Composite Repairs | 372 | | | 3 Determining an Appropriate Test Specimen | 390 | | | Problems Associated With the Use of Specimens Where Prior to | | | | Patching Long Cracks Are Grown From Relatively Large Artificial Notches | ? 392 | | | Repair of Cracks in Aircraft Wing Skins | 395 | | | Repair of Thick Sections | 399 | | | Repair of Cracked Holes in Primary Structures | 404 | | | Repair of Cracked Lugs | 406 | | | Repairs to Interacting Surface Flaws | 410 | | | Predicting the Growth of Patched Cracks: The Cubic Rule | 411 | | | The USAF Risk of Failure Approach and the Growth of Patched Cracks | 421 | | | 7 Case Studies in the Application of the Cubic Rule | 429 | | | 3 Three Dimensional Finite Element Analysis and the Prediction | | | | of the Effect of a Patch on Fatigue Crack Growth | 433 | | | P Repair of Long Centre Cracks Grown From Large Initial Notches | 439 | | | 20 Approximate Weight Function Solutions for General Loading Conditions 21 Summary of the Relevant Damage Tolerant Design Criteria Appendix A4El Validation of the Glinka Hypotehesis for a Symmetric Double Overlap Joint Acknowledgement References | 447
451
454
456
456 | |-----|---|---------------------------------| | 9. | . Repair of Multisite Damage in Civil Transport Aircraft: An Example | | | | of the Damage-Tolerant Design of Composite Repairs | 463 | | | Lorrie Molent, Rhys Jones | | | | 1 Introduction | 463 | | | 2 Specimen and Loading | 465 | | | 3 Airbus Lap Joints | 471 | | | 4 Repairs | 471 | | | 5 Repair Details | 474 | | | 6 Stress Analyses | 476 | | | 7 Specimen Fatigue Test Results | 482 | | | 8 Damage-Tolerant Evaluation of Specimens | 491 | | | 9 Airbus A330/A340 Full-Scale Fatigue Test Article | 498 | | | 10 Boeing 747 In-Flight Demonstrator | 501 | | | 11 Conclusions References | 506 | | | Further Reading | 508 | | | | 510 | | 10. | The F111C Wing Pivot Fitting Repair and its Implications for the | | | | Design/Assessment of Bonded Joints and Composite Repairs | 511 | | | Lorrie Molent, Rhys Jones | | | | 1 Introduction | 511 | | | 2 The Boron Epoxy Doubler | 514 | | | 3 Material Properties and Failure Criterion | 515 | | | 4 Finite Element Representation | 518 | | | 5 Redesign of the Stiffener Runout Region | 524 | | | 6 Doubler Stresses | 525 | | | 7 Full-Scale Structural Tests | 526 | | | 8 Strain Survey Results | 530 | | | 9 In-Service Performance | 534 | | | 10 CPLT of A8-113 | 536 | | | 11 Implications for the CMH-17-3G Design Approach and AE4I | 537 | | | 12 Conclusions | 537 | | | A Appendix: Summary of Boron Doubler Failures; From [6] | 539 | | | References Further Reading | 541 | | | ruruler neadliilg | 543 | | 11. | Development and Validation of Bonded Composite Doubler Repairs for Commercial Aircraft | 545 | |-----|---|------------| | | Dennis Roach, Kirk Rackow | | | | 1 Introduction | 545 | | | 2 Design and Analysis of Fuselage Repairs for Widebody Aircraft | 567 | | | 3 Validation of Composite Doubler Repair Design | 596 | | | 4 General Validation of Composite Doubler Technology Using Full-Scale | | | | Fatigue and NDI Test Article | 619 | | | 5 Composite Doubler Performance When Using the Sol-Gel Surface | | | | Preparation Method | 641 | | | 6 Nondestructive Inspection of Bonded Composite Doublers and | | | | Metallic Substructure | 663 | | | 7 Structural Health Monitoring Using In Situ Sensors | 692 | | | 8 Pilot Programme With Federal Express—Repair of DC-10 and MD-11 | | | | Wide Body Aircraft 9 Conclusions | 711 | | | A Appendix | 724 | | | B Appendix | 728
738 | | | References | 741 | | 12. | Computing the Growth of Naturally-Occurring Disbonds in Adhesively-Bonded Joints Wenchen Hu, Rhys Jones, Anthony J. Kinloch | 745 | | | 1 Introduction | 745 | | | 2 Theoretical Background | 748 | | | 3 Experimental: The Fatigue Fracture-Mechanics Data | 751 | | | 4 Predicting the Fatigue Behaviour Adhesively Bonded Patch Repair Joints | 753 | | | 5 Conclusions | 761 | | | References | 761 | | 13. | Delamination Growth in Polymer-Matrix Fibre Composites
and the Use of Fracture-Mechanics Data for Material
Characterization and Life Prediction
Rhys Jones, Anthony J. Kinloch, John G. Michopoulos, Andreas J. Brunner, | 763 | | | Nam Phan | | | | 1 Introduction | 764 | | | 2 Damage in Composites and the Subsequent Fatigue Growth | , , , | | | of Lead Delaminations | 770 | | | 3 Delamination Fatigue-Growth Curves | 775 | | | 4 Representing the Fatigue Delamination Growth and Assessing | | | | the Fatigue Threshold | 782 | | | | Contents | |-----|---|------------| | | 5 Scatter in the ESIS Mode I Round Robin Tests | 788 | | | 6 Conclusions | 790 | | | A Appendix | 791 | | | References | 793 | | | Further Reading | 796 | | 14. | Introduction to Supersonic Particle Deposition | 799 | | | Victor Champagne Jr., Neil Matthews, Victor Champagne III | | | | 1 Supersonic Particle Deposition (SPD) or 'Cold Spray' (CS) | 799 | | | 2 Comparison to Thermal Spray | 802 | | | 3 Bonding Mechanism | 804 | | | 4 Advantages | 807 | | | 5 Joining of Dissimilar Metals | 824 | | | 6 Cold Spray Implementation into Aerospace | 828 | | | 7 Cost Savings | 830 | | | 8 Corrosion Mitigation and Dimensional Restoration | 832 | | | 9 Corrosion Repair of the SH-60 Seahawk, Intermediate Gear Box (IGB) | 836 | | | 10 Dimensional Restoration of the UH-60 Blackhawk Sump | 837
839 | | | 11 Forward Equipment Bay (FEB) Panel Repair for the B-1 Bomber12 Hydraulic Lines Processed by Cold Spray to Prevent Wear/Chafing | 840 | | | References | 840 | | 15. | Additive Metal Technologies for Aerospace Sustainment | 845 | | | Neil Matthews | | | | 1 Additive Manufacture | 845 | | | 2 AMT Sustainment Opportunities and Challenges | 845 | | | 3 Additive Metal Technology Selection and Description | 847 | | | 4 Certification and Implementation Strategies | 849 | | | 5 Quality Assurance | 851 | | | 6 AMT Applications | 852 | | | 7 The Next Steps | 855 | | | 8 Conclusion | 861 | | | Acknowledgements | 861 | | | References | 861 | | 16. | Applications of SPD to Enhance the Structural Integrity | | | | of Corroded Airframes | 863 | | | Rhys Jones, Neil Matthews, Daren Peng, Nam Phan, Trung Nguyen | | | | 1 Introduction | 863 | | | 2 Examples of Corrosion in Aircraft Structures | 864 | χi | | 3 Current Repair Strategies | 871 | |------|--|------| | | 4 Assessment of Corrosion on Wing Plank Integrity Subject | | | | to Compressive Loading | 873 | | | 5 Effect of SCC in the Risers in P3C Wing Planks | 877 | | | 6 Analysis of SPD Repairs to SCC in Rib-Stiffened Wing Planks | 881 | | | 7 Experimental Validation | 886 | | | 8 SPD Repairs to Corrosion Reworks | 889 | | | 9 SPD Repairs to Intergranular Cracking | 893 | | | 10 Conclusion | 901 | | | Acknowledgements | 902 | | | References | 902 | | | Further Reading | 904 | | 17. | Application of SPD to Enhance the Structural Integrity of Fus | eage | | | Skins and Centre Barells | 907 | | | Neil Matthews, Lorrie Molent, Simon Barter, Rhys Jones | | | | 1 Introduction | 907 | | | 2 Maintaining the Limit of Validity of Fuselage Lapjoints | 908 | | | 3 Application of SPD to Protruding Head Fasteners Under | | | | a Military Transport Flight Spectrum | 917 | | | 4 Application to an F/A-18 Centre Barrel | 920 | | | 5 Conclusion | 925 | | | Acknowledgements | 928 | | | References | 928 | | | Further Reading | 929 | | 18. | Multiplicative Manufacturing and Aircraft Sustainment | 931 | | | Rhys Jones, Daren Peng, Neil Matthews | | | | 1 Introduction | 931 | | | 2 Cracking in the DSTO Tests | 933 | | | 3 Effect of SPD | 934 | | | 4 Conclusion | 938 | | | References | 938 | | Inde | x | 939 |