CONTENTS

1 General Principles 3

Chapter Objectives 3

- 1.1 Mechanics 3
- 1.2 Fundamental Concepts 4
- 1.3 The International System of Units 7
- 1.4 Numerical Calculations 10
- 1.5 General Procedure for Analysis 12

2 Force Vectors 17

- 2.1 Scalars and Vectors 17
- 2.2 Vector Operations 18
- 2.3 Vector Addition of Forces 20
- **2.4** Addition of a System of Coplanar Forces 33
- 2.5 Cartesian Vectors 44
- 2.6 Addition of Cartesian Vectors 47
- 2.7 Position Vectors 56
- 2.8 Force Vector Directed Along a Line 59
- 2.9 Dot Product 69

3 Equilibrium of a Particle 87

Chapter Objectives 87

- 3.1 Condition for the Equilibrium of a Particle 87
- 3.2 The Free-Body Diagram 88
- 3.3 Coplanar Force Systems 91
- 3.4 Three-Dimensional Force Systems 106

Force System Resultants 121

- **4.1** Moment of a Force—Scalar Formulation 121
- 4.2 Cross Product 125
- 4.3 Moment of a Force—Vector Formulation 128
- 4.4 Principle of Moments 132
- 4.5 Moment of a Force about a Specified Axis 145
- 4.6 Moment of a Couple 154
- **4.7** Simplification of a Force and Couple System 166
- 4.8 Further Simplification of a Force and Couple System 177
- **4.9** Reduction of a Simple Distributed Loading 190

5 Equilibrium of a Rigid Body 207

Chapter Objectives 207

- 5.1 Conditions for Rigid-Body Equilibrium 207
- 5.2 Free-Body Diagrams 209
- 5.3 Equations of Equilibrium 220
- 5.4 Two- and Three-Force Members 230
- 5.5 Free-Body Diagrams 245
- 5.6 Equations of Equilibrium 250
- 5.7 Constraints and Statical Determinacy 251

6 Structural Analysis 273

- 6.1 Simple Trusses 273
- 6.2 The Method of Joints 276
- 6.3 Zero-Force Members 282
- 6.4 The Method of Sections 291
- 6.5 Space Trusses 301
- 6.6 Frames and Machines 305

Internal Forces 343

Chapter Objectives 343

- Internal Loadings Developed in Structural 7.1 Members 343
- Shear and Moment Equations and 7.2 Diagrams 361
- Relations between Distributed Load, Shear, 7.3 and Moment 370
- 7.4 Cables 381

Friction 401

- Characteristics of Dry Friction 401 8.1
- 8.2 Problems Involving Dry Friction 406
- Wedges 430 8.3
- Frictional Forces on Screws 432 8.4
- Frictional Forces on Flat Belts 439 8.5
- Frictional Forces on Collar Bearings, Pivot 8.6 Bearings, and Disks 447
- Frictional Forces on Journal Bearings 450 8.7
- Rolling Resistance 452 8.8

Chapter Objectives 465

- 9.1 Center of Gravity, Center of Mass, and the Centroid of a Body 465
- 9.2 Composite Bodies 488
- 7.3 Theorems of Pappus and Guldinus 502
- 9.4 Resultant of a General DistributedLoading 511
- 9.5 Fluid Pressure 512

10 Moments of Inertia 529

- 10.1 Definition of Moments of Inertia for Areas 529
- 10.2 Parallel-Axis Theorem for an Area 530
- 10.3 Radius of Gyration of an Area 531
- 10.4 Moments of Inertia for Composite Areas 540
- 10.5 Product of Inertia for an Area 548
- 10.6 Moments of Inertia for an Area about Inclined Axes 552
- 10.7 Mohr's Circle for Moments of Inertia 555
- 10.8 Mass Moment of Inertia 563

11 Virtual Work 581

Chapter Objectives 581

- 11.1 Definition of Work 581
- 11.2 Principle of Virtual Work 583
- 11.3 Principle of Virtual Work for a System of Connected Rigid Bodies 585
- 11.4 Conservative Forces 597
- 11.5 Potential Energy 598
- 11.6 Potential-Energy Criterion for Equilibrium 600
- 11.7 Stability of Equilibrium Configuration 601

Appendix

A. Mathematical Review and Expressions 616

Fundamental Problems
Partial Solutions and
Answers 620

Preliminary Problems
Statics Solutions 638

Review Problem Solutions 648

Answers to Selected Problems 659

Index 675