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Praise for Foundations of Deep
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“This book provides an accessible introduction to deep reinforcement learning covering
the mathematical concepts behind popular algorithms as well as their practical
implementation. I think the book will be a valuable resource for anyone looking to apply
deep reinforcement learning in practice.”
—Volodymyr Mnih, lead developer of DQN

“An excellent book to quickly develop expertise in the theory, language, and practical
implementation of deep reinforcement learning algorithms. A limpid exposition which
uses familiar notation; all the most recent techniques explained with concise, readable
code, and not a page wasted in irrelevant detours: it is the perfect way to develop a solid
foundation on the topic.”
—Vincent Vanhoucke, principal scientist, Google

“As someone who spends their days trying to make deep reinforcement learning methods
more useful for the general public, I can say that Laura and Keng’s book is a welcome
addition to the literature. It provides both a readable introduction to the fundamental
concepts in reinforcement learning as well as intuitive explanations and code for many of
the major algorithms in the field. I imagine this will become an invaluable resource for
individuals interested in learning about deep reinforcement learning for years to come.”
—Arthur Juliani, senior machine learning engineer, Unity Technologies

“Until now, the only way to get to grips with deep reinforcement learning was to slowly
accumulate knowledge from dozens of different sources. Finally, we have a book bringing
everything together in one place.”
—Matthew Rahtz, ML researcher, ETH Zürich
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Foreword

In April of 2019, OpenAI’s Five bots played in a Dota 2 competition match against 2018
human world champions, OG. Dota 2 is a complex, multiplayer battle arena game where
players can choose different characters. Winning a game requires strategy, teamwork, and
quick decisions. Building an artificial intelligence to compete in this game, with so
many variables and a seemingly infinite search space for optimization, seems like an
insurmountable challenge. Yet OpenAI’s bots won handily and, soon after, went on to win
over 99% of their matches against public players. The innovation underlying this
achievement was deep reinforcement learning.

Although this development is recent, reinforcement learning and deep learning have
both been around for decades. However, a significant amount of new research combined
with the increasing power of GPUs have pushed the state of the art forward. This book
gives the reader an introduction to deep reinforcement learning and distills the work done
over the last six years into a cohesive whole.

While training a computer to beat a video game may not be the most practical thing to
do, it’s only a starting point. Reinforcement learning is an area of machine learning that is
useful for solving sequential decision-making problems—that is, problems that are solved
over time. This applies to almost any endeavor—be it playing a video game, walking down
the street, or driving a car.

Laura Graesser and Wah Loon Keng have put together an approachable introduction to
a complicated topic that is at the forefront of what is new in machine learning. Not only
have they brought to bear their research into many papers on the topic; they created an
open source library, SLM Lab, to help others get up and running quickly with deep
reinforcement learning. SLM Lab is written in Python on top of PyTorch, but readers only
need familiarity with Python. Readers intending to use TensorFlow or some other library
as their deep learning framework of choice will still get value from this book as it
introduces the concepts and problem formulations for deep reinforcement learning
solutions.

This book brings together the most recent research in deep reinforcement learning
along with examples and code that the readers can work with. Their library also works
with OpenAI’s Gym, Roboschool, and the Unity ML-Agents toolkit, which makes this
book a perfect jumping-off point for readers looking to work with those systems.

—Paul Dix, Series Editor
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Preface

We first discovered deep reinforcement learning (deep RL) when DeepMind achieved
breakthrough performance in the Atari arcade games. Using only images and no prior
knowledge, artificial agents reached human-level performance for the first time.

The idea of an artificial agent learning by itself, through trial and error, without
supervision, sparked something in our imaginations. It was a new and exciting approach to
machine learning, and it was quite different from the more familiar field of supervised
learning.

We decided to work together to learn about this topic. We read books and papers,
followed online courses, studied code, and tried to implement the core algorithms. We
realized that not only is deep RL conceptually challenging, but that implementation
requires as much effort as a large software engineering project.

As we progressed, we learned more about the landscape of deep RL—how algorithms
relate to each other and what their different characteristics are. Forming a mental model of
this was hard because deep RL is a new area of research and the theoretical knowledge had
not yet been distilled into a book. We had to learn directly from research papers and online
lectures.

Another challenge was the large gap between theory and implementation. Often, a deep
RL algorithm has many components and tunable hyperparameters that make it sensitive
and fragile. For it to succeed, all the components need to work together correctly and with
appropriate hyperparameter values. The implementation details required to get this right
are not immediately clear from the theory, but are just as important. A resource that
integrated theory and implementation would have been invaluable when we were learning.

We felt that the journey from theory to implementation could have been simpler than
we found it, and we wanted to contribute to making deep RL easier to learn. This book is
our attempt to do that. It takes an end-to-end approach to introducing deep RL—starting
with intuition, then explaining the theory and algorithms, and finishing with
implementations and practical tips. This is also why the book comes with a companion
software library, SLM Lab, which contains implementations of all the algorithms discussed
in it. In short, this is the book we wished existed when we were starting to learn about this
topic.

Deep RL belongs to the larger field of reinforcement learning. At the core of
reinforcement learning is function approximation; in deep RL, functions are learned using
deep neural networks. Reinforcement learning, along with supervised and unsupervised
learning, make up the three core machine learning techniques, and each technique differs
in how problems are formulated and how algorithms learn from data.

In this book we focus exclusively on deep RL because the challenges we experienced
are specific to this subfield of reinforcement learning. This bounds the scope of the book
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in two ways. First, it excludes all other techniques that can be used to learn functions
in reinforcement learning. Second, it emphasizes developments between 2013 and
2019 even though reinforcement learning has existed since the 1950s. Many of the
recent developments build from older research, so we felt it was important to trace the
development of the main ideas. However, we do not intend to give a comprehensive
history of the field.

This book is aimed at undergraduate computer science students and software engineers.
It is intended to be an introduction to deep RL and no prior knowledge of the subject is
required. However, we do assume that readers have a basic familiarity with machine
learning and deep learning as well as an intermediate level of Python programming. Some
experience with PyTorch is also useful but not necessary.

The book is organized as follows. Chapter 1 introduces the different aspects of a deep
reinforcement learning problem and gives an overview of deep reinforcement learning
algorithms.

Part I is concerned with policy-based and value-based algorithms. Chapter 2 introduces
the first Policy Gradient method known as REINFORCE. Chapter 3 introduces the first
value-based method known as SARSA. Chapter 4 discusses the Deep Q-Networks
(DQN) algorithm and Chapter 5 focuses on techniques for improving it—target
networks, the Double DQN algorithm, and Prioritized Experience Replay.

Part II focuses on algorithms which combine policy-based and value-based methods.
Chapter 6 introduces the Actor-Critic algorithm which extends REINFORCE.
Chapter 7 introduces Proximal Policy Optimization (PPO) which can extend
Actor-Critic. Chapter 8 discusses synchronous and asynchronous parallelization techniques
that are applicable to any of the algorithms in this book. Finally, all the algorithms are
summarized in Chapter 9.

Each algorithm chapter is structured in the same way. First, we introduce the main
concepts and work through the relevant mathematical formulations. Then we describe
the algorithm and discuss an implementation in Python. Finally, we provide a configured
algorithm with tuned hyperparameters which can be run in SLM Lab, and illustrate the
main characteristics of the algorithm with graphs.

Part III focuses on the practical details of implementing deep RL algorithms.
Chapter 10 covers engineering and debugging practices and includes an almanac of
hyperparameters and results. Chapter 11 provides a usage reference for the companion
library, SLM Lab. Chapter 12 looks at neural network design and Chapter 13 discusses
hardware.

The final part of book, Part IV, is about environment design. It consists of Chapters 14,
15, 16, and 17 which treat the design of states, actions, rewards, and transition functions
respectively.

The book is intended to be read linearly from Chapter 1 to Chapter 10. These chapters
introduce all of the algorithms in the book and provide practical tips for getting them to
work. The next three chapters, 11 to 13, focus on more specialized topics and can be read
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in any order. For readers that do not wish to go into as much depth, Chapters 1, 2, 3, 4, 6,
and 10 are a coherent subset of the book that focuses on a few of the algorithms. Finally,
Part IV contains a standalone set of chapters intended for readers with a particular interest
in understanding environments in more depth or building their own.

SLM Lab [67], this book’s companion software library, is a modular deep RL
framework built using PyTorch [114]. SLM stands for Strange Loop Machine, in homage
to Hofstadter’s iconic book Gödel, Escher, Bach: An Eternal Golden Braid [53]. The specific
examples from SLM Lab that we include use PyTorch’s syntax and features for training
neural networks. However, the underlying principles for implementing deep RL
algorithms are applicable to other deep learning frameworks such as TensorFlow [1].

The design of SLM Lab is intended to help new students learn deep RL by organizing
its components into conceptually clear pieces. These components also align with how deep
RL is discussed in the academic literature to make it easier to translate from theory to code.

Another important aspect of learning deep RL is experimentation. To facilitate this,
SLM Lab also provides an experimentation framework to help new students design and
test their own hypotheses.

The SLM Lab library is released as an open source project on Github. We encourage
readers to install it (on a Linux or MacOS machine) and run the first demo by following
the instructions on the repository website https://github.com/kengz/SLM-Lab. A
dedicated git branch “book” has been created with a version of code compatible with this
book. A short installation instruction copied from the repository website is shown in
Code 0.1.

Code 0.1 Installing SLM-Lab from the book git branch

1 # clone the repository

2 git clone https://github.com/kengz/SLM-Lab.git

3 cd SLM-Lab

4 # checkout the dedicated branch for this book

5 git checkout book

6 # install dependencies

7 ./bin/setup

8 # next, follow the demo instructions on the repository website

We recommend you set this up first so you can train agents with algorithms as they are
introduced in this book. Beyond installation and running the demo, it is not necessary to
be familiar with SLM Lab before reading the algorithm chapters (Parts I and II)—we give
all the commands to train agents where needed. We also discuss SLM Lab more extensively
in Chapter 11 after shifting focus from algorithms to more practical aspects of deep
reinforcement learning.

https://github.com/kengz/SLM-Lab
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Register your copy of Foundations of Deep Reinforcement Learning on the InformIT site for
convenient access to updates and/or corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780135172384) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.
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1

Introduction to Reinforcement
Learning

In this chapter we introduce the main concepts in reinforcement learning. We start by
looking at some simple examples to build intuitions about the core components of a
reinforcement learning problem—namely, an agent and an environment.

In particular, we will look at how an agent interacts with an environment to optimize
an objective. We will then define these more formally and define reinforcement learning as
a Markov Decision Process. This is the theoretical foundation of reinforcement learning.

Next, we introduce the three primary functions an agent can learn—a policy, value
functions, and a model. We then see how learning these functions gives rise to different
families of deep reinforcement learning algorithms.

Finally, we give a brief overview of deep learning, which is the function approximation
technique used throughout this book, and discuss the main differences between
reinforcement learning and supervised learning.

1.1 Reinforcement Learning
Reinforcement learning (RL) is concerned with solving sequential decision-making
problems. Many real-world problems—playing video games, sports, driving, optimizing
inventory, robotic control—can be framed in this way. These are things that humans and
machines do.

When solving these problems, we have an objective or goal—such as winning the
game, arriving safely at our destination, or minimizing the cost of building products. We
take actions and get feedback from the world about how close we are to achieving the
objective—the current score, distance to our destination, or price per unit. Reaching our
goal typically involves taking many actions in sequence, each action changing the world
around us. We observe these changes in the world as well as the feedback we receive before
deciding on the next action to take as a response.

Imagine the following scenario: you are at a party where a friend brings out a flag pole
and challenges you to balance it on your hand for as long as possible. If you have never
held a flag pole before, your initial attempts will not be very successful. You may spend the
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first few moments trying to get a feel of the flag pole via trial and error—as it keeps
falling over.

These mistakes allow you to collect valuable information and gain some intuition about
how to balance the flag pole—where its center of gravity is, how fast it tilts over, how
quickly you should adjust, at what angle it falls over, etc. You use this information to make
corrections in your next attempts, improve, make further adjustments—and, before you
know it, you can start balancing it for 5 seconds, 10 seconds, 30 seconds, 1 minute,
and so on.

This process illustrates how reinforcement learning works. In reinforcement learning,
you are what is called the “agent,” and the flag pole and your surroundings are called an
“environment.” In fact, the first environment we will learn to solve with reinforcement
learning is a toy version of this scenario called CartPole, shown in Figure 1.1. An agent
controls a cart sliding along an axis in order to balance a pole upright for a given time. In
reality, a human does much more—for example, you may apply your existing intuition
about physics, or transfer skills from similar tasks such as balancing a tray full of
drinks—but the problems are essentially the same in formulation.

Figure 1.1 CartPole-v0 is a simple toy environment. The objective is to balance a pole

for 200 time steps by controlling the left-right motion of a cart.

Reinforcement learning studies problems of this form and methods by which artificial
agents learn to solve them. It is a subfield of artificial intelligence that dates back to the
optimal control theory and Markov decision processes (MDPs). It was first worked on by
Richard Bellman in the 1950s in the context of dynamic programming and quasilinear
equations [15]. We will see this name again when we study a famous equation in
reinforcement learning—the Bellman equation.

RL problems can be expressed as a system consisting of an agent and an environment.
An environment produces information which describes the state of the system. This is
known as a state. An agent interacts with an environment by observing the state and using
this information to select an action. The environment accepts the action and transitions
into the next state. It then returns the next state and a reward to the agent. When the cycle
of (state → action→ reward) completes, we say that one time step has passed. The cycle
repeats until the environment terminates, for example when the problem is solved. This
entire process is described by the control loop diagram in Figure 1.2.
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Figure 1.2 The reinforcement learning control loop

We call an agent’s action-producing function a policy. Formally, a policy is a function
which maps states to actions. An action will change the environment and affect what an
agent observes and does next. The exchange between an agent and an environment
unfolds in time—therefore it can be thought of as a sequential decision-making process.

RL problems have an objective, which is the sum of rewards received by an agent. An
agent’s goal is to maximize the objective by selecting good actions. It learns to do this by
interacting with the environment in a process of trial and error, and uses the reward signals
it receives to reinforce good actions.

Agent and environment are defined to be mutually exclusive, so that the boundaries
between the exchange of the state, action, and reward are unambiguous. We can consider
the environment to be anything that is not the agent. For example, when riding a bike, we
can have multiple but equally valid definitions of an agent and an environment. If we
consider our entire body to be the agent that observes our surroundings and produces
muscle movements as actions, then the environment is the bicycle and the road. If we
consider our mental processes to be the agent, then the environment is our physical body,
the bicycle, and the road, with actions being the neural signals sent from our brain to the
muscles and states being the sensory inputs sent back to our brain.

Essentially, a reinforcement learning system is a feedback control loop where an agent
and an environment interact and exchange signals, while the agent tries to maximize the
objective. The signals exchanged are (st, at, rt), which stand for state, action, and reward,
respectively, and t denotes the time step in which these signals occurred. The (st, at, rt)
tuple is called an experience. The control loop can repeat forever1 or terminate by reaching
either a terminal state or a maximum time step t = T . The time horizon from t = 0 to
when the environment terminates is called an episode. A trajectory is a sequence of
experiences over an episode, τ = (s0, a0, r0), (s1, a1, r1), . . .. An agent typically needs
many episodes to learn a good policy, ranging from hundreds to millions depending on the
complexity of the problem.

Let’s look at the three example reinforcement learning environments, shown in
Figure 1.3, and how the states, actions, and rewards are defined. All the environments are

1. Infinite control loops exist in theory but not in practice. Typically, we assign a maximum time step T to an
environment.
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available through the OpenAI Gym [18] which is an open source library that provides a
standardized set of environments.

(a) CartPole (b) Atari Breakout (c) BipedalWalker

Figure 1.3 Three example environments with different states, actions, and rewards. These

environments are available in OpenAI Gym.

CartPole (Figure 1.3a) is one of the simplest reinforcement learning environments, first
described by Barto, Sutton, and Anderson [11] in 1983. In this environment, a pole is
attached to a cart that can be moved along a frictionless track. The main features of the
environment are summarized below:

1. Objective: Keep the pole upright for 200 time steps.

2. State: An array of length 4 which represents: [cart position, cart velocity, pole angle,
pole angular velocity]. For example, [−0.034, 0.032, −0.031, 0.036].

3. Action: An integer, either 0 to move the cart a fixed distance to the left, or 1 to
move the cart a fixed distance to the right.

4. Reward: +1 for every time step the pole remains upright.

5. Termination: When the pole falls over (greater than 12 degrees from vertical), or
when the cart moves out of the screen, or when the maximum time step of 200 is
reached.

Atari Breakout (Figure 1.3b) is a retro arcade game that consists of a ball, a bottom
paddle controlled by an agent, and bricks. The goal is to hit and destroy all the bricks by
bouncing the ball off the paddle. A player starts with five game lives, and a life is lost every
time the ball falls off the screen from the bottom.

1. Objective: Maximize the game score.

2. State: An RGB digital image with resolution 160 × 210 pixels—that is, what we
see on the game screen.

3. Action: An integer from the set {0, 1, 2, 3} which maps to the game controller
actions {no-action, launch the ball, move right, move left}.
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4. Reward: The game score difference between consecutive states.

5. Termination: When all game lives are lost.

BipedalWalker (Figure 1.3c) is a continuous control problem where an agent uses a
robot’s lidar sensor to sense its surroundings and walk to the right without falling.

1. Objective: Walk to the right without falling.

2. State: An array of length 24 which represents: [hull angle, hull angular velocity,
x-velocity, y-velocity, hip 1 joint angle, hip 1 joint speed, knee 1 joint angle, knee 1
joint speed, leg 1 ground contact, hip 2 joint angle, hip 2 joint speed, knee 2 joint
angle, knee 2 joint speed, leg 2 ground contact, . . ., 10 lidar readings]. For example,
[2.745e−03, 1.180e−05, −1.539e−03, −1.600e−02, . . ., 7.091e−01, 8.859e−01,
1.000e+00, 1.000e+00].

3. Action: A vector of four floating point numbers in the interval [−1.0, 1.0] which
represents: [hip 1 torque and velocity, knee 1 torque and velocity, hip 2 torque and
velocity, knee 2 torque and velocity]. For example, [0.097, 0.430, 0.205, 0.089].

4. Reward: Reward for moving forward to the right, up to a maximum of +300.
−100 if the robot falls. Additionally, there is a small negative reward (movement cost)
at every time step, proportional to the absolute torque applied.

5. Termination: When the robot body touches the ground or reaches the goal on the
right side, or after the maximum time step of 1600.

These environments demonstrate some of the different forms that states and actions
can take. In CartPole and BipedalWalker, the states are vectors describing properties such
as positions and velocities. In Atari Breakout, the state is an image from the game
screen. In CartPole and Atari Breakout, actions are single, discrete integers, whereas in
BipedalWalker, an action is a continuous vector of four floating-point numbers. Rewards
are always a scalar, but the range varies from task to task.

Having seen some examples, let’s now formally describe states, actions, and rewards.

st ∈ S is the state, S is the state space. (1.1)

at ∈ A is the action, A is the action space. (1.2)

rt = R(st, at, st+1) is the reward, R is the reward function. (1.3)

The state space S is the set of all possible states in an environment. Depending on the
environment, it can be defined in many different ways—as integers, real numbers, vectors,
matrices, structured or unstructured data. Similarly, the action space A is the set of all
possible actions defined by an environment. It can also take many forms, but is commonly
defined as either a scalar or a vector. The reward function R(st, at, st+1) assigns a positive,
negative, or zero scalar to each transition (st, at, st+1). The state space, action space, and
reward function are specified by the environment. Together, they define the (s, a, r) tuples
which are the basic unit of information describing a reinforcement learning system.



ptg33646662

6 Chapter 1 Introduction to Reinforcement Learning

1.2 Reinforcement Learning as MDP
Now, consider how an environment transitions from one state to the next using what is
known as the transition function. In reinforcement learning, a transition function is
formulated as a Markov decision process (MDP) which is a mathematical framework that
models sequential decision making.

To understand why transition functions are represented as MDPs, consider a general
formulation shown in Equation 1.4.

st+1 ∼ P
(
st+1 | (s0, a0), (s1, a1), . . . , (st, at)

)
(1.4)

Equation 1.4 says that at time step t, the next state st+1 is sampled from a probability
distribution P conditioned on the entire history. The probability of an environment
transitioning from state st to st+1 depends on all of the preceding states s and actions a
that have occurred so far in an episode. It is challenging to model a transition function in
this form, particularly if episodes last for many time steps. Any transition function that we
design would need to be able to account for a vast combination of effects that occurred at
any point in the past. Additionally, this formulation makes an agent’s action-producing
function—its policy—significantly more complex. Since the entire history of states and
actions is relevant for understanding how an action might change the future state of the
world, an agent would need to take into account all of this information when deciding
how to act.

To make the environment transition function more practical, we turn it into an MDP
by adding the assumption that the transition to the next state st+1 only depends on
the previous state st and action at. This is known as the Markov property. With this
assumption, the new transition function becomes the following:

st+1 ∼ P (st+1 | st, at) (1.5)

Equation 1.5 says that the next state st+1 is sampled from a probability distribution
P (st+1 | st, at). This is a simpler form of the original transition function. The Markov
property implies that the current state and action at time step t contain sufficient
information to fully determine the transition probability for the next state at t+ 1.

Despite the simplicity of this formulation, it is still quite powerful. A lot of processes
can be expressed in this form, including games, robotic control, and planning. This is
because a state can be defined to include any necessary information required to make the
transition function Markov.

For example, consider the Fibonacci sequence described by the formula st+1 =
st + st−1, where each term st is considered a state. To make the function Markov, we
redefine the state as s′t = [st, st−1]. Now the state contains sufficient information to
compute the next element in the sequence. This strategy can be applied more generally to
any system in which a finite set of k consecutive states contains sufficient information to
transition to the next state. Box 1.1 contains more details on how states are defined in an
MDP and in its generalization, an POMDP. Note that throughout this book, Boxes serve
to provide in-depth details that may be skipped on first reading without a loss of
understanding of the main subject.
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Box 1.1 MDP and POMDP

So far, the concept of state has appeared in two places. First, the state is what is
produced by an environment and observed by an agent. Let’s call this the observed
state st. Second, the state is what is used by transition function. Let’s call this the
environment’s internal state sint

t .
In an MDP, st = sint

t , that is, the observed state is identical to the environment’s
internal state. The same state information that is used to transition an environment
into the next state is also made available to an agent.

This is not always the case. The observed state may differ from the
environment’s internal state, st 6= sint

t . In this case, the environment is described as
a partially observable MDP (POMDP) because the state st exposed to the agent only
contains partial information about the state of the environment.

In this book, for the most part, we forget about this distinction and assume that
st = sint

t . However, it is important to be aware of POMDPs for two reasons. First,
some of the example environments we consider are not perfect MDPs. For
example, in the Atari environment, the observed state st is a single RGB image
which conveys information about object positions, lives, etc., but not object
velocities. Velocities would be included in the environment’s internal state since
they are required to determine the next state given an action. In these cases, to
achieve good performance, we will have to modify st to include more
information. This is discussed in Chapter 5.

Second, many interesting real-world problems are POMDPs for many reasons,
including sensor or data limitations, model error, and environment noise. A
detailed discussion of POMDPs is beyond the scope of this book, but we will
touch on them briefly when discussing network architecture in Chapter 12.

Finally, when discussing state design in Chapter 14, the distinction between st
and sint

t will be important because an agent learns from st. The information that is
included in st and the extent to which it differs from sint

t contributes to making a
problem harder or easier to solve.

We are now in a position to present the MDP formulation of a reinforcement learning
problem. An MDP is defined by a 4-tuple S,A, P (.),R(.), where

. S is the set of states.

. A is the set of actions.

. P (st+1 | st, at) is the state transition function of the environment.

. R(st, at, st+1) is the reward function of the environment.

One important assumption underlying the reinforcement learning problems discussed
in this book is that agents do not have access to the transition function, P (st+1 | st, at), or
the reward function, R(st, at, st+1). The only way an agent can get information about
these functions is through the states, actions, and rewards it actually experiences in the
environment—that is, the tuples (st, at, rt).
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To complete the formulation of the problem, we also need to formalize the concept of
an objective which an agent maximizes. First, let’s define the return2 R(τ) using a
trajectory from an episode, τ = (s0, a0, r0), . . . , (sT , aT , rT ):

R(τ) = r0 + γr1 + γ2r2 + · · ·+ γT rT =
T∑

t=0

γtrt (1.6)

Equation 1.6 defines the return as a discounted sum of the rewards in a trajectory,
where γ ∈ [0, 1] is the discount factor.

Then, the objective J(τ) is simply the expectation of the returns over many trajectories,
shown in Equation 1.7.

J(τ) = Eτ∼π[R(τ)] = Eτ

[ T∑
t=0

γtrt

]
(1.7)

The return R(τ) is the sum of discounted rewards γtrt over all time steps t = 0, . . . , T .
The objective J(τ) is the return averaged over many episodes. The expectation accounts
for stochasticity in the actions and the environment—that is, in repeated runs, the return
may not always end up the same. Maximizing the objective is the same as maximizing the
return.

The discount factor γ ∈ [0, 1] is an important variable which changes the way future
rewards are valued. The smaller γ, the less weight is given to rewards in future time steps,
making it “shortsighted.” In the extreme case with γ = 0, the objective only considers the
initial reward r0, as shown in Equation 1.8.

R(τ)γ=0 =

T∑
t=0

γtrt = r0 (1.8)

The larger γ, the more weight is given to rewards in future time steps: the objective
becomes more “farsighted.” If γ = 1, rewards from every time step are weighted equally, as
shown in Equation 1.9.

R(τ)γ=1 =
T∑

t=0

γtrt =
T∑

t=0

rt (1.9)

For problems with infinite time horizon, we need to set γ < 1 to prevent the objective
from becoming unbounded. For finite time horizon problems, γ is an important parameter
as a problem may become more or less difficult to solve depending on the discount factor
we use. We’ll look at an example of this at the end of Chapter 2.

Having defined reinforcement learning as an MDP and the objective, we can now
express the reinforcement learning control loop from Figure 1.2 as an MDP control loop
in Algorithm 1.1.

2. We use R to denote return and reserve R for the reward function.
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Algorithm 1.1 MDP control loop

1: Given an env (environment) and an agent:
2: for episode = 0, . . . ,MAX_EPISODE do
3: state = env.reset()

4: agent.reset()

5: for t = 0, . . . , T do
6: action = agent.act(state)

7: state, reward = env.step(action)

8: agent.update(action, state, reward)

9: if env.done() then
10: break

11: end if
12: end for
13: end for

Algorithm 1.1 expresses the interactions between an agent and an environment over
many episodes and time steps. At the beginning of each episode, the environment and the
agent are reset (lines 3–4). On reset, the environment produces an initial state. Then they
begin interacting—an agent produces an action given a state (line 6), then the
environment produces the next state and reward given the action (line 7), stepping into the
next time step. The agent.act-env.step cycle continues until the maximum time step T
is reached or the environment terminates. Here we also see a new component,
agent.update (line 8), which encapsulates an agent’s learning algorithm. Over multiple
time steps and episodes, this method collects data and performs learning internally to
maximize the objective.

This algorithm is generic to all reinforcement learning problems as it defines a
consistent interface between an agent and an environment. The interface serves as a
foundation for implementing many reinforcement learning algorithms under a unified
framework, as we will see in SLM Lab, the companion library to this book.

1.3 Learnable Functions in Reinforcement
Learning

With reinforcement learning formulated as an MDP, the natural question to ask is, what
should an agent learn?

We have seen that an agent can learn an action-producing function known as a policy.
However, there are other properties of an environment that can be useful to an agent. In
particular, there are three primary functions to learn in reinforcement learning:
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1. A policy, π, which maps state to action: a ∼ π(s)

2. A value function, V π(s) or Qπ(s, a), to estimate the expected return Eτ [R(τ)]

3. The environment model,3 P (s′ | s, a)

A policy π is how an agent produces actions in the environment to maximize the
objective. Given the reinforcement learning control loop, an agent must produce an action
at every time step after observing a state s. A policy is fundamental to this control loop,
since it generates the actions to make it run.

A policy can be stochastic. That is, it may probabilistically output different actions for
the same state. We can write this as π(a | s) to denote the probability of an action a given
a state s. An action sampled from a policy is written as a ∼ π(s).

The value functions provide information about the objective. They help an agent
understand how good the states and available actions are in terms of the expected future
return. They come in two forms—the V π(s) and Qπ(s, a) functions.

V π(s) =Es0=s,τ∼π

[ T∑
t=0

γtrt

]
(1.10)

Qπ(s, a) =Es0=s,a0=a,τ∼π

[ T∑
t=0

γtrt

]
(1.11)

The value function V π shown in Equation 1.10 evaluates how good or bad a state is.
V π measures the expected return from being in state s, assuming the agent continues to
act according to its current policy π. The return R(τ) =

∑T
t=0 γ

trt is measured from the
current state s to the end of an episode. It is a forward-looking measure, since all rewards
received before state s are ignored.

To give some intuition for the value function V π, let’s consider a simple example.
Figure 1.4 depicts a grid-world environment in which an agent can move from cell to cell
vertically or horizontally. Each cell is a state with an associate reward, as shown on the left
of the figure. The environment terminates when the agent reaches the goal state with
reward r = +1.

On the right, we show the value V π(s) calculated for each state from the rewards using
Equation 1.10, with γ = 0.9. The value function V π always depends on a particular
policy π. In this example, we chose a policy π which always takes the shortest path to the
goal state. If we had chosen another policy—for example, one that always moves
right—then the values would be different.

Here we can see the forward-looking property of the value function and its ability to
help an agent differentiate between states that give the same reward. The closer an agent is
to the goal state, the higher the value.

3. To make notation more compact, it is customary to write a successive pair of tuples (st, at, rt),
(st+1, at+1, rt+1) as (s, a, r), (s′, a′, r′), where the prime symbol ′ represents the next time step. We will
see this throughout the book.



ptg33646662

1.4 Deep Reinforcement Learning Algorithms 11

Figure 1.4 Rewards r and values V π(s) for each state s in a simple grid-world environment.

The value of a state is calculated from the rewards using Equation 1.10 with γ = 0.9 while

using a policy π that always takes the shortest path to the goal state with r = +1.

The Q-value function Qπ shown in Equation 1.11 evaluates how good or bad a
state-action pair is. Qπ measures the expected return from taking action a in state s
assuming that the agent continues to act according to its current policy, π. In the same
manner as V π, the return is measured from the current state s to the end of an episode. It
is also a forward-looking measure, since all rewards received before state s are ignored.

We discuss the V π and Qπ functions in more detail in Chapter 3. For the moment,
you just need to know that these functions exist and can be used by agents to solve
reinforcement learning problems.

The transition function P (s′ | s, a) provides information about the environment. If an
agent learns this function, it is able to predict the next state s′ that the environment will
transition into after taking action a in state s. By applying the learned transition function,
an agent can “imagine” the consequences of its actions without actually touching the
environment. It can then use this information to plan good actions.

1.4 Deep Reinforcement Learning
Algorithms

In RL, an agent learns functions to help it act and maximize the objective. This book is
concerned with deep reinforcement learning (deep RL). This means that we use deep
neural networks as the function approximation method.

In Section 1.3, we saw the three primary learnable functions in reinforcement learning.
Correspondingly, there are three major families of deep reinforcement learning



ptg33646662

12 Chapter 1 Introduction to Reinforcement Learning

algorithms—policy-based, value-based, and model-based methods which learn policies, value
functions, and models, respectively. There are also combined methods in which agents
learn more than one of these functions—for instance, a policy and a value function, or a
value function and a model. Figure 1.5 gives an overview of the major deep reinforcement
learning algorithms in each family and how they are related.

Figure 1.5 Deep reinforcement learning algorithm families

1.4.1 Policy-Based Algorithms
Algorithms in this family learn a policy π. Good policies should generate actions which
produce trajectories τ that maximize an agent’s objective, J(τ) = Eτ∼π

[∑T
t=0 γ

trt
]
.

This approach is quite intuitive—if an agent needs to act in an environment, it makes
sense to learn a policy. What constitutes a good action at a given moment depends on the
state, so a policy function π takes a state s as input to produce an action a ∼ π(s). This
means an agent can make good decisions in different contexts. REINFORCE [148],
discussed in Chapter 2, is the most well known policy-based algorithm that forms the
foundation of many subsequent algorithms.

A major advantage of policy-based algorithms is that they are a very general class of
optimization methods. They can be applied to problems with any type of actions—
discrete, continuous, or a mixture (multiactions). They also directly optimize for the thing
an agent cares most about—the objective J(τ). Additionally, this class of methods is
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guaranteed to converge to a locally4 optimal policy, as proven by Sutton et al. with the
Policy Gradient Theorem [133]. One disadvantage of these methods is that they have high
variance and are sample-inefficient.

1.4.2 Value-Based Algorithms
An agent learns either V π(s) or Qπ(s, a). It uses the learned value function to evaluate
(s, a) pairs and generate a policy. For example, an agent’s policy could be to always select
the action a in state s with the highest estimated Qπ(s, a). Learning Qπ(s, a) is far more
common than V π(s) for pure value-based approaches because it is easier to convert into a
policy. This is because Qπ(s, a) contains information about paired states and actions
whereas V π(s) just contains information about states.

SARSA [118], discussed in Chapter 3, is one of the older reinforcement learning
algorithms. Despite its simplicity, SARSA incorporates many of the core ideas of
value-based methods, so it is a good algorithm to study first in this family. However, it is
not commonly used today due to its high variance and sample inefficiency during training.
Deep Q-Networks (DQN) [88] and its descendants, such as Double DQN [141] and
DQN with Prioritized Experience Replay (PER) [121], are much more popular and
effective algorithms. These are the subjects of Chapters 4 and 5.

Value-based algorithms are typically more sample-efficient than policy-based
algorithms. This is because they have lower variance and make better use of data gathered
from the environment. However, there are no guarantees that these algorithms will
converge to an optimum. In their standard formulation, they are also only applicable to
environments with discrete action spaces. This has historically been a major limitation, but
with more recent advances, such as QT-OPT [64], they can be effectively applied to
environments with continuous action spaces.

1.4.3 Model-Based Algorithms
Algorithms in this family either learn a model of an environment’s transition dynamics or
make use of a known dynamics model. Once an agent has a model of the environment,
P (s′ | s, a), it can “imagine” what will happen in the future by predicting the trajectory
for a few time steps. If the environment is in state s, an agent can estimate how the state
will change if it makes a sequence of actions a1, a2, . . . , an by repeatedly applying
P (s′ | s, a), all without actually producing an action to change the environment. Hence,
the predicted trajectory occurs in the agent’s “head” using a model. An agent can complete
many different trajectory predictions with different actions sequences, then examine these
options to decide on the best action a to actually take.

Purely model-based approaches are most commonly applied to games with a target
state, such as winning or losing in a game of chess, or navigation tasks with a goal state s∗.

4. Global convergence guarantee is still an open problem. Recently, it was proven for a subclass of problems
known as linearized control. See the paper “Global Convergence of Policy Gradient Methods for Linearized
Control Problems” by Fazel et al. (2018) [38].
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This is because their transition functions do not model any rewards. In order to use it to
plan actions, some information about an agent’s objective needs to be encoded in the states
themselves.

Monte Carlo Tree Search (MCTS) is a well-known model-based method that can be
applied to problems with deterministic discrete state spaces with known transition
functions. Many board games such as chess and Go fall into this category, and until
recently MCTS powered many computer Go programs [125]. It does not use any machine
learning but randomly samples sequences of actions, known as Monte Carlo rollouts, to
explore a game’s states and estimate their value [125]. There have been a number of
improvements to this algorithm, but this is the essential idea.

Other methods, such as iterative Linear Quadratic Regulators (iLQR) [79] or Model
Predictive Control (MPC), involve learning the transition dynamics, often under quite
restrictive assumptions.5 To learn the dynamics, an agent will need to act in an
environment to gather examples of actual transitions (s, a, r, s′).

Model-based algorithms are very appealing because a perfect model endows an agent
with foresight—it can play out scenarios and understand the consequences of its actions
without having to actually act in an environment. This can be a significant advantage in
situations where it is very time-consuming or expensive to gather experiences from the
environment—for example, in robotics. Compared to policy-based or value-based
methods, these algorithms also tend to require many fewer samples of data to learn good
policies since having a model enables an agent to supplement its actual experiences with
imagined ones.

However, for most problems, models are hard to come by. Many environments are
stochastic, and their transition dynamics are not known. In these cases, the model must be
learned. This approach is still in early development, and it faces a number of challenges.
First, an environment with a large state space and action space can be very difficult to
model; doing so may even be intractable, especially if the transitions are extremely
complex. Second, models are only useful when they can accurately predict the transitions
of an environment many steps into the future. Depending on the accuracy of the model,
prediction errors may compound for every time step and quickly grow to make the model
unreliable.

The lack of good models is currently a major limitation for the applicability of
model-based approaches. However, model-based methods can be very powerful. When
they work, they are often 1 or 2 orders of magnitude more sample-efficient than
model-free methods.

The distinction between model-based and model-free is also used to classify reinforcement
learning algorithms. A model-based algorithm is simply any algorithm that makes use of
the transition dynamics of an environment, whether learned or known in advance.
Model-free algorithms are those that don’t explicitly make use of the environment
transition dynamics.

5. For example, in iLQR the transition dynamics are assumed to be a linear function of states and actions and the
reward function is assumed to be quadratic.
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1.4.4 Combined Methods
These algorithms learn two or more of the primary reinforcement learning functions.
Given the strengths and weaknesses of each of the three methods discussed so far, it
is natural to try to combine them to get the best of each. One widely used group
of algorithms learns a policy and a value function. These are aptly named Actor-Critic
algorithms because the policy acts and the value function critiques the actions. This is the
subject of Chapter 6. The key idea is that during training, a learned value function can
provide a more informative feedback signal to a policy than the sequence of rewards
available from the environment. The policy learns using information provided by the
learned value function. The policy is then used to generate actions, as in policy-based
methods.

Actor-Critic algorithms are an active area of research and there have been many
interesting developments in recent years—Trust Region Policy Optimization
(TRPO) [122], Proximal Policy Optimization (PPO) [124], Deep Deterministic Policy
Gradients (DDPG) [81], and Soft Actor-Critic (SAC) [47], to name a few. Of these, PPO
is currently the most widely used; we discuss it in Chapter 7.

Algorithms may also use a model of the environment transition dynamics in
combination with a value function and/or a policy. In 2016, researchers from DeepMind
developed AlphaGo, which combined MCTS with learning V π and a policy π to master
the game of Go [125]. Dyna-Q [130] is another well-known algorithm which iteratively
learns a model using real data from the environment, then uses the imagined data
generated by a learned model to learn the Q-function.

The examples given in this section are just a few of the many deep reinforcement
learning algorithms. It is by no means an exhaustive list; instead, our intention was to give
an overview of the main ideas in deep reinforcement learning and the ways in which
policies, value functions, and models can be used and combined. Deep reinforcement
learning is a very active area of research, and it seems like every few months there is an
exciting new development in the field.

1.4.5 Algorithms Covered in This Book
This book focuses on methods that are policy-based, value-based, and a combination of
the two. We cover REINFORCE (Chapter 2), SARSA (Chapter 3), DQN (Chapter 4)
and its extensions (Chapter 5), Actor-Critic (Chapter 6), and PPO (Chapter 7). Chapter 8
covers parallelization methods that are applicable to all of them.

We do not cover model-based algorithms. This book aims to be a practical guide;
model-free methods are more well developed and more applicable to a wider range of
problems because of their generality. With minimal changes, the same algorithm (for
example, PPO) can be applied to play a video game such as Dota 2 [104] or to control a
robotic hand [101]. Essentially, one can use a policy- or a value-based algorithm by placing
it in an environment and letting it learn without any extra context required.

In contrast, model-based methods typically require more knowledge about the
environment—that is, a model of the transition dynamics—in order to work. For
problems such as chess or Go, the model is simply the game’s rules which can easily be

.
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programmed. Even then, getting a model to work with a reinforcement learning algorithm
is nontrivial, as seen in DeepMind’s AlphaZero [127]. Often, models are not known and
need to be learned, but this is a difficult task.

Our coverage of policy- and value-based algorithms is also not exhaustive. We include
algorithms that are widely known and applied, and at the same time also illustrate the key
concepts in deep reinforcement learning. Our goal is to help readers establish a solid
foundation in this subject. We hope that after understanding the algorithms covered in this
book, readers will be well equipped to follow current research and applications in deep
reinforcement learning.

1.4.6 On-Policy and Off-Policy Algorithms
A final important distinction between deep reinforcement learning algorithms is whether
they are on-policy or off-policy. This affects how training iterations make use of data.

An algorithm is on-policy if it learns on the policy—that is, training can only utilize data
generated from the current policy π. This implies that as training iterates through versions
of policies, π1, π2, π3, . . ., each training iteration only uses the current policy at that time
to generate training data. As a result, all the data must be discarded after training, since
it becomes unusable. This makes on-policy methods sample-inefficient—they require
more training data. The on-policy methods discussed in this book are REINFORCE
(Chapter 2), SARSA (Chapter 3), and the combined methods Actor-Critic (Chapter 6)
and PPO (Chapter 7).

In contrast, an algorithm is off-policy if it does not have this requirement. Any data
collected can be reused in training. Consequently, off-policy methods are more
sample-efficient, but this may require much more memory to store the data. The
off-policy methods we will look at are DQN (Chapter 4) and its extensions (Chapter 5).

1.4.7 Summary
We have introduced the main families of deep reinforcement learning algorithms and
discussed a number of ways to classify them. Each way of looking at deep reinforcement
learning algorithms highlights different characteristics, and there is no one best approach.
These distinction can be summarized as follows:

. Policy-based, value-based, model-based, or combined methods: Which of the three
primary reinforcement learning functions an algorithm learns

. Model-based or model-free: Whether an algorithm uses a model of an
environment’s transition dynamics

. On-policy or off-policy: Whether an algorithm learns with data gathered using just
the current policy
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1.5 Deep Learning for Reinforcement
Learning

In this section we give a very brief overview of deep learning and the training workflow
for learning the parameters of a neural network.

Deep neural networks excel at complex nonlinear function approximation. They are
structured as alternating layers of parameters and nonlinear activation functions, and it is
this structure that makes them so expressive. In their modern form, neural networks have
existed since the 1980s when LeCun et al. successfully trained a convolutional neural
network to recognize handwritten zip codes [70]. Since 2012, deep learning has been
successfully applied to many different problems and has contributed to state-of-the-art
results in a wide range of fields including computer vision, machine translation, natural
language understanding, and speech synthesis. At the time of writing, deep learning is the
most powerful function approximation technique available to us.

Neural networks were first combined with reinforcement learning to great effect in
1991 when Gerald Tesauro trained a neural network using reinforcement learning to play
master-level backgammon [135]. However, it wasn’t until 2015 when DeepMind achieved
human-level performance on many of the Atari games that they became widely adopted in
this field as the underlying function approximation technique. Since then all of the major
breakthroughs in reinforcement learning have used neural networks to approximate
functions. This is why we focus solely on deep reinforcement learning in this book.

Neural networks learn functions, which are simply mappings of inputs to outputs. They
perform sequential computations on an input to produce an output; this process is known
as a forward pass. A function is represented by a particular set of values of the of parameters
θ of a network; we say that “the function is parametrized by θ.” Different values of the
parameters correspond to different functions.

To learn a function, we need a method to acquire or generate a sufficiently
representative dataset of inputs and a way of evaluating the outputs that a network
produces. Evaluating the outputs can mean one of two things. The first way is to generate
the “correct” output, or target value, for each input and define a loss function which
measures the error between the target and the network-predicted output. This loss should
be minimized. The second way is to directly provide feedback for each input in the form
of a scalar value, such as a reward or return. This scalar represents how good or bad the
network’s output is, and it should be maximized (for goodness). When negated, this value
can also be considered a loss function to be minimized.

Given a loss function which evaluates a network’s outputs, it is possible to change the
values of a network’s parameters to minimize the loss and improve performance. This is
known as gradient descent because we change the parameters in the direction of steepest
descent on the loss surface in search of a global minimum.

Changing the parameters of a network to minimize a loss is also known as training
a neural network. To give an example, suppose the function f(x) being learned is
parametrized with network weights θ as f(x; θ), with x, y as the input-output data, and
let L(f(x; θ), y) be the predefined loss function. A training step can be summarized as
follows:
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1. Sample a random batch (x, y) from dataset, where the batch size is significantly
smaller than the total size of the dataset.

2. Compute a forward pass with the network using the inputs x to produce predicted
outputs, ŷ = f(x; θ).

3. Compute the loss L(ŷ, y) using ŷ predicted by the network and y from the sampled
batch.

4. Calculate the gradient (partial derivative) of the loss ∇θL with respect to the
parameters of the network. Modern neural network libraries such as PyTorch [114]
or TensorFlow [1] handle this automatically using the backpropagation [117]
algorithm (a.k.a. “autograd”).

5. Use an optimizer to update the network parameters using the gradient. For
example, a stochastic gradient descent (SGD) optimizer makes the following update:
θ ← θ − α∇θL, where α is a scalar learning rate. However, there are many other
optimization techniques available in neural network libraries.

This training step is repeated until the network’s outputs stop changing or the loss has
minimized and plateaued—that is, the network has converged.

In reinforcement learning, neither the network inputs x nor the correct outputs y are
given in advance. Instead, these values are obtained through agent interactions with an
environment—from the states and rewards it observes. This represents a particular
challenge for training neural networks in reinforcement learning, and will be the subject of
much discussion throughout this book.

The difficulties in data generation and evaluation are due to the fact that the functions
that we try to learn are tightly coupled with the MDP loop. The data exchange between
an agent and an environment is interactive and the process is inherently limited by the time
needed for an agent to act and for an environment to transition. There is no shortcut to
generating data for training—an agent has to experience every time step. The data
collection and training cycle runs repeatedly, with every training step (potentially) waiting
for new data to be collected.

Furthermore, since the current state of an environment and the actions an agent takes
affect the future states it experiences, states and rewards at any given point in time are not
independent of states and rewards at previous time steps. This violates an assumption of
gradient descent—that data is identically and independently distributed (i.i.d.). The speed
at which a network converges and the quality of the final result can be adversely affected.
Significant research effort has gone into minimizing this effect, and some techniques are
discussed later in this book.

Despite these challenges, deep learning is a powerful technique for function
approximation. It is worth persevering to overcome the difficulties of applying it to
reinforcement learning, as the benefits greatly outweigh the costs.

6. The AI community loves abbreviations. We will see many more later—nearly all of the algorithms and
component names have abbreviations.
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1.6 Reinforcement Learning and
Supervised Learning

At the core of deep reinforcement learning is function approximation. This is something
it shares with supervised learning (SL).6 However, reinforcement learning is unlike
supervised learning in a number of ways. There are three main differences:

. Lack of an oracle7

. Sparsity of feedback

. Data generated during training

1.6.1 Lack of an Oracle
A major difference between reinforcement learning and supervised learning is that for
reinforcement learning problems, the “correct” answer for each model input is not
available, whereas in supervised learning we have access to the correct or optimal answer
for each example. In reinforcement learning, the equivalent of the correct answer would
be access to an “oracle” which tells us the optimal action to take at every time step so as to
maximize the objective.

The correct answer can convey a lot of information about a data point. For example,
the correct answer for classification problems contains many bits of information. It not
only tells us the right class for each training example, but also implies that the example
does not belong to any of the other classes. If a particular classification problem has
1000 classes (as in the ImageNet dataset [32]), an answer contains 1000 bits of information
per example (1 positive and 999 negative). Furthermore, the correct answer does not have
to be a category or a real number. It can be a bounding box, or a semantic segmentation,
each of which contains many bits of information about the example at hand.

In reinforcement learning, after an agent takes action a in state s, it only has access to
the reward it receives. The agent is not told what the best action to take was. Instead, it is
only given an indication, via the reward, of how good or bad a was. Not only does this
convey less information than the right answer would have provided, but the agent only
learns about rewards for the states it experiences. To learn about (s, a, r), an agent must
experience the transition (s, a, r, s′). An agent may have no knowledge about important
parts of the state and action spaces because it hasn’t experienced them.

One way to deal with this problem is to initialize episodes to start in the states we want
an agent to learn about. However, it is not always possible to do this, for two reasons. First,
we may not have full control over an environment. Second, states can be easy to describe
but difficult to specify. Consider a simulation of a humanoid robot learning to do a
backflip. To help an agent learn about the reward for successful landing, we can initialize
an environment to start just as the robot’s feet make contact with the floor after a “good”
flip. The reward function in this part of the state space is critical to learn about, since this is

7. In computer science, an oracle is a hypothetical black box that provides the correct answers to questions asked.
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where the robot may either retain its balance and successfully execute the flip, or fall over
and fail. However, it is not straightforward to define the precise numerical position and
velocity of each of the robot’s joint angles, or the force being exerted, to initialize the
robot in this position. In practice, to reach this state, an agent needs to execute a long, very
specific sequence of actions to first flip and then almost land. There is no guarantee that an
agent will learn to do this, so this part of the state space may never be explored.

1.6.2 Sparsity of Feedback
In reinforcement learning, a reward function may be sparse, so the scalar reward is often 0.
This means that most of the time, an agent is receiving no information about how to
change the parameters of the network so as to improve performance. Consider again the
backflipping robot and suppose an agent only receives a nonzero reward of +1 after
successfully executing a backflip. Almost all actions that it takes will result in the same
reward signal of 0 from the environment. Under these circumstances, learning is extremely
challenging because an agent receives no guidance about whether its intermediate actions
help reach the goal. Supervised learning doesn’t have this problem; all input examples are
paired with a desired output which conveys some information about how a network
should perform.

The combination of sparse feedback and the lack of an oracle means that in
reinforcement learning, much less information per time step is received from the
environment, compared to the training examples in supervised learning [72]. As a result,
all reinforcement learning algorithms tend to be significantly less sample-efficient.

1.6.3 Data Generation
In supervised learning, data is typically generated independently from algorithm training.
Indeed, the first step in applying supervised learning to a problem is often to find or
construct a good dataset. In reinforcement learning, data must be generated by an agent
interacting with an environment. In many cases, this data is generated as training progresses
in an iterative manner, with alternating phases of data gathering and training. Data and
algorithm are coupled. The quality of an algorithm affects the data it is trained on, which
in turn affects the algorithm’s performance. This circularity and bootstrapping requirement
does not occur in supervised learning.

RL is also interactive—actions made by the agent actually change the environment,
which then changes the agent’s decisions, which change the data the agent sees, and so on.
This feedback loop is the hallmark of reinforcement learning. In supervised learning
problems, there is no such loop and no equivalent notion of an agent which could change
the data that an algorithm is trained on.

A final, more minor difference between reinforcement learning and supervised learning
is that in reinforcement learning, neural networks are not always trained using a
recognizable loss function. Instead of minimizing the error of the loss between a network’s
outputs and a desired target, rewards from the environment are used to construct an
objective, then the network is trained so as to maximize this objective. Coming from a
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supervised learning background, this may seem a little strange at first, but the optimization
mechanism is essentially the same. In both cases, the parameters of a network are adjusted
to maximize or minimize a function.

1.7 Summary
This chapter described reinforcement learning problems as systems consisting of an agent
and an environment interacting and exchanging information in the form of states, actions,
and rewards. Agents learn how to act in an environment using a policy in order to
maximize the expected sum of rewards. This is their objective. Using these concepts, we
then showed how reinforcement learning can be formulated as an MDP by assuming that
the environment’s transition function has the Markov property.

An agent’s experiences in an environment can be used to learn functions that help it
maximize the objective. In particular, we looked at the three primary learnable functions
in reinforcement learning, policies π(s), value functions V π(S) and Qπ(s, a), and models
P (s′ | s, a). Deep reinforcement learning algorithms can be categorized, according to
which of these functions an agent learns, as policy-based, value-based, model-based, or a
combination. They can also be categorized according to the how the training data is
generated. On-policy algorithms only use data generated by the current policy; off-policy
algorithms may use data generated by any policy.

We also looked briefly at the deep learning training workflow and discussed some of
the differences between reinforcement learning and supervised learning.
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REINFORCE

This chapter introduces the first algorithm of the book, REINFORCE.
The REINFORCE algorithm, invented by Ronald J. Williams in 1992 in his paper

“Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning” [148], learns a parametrized policy which produces action probabilities from
states. Agents use this policy directly to act in an environment.

The key idea is that during learning, actions that resulted in good outcomes should
become more probable—these actions are positively reinforced. Conversely, actions which
resulted in bad outcomes should become less probable. If learning is successful, over the
course of many iterations action probabilities produced by the policy shift to distribution
that results in good performance in an environment. Action probabilities are changed by
following the policy gradient, therefore REINFORCE is known as a policy gradient
algorithm.

The algorithm needs three components:

1. A parametrized policy

2. An objective to be maximized

3. A method for updating the policy parameters

Section 2.1 introduces parametrized policies. Then, in Section 2.2 we discuss the
objective function which defines how to evaluate outcomes. Section 2.3 contains the core
of the REINFORCE algorithm—the policy gradient. The policy gradient provides a way
to estimate the gradient of the objective with respect to the policy parameters. This is a
crucial step since the policy gradient is used to modify the policy parameters so as to
maximize the objective.

After introducing the algorithm in Section 2.5, we discuss some limitations and
introduce some strategies for improving performance. This is the subject of Section 2.5.1.

The chapter ends with two implementations of the algorithm. The first is minimal and
self-contained. The second shows how it is implemented in SLM Lab.
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2.1 Policy
A policy π is a function, mapping states to action probabilities, which is used to sample an
action a ∼ π(s). In REINFORCE, an agent learns a policy and uses this to act in an
environment.

A good policy is one which maximizes the cumulative discounted rewards. The key idea
of the algorithm is to learn a good policy, and this means doing function approximation.
Neural networks are powerful and flexible function approximators, so we can represent a
policy using a deep neural network consisting of learnable parameters θ. This is often
referred to as a policy network πθ. We say that the policy is parametrized by θ.

Each specific set of values of the parameters of the policy network represents a particular
policy. To see why, consider θ1 6= θ2. For any given state s, different policy networks may
output different sets of action probabilities, that is, πθ1(s) 6= πθ2(s). The mappings from
states to action probabilities are different so we say that πθ1 and πθ2 are different policies. A
single neural network is therefore capable of representing many different policies.

Formulated in this way, the process of learning a good policy corresponds to searching
for a good set of values for θ. For this reason, it is important that the policy network
is differentiable. We will see in Section 2.3 that the mechanism by which the policy is
improved is through gradient ascent in parameter space.

2.2 The Objective Function
In this section, we define the objective that is maximized by an agent in the
REINFORCE algorithm. An objective can be understood as an agent’s goal, such as
winning a game or getting the highest score possible. First, we introduce the concept of a
return, which is calculated using a trajectory. We then use this to formulate the objective.

Recall from Chapter 1 that an agent acting in an environment generates a trajectory,
which contains a sequence of rewards along with the states and actions. A trajectory is
denoted τ = s0, a0, r0, . . . , sT , aT , rT .

The return of a trajectory Rt(τ) is defined as a discounted sum of rewards from time
step t to the end of a trajectory, as shown in Equation 2.1.

Rt(τ) =
T∑

t′=t

γt′−tr′t (2.1)

Note that the sum starts from time step t, but the power that the discount factor γ is
raised to, when summing for the return, starts from 0, so we need to offset the power by
the starting time step t using t′ − t.

When t = 0, the return is simply the return of the complete trajectory. This is also
written as R0(τ) = R(τ) for brevity. The objective is the expected return over all complete
trajectories generated by an agent. This is defined in Equation 2.2.

J(πθ) = Eτ∼πθ
[R(τ)] = Eτ∼πθ

[ T∑
t=0

γtrt

]
(2.2)
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Equation 2.2 says that the expectation is calculated over many trajectories sampled from
a policy, that is, τ ∼ πθ. This expectation approaches the true value as more samples are
gathered, and it is tied to the specific policy πθ used.

2.3 The Policy Gradient
We have now defined the policy πθ and the objective J(πθ) which are two crucial
ingredients for deriving the policy gradient algorithm. The policy provides a way for an
agent to act, and the objective provides a target to maximize.

The final component of the algorithm is the policy gradient. Formally, we say a policy
gradient algorithm solves the following problem:

max
θ

J(πθ) = Eτ∼πθ
[R(τ)] (2.3)

To maximize the objective, we perform gradient ascent on the policy parameters θ.
Recall from calculus that the gradient points in the direction of steepest ascent. To improve
on the objective,1 compute the gradient and use it to update the parameters as shown in
Equation 2.4.2

θ ← θ + α∇θJ(πθ) (2.4)

α is a scalar, known as the learning rate, which controls the size of the parameter
update. The term ∇θJ(πθ) is known as the policy gradient. It is defined in Equation 2.5.

∇θJ(πθ) = Eτ∼πθ

[ T∑
t=0

Rt(τ)∇θ logπθ(at | st)
]

(2.5)

The term πθ(at | st) is the probability of the action taken by the agent at time step t.
The action is sampled from the policy, at ∼ πθ(st). The right-hand side of the equation
states that the gradient of the log probability of the action with respect to θ is multiplied by
return Rt(τ).

Equation 2.5 states that the gradient of the objective is equivalent to the expected sum
of the gradients of the log probabilities of the actions at multiplied by the corresponding
returns Rt(τ). The full derivation is shown in Section 2.3.1.

The policy gradient is the mechanism by which action probabilities produced by the
policy are changed. If the return Rt(τ) > 0, then the probability of the action πθ(at | st)
is increased; conversely, if the return Rt(τ) < 0, then the probability of the action

1. The objective J(πθ) can be thought of as an abstract hypersurface on which we try to find the maximum
point with θ as the variables. A hypersurface is a generalization of an ordinary 2D surface residing in 3D space
into higher dimensions. A hypersurface residing in N-dimensional space is an object with (N − 1) dimensions.
2. Note that the parameter update can be done with any suitable optimizer that takes a ∇θJ(πθ) as input.
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πθ(at | st) is decreased. Over the course of many updates (Equation 2.4), the policy will
learn to produce actions which result in high Rt(τ).

Equation 2.5 is the foundation of all policy gradient methods. REINFORCE was the
first algorithm to use it in its simplest form. Newer algorithms build on top of this by
modifying the function to improve performance, as we will see in Chapters 6 and 7.
However, a final question remains—how does one implement and estimate the ideal
policy gradient equation?

2.3.1 Policy Gradient Derivation
Here we derive the policy gradient (Equation 2.5) from the gradient of the objective
shown in Equation 2.6. Note that this section can be skipped on a first reading.

∇θJ(πθ) = ∇θEτ∼πθ
[R(τ)] (2.6)

Equation 2.6 presents a problem because we cannot differentiate R(τ) =
∑T

t=0 γ
trt

with respect to θ.3 The rewards rt are generated by an unknown reward function
R(st, at, st+1) which cannot be differentiated. The only way for the policy variables θ to
influence R(τ) is by changing the state and action distributions which, in turn, change the
rewards received by an agent.

We therefore need to transform Equation 2.6 into a form where we can take a gradient
with respect to θ. To do so, we’ll use some handy identities.

Given a function f(x), a parametrized probability distribution p(x | θ), and its
expectation Ex∼p(x|θ)[f(x)], the gradient of the expectation can be rewritten as follows:

∇θEx∼p(x|θ)[f(x)]

= ∇θ

∫
dx f(x)p(x | θ) (definition of expectation) (2.7)

=

∫
dx ∇θ

(
p(x | θ)f(x)

)
(bring in ∇θ) (2.8)

=

∫
dx

(
f(x)∇θp(x | θ) + p(x | θ)∇θf(x)

)
(chain-rule) (2.9)

=

∫
dx f(x)∇θp(x | θ) (∇θf(x) = 0) (2.10)

=

∫
dx f(x)p(x | θ)∇θp(x | θ)

p(x | θ)

(
multiply

p(x | θ)
p(x | θ)

)
(2.11)

=

∫
dx f(x)p(x | θ)∇θ log p(x | θ) (substitute Equation 2.14) (2.12)

= Ex[f(x)∇θ log p(x | θ)] (definition of expectation) (2.13)

3. However, the gradient can be estimated using black-box optimization techniques, such as Augmented
Random Search [83]. This is beyond the scope of this book.
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This identity says that the gradient of an expectation is equivalent to the expectation of
the gradient of log probability multiplied by the original function. The first line is simply
the definition of an expectation. An integral form is used for generality by considering
f(x) to be a continuous function, but it equally applies to a summation form for a discrete
function. The next three lines follow from basic calculus.

Notice that Equation 2.10 has solved our initial problem since we can take the gradient
of p(x | θ), but f(x) is a black-box function which cannot be integrated. To deal with this,
we need to convert the equation into an expectation so that it can be estimated through
sampling. First, multiply it identically by p(x|θ)

p(x|θ) in Equation 2.11. The resulting fraction
∇θp(x|θ)
p(x|θ) can be rewritten with the log-derivative trick in Equation 2.14.

∇θ log p(x | θ) = ∇θp(x | θ)
p(x | θ)

(2.14)

Substituting Equation 2.14 into 2.11 gives Equation 2.12. This can be written as
an expectation to give Equation 2.13. Finally, we simply rewrite the expression as an
expectation.

Now, it should be apparent that this identity can be applied to our objective. By
substituting x = τ, f(x) = R(τ), p(x | θ) = p(τ | θ), Equation 2.6 can be written as

∇θJ(πθ) = Eτ∼πθ
[R(τ)∇θ log p(τ | θ)] (2.15)

However, the term p(τ | θ) in Equation 2.15 needs to relate to the policy πθ, which we
have control over. Therefore, it needs to be expanded further.

Observe that the trajectory τ is just a sequence of interleaved events, at and st+1,
sampled, respectively, from the agent’s action probability πθ(at | st) and the environment’s
transition probability p(st+1 | st, at). Since the probabilities are conditionally independent,
the probability of the entire trajectory is the product of the individual probabilities, as
shown in Equation 2.16.

p(τ | θ) =
∏
t≥0

p(st+1 | st, at)πθ(at | st) (2.16)

Apply logarithms4 to both sides to match Equation 2.16 with Equation 2.15.

log p(τ | θ) = log
∏
t≥0

p(st+1 | st, at)πθ(at | st) (2.17)

log p(τ | θ) =
∑
t≥0

(
log p(st+1 | st, at) + logπθ(at | st)

)
(2.18)

4. One benefit from using log probabilities is that they are numerically stabler than plain probabilities. Certain
operations also become faster to compute. As a quick exercise, try to figure out the reasons for both these benefits.
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∇θ log p(τ | θ) = ∇θ

∑
t≥0

(
log p(st+1 | st, at) + logπθ(at | st)

)
(2.19)

∇θ log p(τ | θ) = ∇θ

∑
t≥0

logπθ(at | st) (2.20)

Equation 2.18 follows from the fact that logarithm of product equals the sum of
logarithms of its components. From there, we can apply the gradient ∇θ to both sides to
get Equation 2.19. The gradient can be moved inside the summation terms. Since
log p(st+1 | st, at) is independent of θ, its gradient is zero, and it can be dropped. This
yields Equation 2.20 that expresses the probability p(τ | θ) in terms of πθ(at | st). Also,
note that the trajectory τ on the left corresponds to a summation of its individual time
steps t on the right.

With this, we are finally ready to rewrite ∇θJ(πθ) from Equation 2.6 in a form that
can be differentiated. By substituting Equation 2.20 into 2.15 and bringing in the
multiplier R(τ), we obtain

∇θJ(πθ) = Eτ∼πθ

[ T∑
t=0

Rt(τ)∇θ logπθ(at | st)
]

(2.21)

Our problem was that Equation 2.6 contained a function that was not differentiable.
After a series of transformations, we arrived at Equation 2.20. This can be estimated quite
easily using a policy network πθ, with the gradient calculation handled by the automatic
differentiation feature available in neural network libraries.

2.4 Monte Carlo Sampling
The REINFORCE algorithm numerically estimates the policy gradient using Monte
Carlo sampling.
Monte Carlo sampling refers to any method that uses random sampling to generate data

used to approximate a function. In essence, it is just “approximation with random
sampling.” It is a technique which became popular thanks to Stanislaw Ulam, a
mathematician who worked at the Los Alamos research lab in the 1940s.

To see how Monte Carlo works, let’s work through an example of how it can be used
to estimate the value of π (the mathematical constant)—the ratio of a circle’s
circumference to its diameter.5 A Monte Carlo approach to solving this problem is to take
a circle of radius r = 1 centered at the origin and inscribe it in a square. Their areas are
πr2 and (2r)2, respectively. Hence, the ratio of these areas is simply

area of circle
area of square

=
πr2

(2r)2
=

π

4
(2.22)

5. Just for this example, we stop using π for policy, but that usage will resume after this.
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Numerically, the square has an area of 4, but since we do not yet know π, so the area
of the circle is unknown. Let’s consider one quadrant. To obtain an estimation for π,
sample many points within the square using a uniformly random distribution. A point
(x, y) that lands in the circle has distance less than 1 from the origin—that is,√
(x− 0)2 + (y − 0)2 ≤ 1. This is shown in Figure 2.1. Using this, if we count the

number of points in the circle, then count the number of points sampled in total, their
ratio roughly equals to Equation 2.22. By iteratively sampling more points and updating
the ratio, our estimation will get closer to the precise value. Multiplying this ratio by 4
gives us the estimated value of π ≈ 3.14159.

Figure 2.1 Monte Carlo sampling used to estimate π

Now, let’s return to deep RL and look at how Monte Carlo can be used to numerically
estimate the policy gradient in Equation 2.5. It is very straightforward. The expectation
Eτ∼πθ

implies that as more trajectories τ s are sampled using a policy πθ and averaged, it
approaches the actual policy gradient ∇θJ(πθ). Instead of sampling many trajectories per
policy, we can sample just one as shown in Equation 2.23.

∇θJ(πθ) ≈
T∑

t=0

Rt(τ)∇θ logπθ(at | st) (2.23)

This is how policy gradient is implemented—as a Monte Carlo estimate over sampled
trajectories.

With all the components now in place, let’s look at the REINFORCE algorithm.

2.5 REINFORCE Algorithm
This section discusses the REINFORCE algorithm and introduces the concept of an
on-policy algorithm. We then look at some of its limitations and introduce a baseline to
improve performance.
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The algorithm is shown in Algorithm 2.1. It is very simple. First, initialize the learning
rate α and construct a policy network πθ with randomly initialized weights.

Next, iterate for multiple episodes as follows: use the policy network πθ to generate a
trajectory τ = s0, a0, r0, . . . , sT , aT , rT for an episode. Then, for each time step t in the
trajectory, compute the return Rt(τ). Use Rt(τ) to estimate the policy gradient. Sum the
policy gradients for all time steps, then use the result to update the policy network
parameters θ.

Algorithm 2.1 REINFORCE algorithm

1: Initialize learning rate α
2: Initialize weights θ of a policy network πθ

3: for episode = 0, . . . ,MAX_EPISODE do
4: Sample a trajectory τ = s0, a0, r0, . . . , sT , aT , rT
5: Set ∇θJ(πθ) = 0
6: for t = 0, . . . , T do
7: Rt(τ) =

∑T
t′=t γ

t′−tr′t
8: ∇θJ(πθ) = ∇θJ(πθ) +Rt(τ)∇θ logπθ(at | st)
9: end for

10: θ = θ + α∇θJ(πθ)
11: end for

It is important that a trajectory is discarded after each parameter update—it cannot be
reused. This is because REINFORCE is an on-policy algorithm. Recall from Section 1.4
that an algorithm is on-policy if the parameter update equation depends on the current
policy. This is clear from line 8 since the policy gradient directly depends on action
probabilities πθ(at | st) generated by the current policy πθ, but not some past policy πθ′ .
Correspondingly, the return Rt(τ) where τ ∼ πθ must also be generated from πθ,
otherwise the action probabilities will be adjusted based on returns that the policy
wouldn’t have generated.

2.5.1 Improving REINFORCE
Our formulation of the REINFORCE algorithm estimates the policy gradient using
Monte Carlo sampling with a single trajectory. This is an unbiased estimate of the policy
gradient, but one disadvantage of this approach is that it has a high variance. In this
section, we introduce a baseline to reduce the variance of the estimate. Following this, we
will also discuss reward normalization to address the issue of reward scaling.

When using Monte Carlo sampling, the policy gradient estimate may have high
variance because the returns can vary significantly from trajectory to trajectory. This is due
to three factors. First, actions have some randomness because they are sampled from a
probability distribution. Second, the starting state may vary per episode. Third, the
environment transition function may be stochastic.
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One way to reduce the variance of the estimate is to modify the returns by subtracting a
suitable action-independent baseline, as shown in Equation 2.24.

∇θJ(πθ) ≈
T∑

t=0

(
Rt(τ)− b(st)

)
∇θ logπθ(at | st) (2.24)

One option for the baseline is the value function V π. This choice of baseline motivates
the Actor-Critic algorithm. We leave the discussion of this to Chapter 6.

An alternative is to use the mean returns over the trajectory. Let b = 1
T

∑T
t=0 Rt(τ).

Note that this is a constant baseline per trajectory that does not vary with state st. It has
the effect of centering the returns for each trajectory around 0. For each trajectory, on
average, the best 50% of the actions will be encouraged, and the others discouraged.

To see why this is useful, consider the case where all the rewards for an environment are
negative. Without a baseline, even when an agent produces a very good action, it gets
discouraged because the returns are always negative. Over time, this can still result in good
policies since worse actions will get discouraged even more, thus indirectly increasing the
probabilities of better actions. However, it can lead to slower learning because probability
adjustments can only be made in one direction. The converse happens for environments
where all the rewards are positive. Learning is more effective when we can both increase
and decrease the action probabilities. This requires having both positive and negative
returns.

2.6 Implementing REINFORCE
In this section we present two implementations. The first is a minimal, self-contained
implementation. The second shows how the algorithm is implemented in SLM Lab; this is
a slightly more advanced version that is integrated with the lab components.

2.6.1 A Minimal REINFORCE Implementation
A minimal implementation is useful as it closely corresponds to Algorithm 2.1. This is
good practice for translating theory into code. REINFORCE is a good candidate for this
because it is the simplest RL algorithm which can easily be implemented in a few lines of
code (see Code 2.1).

Other RL algorithms are more complex and so benefit from being implemented within
a common framework with reusable modular components. For this reason, to be
consistent with the remaining algorithms in this book, we also present an implementation
in SLM Lab. This serves as an introduction to the lab’s algorithm API.

Code 2.1 A standalone working implementation of REINFORCE to solve CartPole-v0

1 from torch.distributions import Categorical

2 import gym
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3 import numpy as np

4 import torch

5 import torch.nn as nn

6 import torch.optim as optim

7

8 gamma = 0.99

9

10 class Pi(nn.Module):

11 def __init__(self, in_dim, out_dim):

12 super(Pi, self).__init__()

13 layers = [

14 nn.Linear(in_dim, 64),

15 nn.ReLU(),

16 nn.Linear(64, out_dim),

17 ]

18 self.model = nn.Sequential(*layers)

19 self.onpolicy_reset()

20 self.train() # set training mode

21

22 def onpolicy_reset(self):

23 self.log_probs = []

24 self.rewards = []

25

26 def forward(self, x):

27 pdparam = self.model(x)

28 return pdparam

29

30 def act(self, state):

31 x = torch.from_numpy(state.astype(np.float32)) # to tensor

32 pdparam = self.forward(x) # forward pass

33 pd = Categorical(logits=pdparam) # probability distribution

34 action = pd.sample() # pi(a|s) in action via pd

35 log_prob = pd.log_prob(action) # log_prob of pi(a|s)

36 self.log_probs.append(log_prob) # store for training

37 return action.item()

38

39 def train(pi, optimizer):

40 # Inner gradient-ascent loop of REINFORCE algorithm

41 T = len(pi.rewards)

42 rets = np.empty(T, dtype=np.float32) # the returns

43 future_ret = 0.0

44 # compute the returns efficiently

45 for t in reversed(range(T)):

46 future_ret = pi.rewards[t] + gamma * future_ret
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47 rets[t] = future_ret

48 rets = torch.tensor(rets)

49 log_probs = torch.stack(pi.log_probs)

50 loss = - log_probs * rets # gradient term; Negative for maximizing

51 loss = torch.sum(loss)

52 optimizer.zero_grad()

53 loss.backward() # backpropagate, compute gradients

54 optimizer.step() # gradient-ascent, update the weights

55 return loss

56

57 def main():

58 env = gym.make('CartPole-v0')

59 in_dim = env.observation_space.shape[0] # 4

60 out_dim = env.action_space.n # 2

61 pi = Pi(in_dim, out_dim) # policy pi_theta for REINFORCE

62 optimizer = optim.Adam(pi.parameters(), lr=0.01)

63 for epi in range(300):

64 state = env.reset()

65 for t in range(200): # cartpole max timestep is 200

66 action = pi.act(state)

67 state, reward, done, _ = env.step(action)

68 pi.rewards.append(reward)

69 env.render()

70 if done:

71 break

72 loss = train(pi, optimizer) # train per episode

73 total_reward = sum(pi.rewards)

74 solved = total_reward > 195.0

75 pi.onpolicy_reset() # onpolicy: clear memory after training

76 print(f'Episode {epi}, loss: {loss}, \

77 total_reward: {total_reward}, solved: {solved}')

78

79 if __name__ == '__main__':

80 main()

Let’s walk through the minimal implementation.

1. Pi constructs the policy network that is a a simple one-layer MLP with 64 hidden
units (lines 10–20).

2. act defines the method to produce action (lines 30–37).

3. train implements the update steps in Algorithm 2.1. Note that the loss is expressed
as the sum of the negative log probabilities multiplied by the returns (lines 50–51).
The negative sign is necessary because by default, PyTorch’s optimizer minimizes the
loss, whereas we want to maximize the objective. Furthermore, we formulate the
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loss in this way to utilize PyTorch’s automatic differentiation feature. When we
call loss.backward(), this computes the gradient of the loss (line 53), which is
equal to the policy gradient. Finally, we update the policy parameters by calling
optimizer.step() (line 54).

4. main is the main loop. It constructs a CartPole environment, the policy network Pi,
and an optimizer. Then, it runs the training loop for 300 episodes. As training
progresses, the total reward per episode should increase towards 200. The
environment is solved when the total reward is above 195.

2.6.2 Constructing Policies with PyTorch
The implementation of a policy πθ deserves a closer look. In this section, we will show
how the outputs from a neural network are transformed into an action probability
distribution that is used to sample an action, a ∼ πθ(s).

The key idea is that probability distributions can be parametrized, either by
enumerating the full probabilities for a discrete distribution or by specifying the mean and
standard deviation6 of a continuous distribution such as the normal distribution. These
probability distribution parameters can be learned and output by a neural network.

To output an action, we first use a policy network to compute the probability
distribution parameters from a state. Then, we use these parameters to construct an action
probability distribution. Finally, we use the action probability distribution to sample an
action and compute the action log probability.

Let’s see how this works in pseudocode. Algorithm 2.2 constructs a discrete-action
probability distribution and uses it to compute the log probability. It constructs a
categorical (multinomial) distribution, although other discrete distributions may be used.
Since the network output is not necessarily normalized, the distribution parameters are
treated as logits instead of probabilities. Algorithm 2.2 also closely corresponds to the
PyTorch implementation of the policy in Code 2.1 (lines 31–35).

Algorithm 2.2 Constructing a discrete policy

1: Given a policy network net, a Categorical distribution class, and a state
2: Compute the output pdparams = net(state)

3: Construct an instance of an action probability distribution
↪→ pd = Categorical(logits=pdparams)

4: Use pd to sample an action, action = pd.sample()

5: Use pd and action to compute the action log probability,
↪→ log_prob = pd.log_prob(action)

A simple implementation of Algorithm 2.2 using PyTorch is shown in Code 2.2 with
closely corresponding steps. For simplicity, we use a dummy policy network output. Inside

6. Some probability distributions require special parameters, but the same idea still applies.
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the Categorial constructor, PyTorch will transform specified logits to probabilities when
constructing a categorical distribution.

Code 2.2 A discrete policy implemented using categorical distribution

1 from torch.distributions import Categorical

2 import torch

3

4 # suppose for 2 actions (CartPole: move left, move right)

5 # we obtain their logit probabilities from a policy network

6 policy_net_output = torch.tensor([-1.6094, -0.2231])

7 # the pdparams are logits, equivalent to probs = [0.2, 0.8]

8 pdparams = policy_net_output

9 pd = Categorical(logits=pdparams)

10

11 # sample an action

12 action = pd.sample()

13 # => tensor(1), or 'move right'

14

15 # compute the action log probability

16 pd.log_prob(action)

17 # => tensor(-0.2231), log probability of 'move right'

Similarly, a continuous-action policy is constructed the same way. Algorithm 2.3 shows
an example using a normal distribution. The normal distribution, like many other
continuous distributions, is parametrized by a mean and standard deviation. In many
scientific computing libraries, they are known, respectively, as loc and scale in code, to
imply adjusting the location and scale of a distribution. Once the action probability
distribution is constructed, the remaining steps for computing the action log probability
are the same as in Algorithm 2.2.

Algorithm 2.3 Constructing a continuous policy

1: Given a policy network net, a Normal distribution class, and a state
2: Compute the output pdparams = net(state)

3: Construct an instance of an action probability distribution
↪→ pd = Normal(loc=pdparams[0], scale=pdparams[1])

4: Use pd to sample an action, action = pd.sample()

5: Use pd and action to compute the action log probability,
↪→ log_prob = pd.log_prob(action)

For completeness, Algorithm 2.3 is also implemented with PyTorch in Code 2.3.
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Code 2.3 A continuous policy implemented using normal distribution

1 from torch.distributions import Normal

2 import torch

3

4 # suppose for 1 action (Pendulum: torque)

5 # we obtain its mean and std from a policy network

6 policy_net_output = torch.tensor([1.0, 0.2])

7 # the pdparams are (mean, std), or (loc, scale)

8 pdparams = policy_net_output

9 pd = Normal(loc=pdparams[0], scale=pdparams[1])

10

11 # sample an action

12 action = pd.sample()

13 # => tensor(1.0295), the amount of torque

14

15 # compute the action log probability

16 pd.log_prob(action)

17 # => tensor(0.6796), log probability of this torque

The generality of the policy construction workflow implies that it can be applied easily
to both discrete and continuous-action environments. Its simplicity is also one of the
strengths of a policy-based algorithm.

SLM Lab implements Algorithms 2.2 and 2.3 generally, for all policy-based algorithms,
in a modular and reusable manner. Additionally, these implementations are also optimized
for efficiency. For instance, the action log probabilities are computed all at once and only
during training to speed up computation.

Having seen how REINFORCE can be implemented very simply, we now discuss the
REINFORCE implementation in SLM Lab integrated with its components. This serves
as an introduction to algorithm implementation using the SLM Lab framework. This
REINFORCE code is used as the parent class which we will extend to implement more
complex algorithms later in this book. As we use SLM Lab to run all the experiments
discussed later, it’s time to start becoming familiar with the framework.

In what follows, we discuss only the algorithm-specific methods and leave their
integration into the lab framework for hands-on code exploration. The full code along
with all the components required to run an RL training session can be found in the
companion SLM Lab code repository.

2.6.3 Sampling Actions
Let’s go through the action sampling methods of the Reinforce class shown in Code 2.4.
Note that throughout this book, for clarity of exposition, some lines of code that are not
essential to explaining the functionality of a method are omitted and replaced with
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"...". Also note that methods tagged with @lab_api are standard API methods of an
algorithm in SLM Lab.

calc_pdparam calculates the parameters for the action distribution. calc_pdparam is
called by self.action_policy (line 15) which produces an action (this is described in
more detail in Section 2.6.2). act samples an action from the algorithm’s action policy,
which can be a discrete or continuous distribution, for example Categorical and Normal.

Code 2.4 REINFORCE implementation: sampling actions from the policy network

1 # slm_lab/agent/algorithm/reinforce.py

2

3 class Reinforce(Algorithm):

4 ...

5

6 @lab_api

7 def calc_pdparam(self, x, net=None):

8 net = self.net if net is None else net

9 pdparam = net(x)

10 return pdparam

11

12 @lab_api

13 def act(self, state):

14 body = self.body

15 action = self.action_policy(state, self, body)

16 return action.cpu().squeeze().numpy() # squeeze to handle scalar

2.6.4 Calculating Policy Loss
Code 2.5 shows the methods for calculating the policy loss. There are two components.
First, we need to calculate the reinforcing signal. This is handled by the method
calc_ret_advs which calculates the returns for each element in the batch. Optionally, we
subtract the baseline from the returns. In this example, it is simply the mean returns over
the batch.

Once we have the returns, we can calculate the policy loss. In calc_policy_loss, we
first obtain the action probability distribution (line 15) needed to calculate the action log
probabilities (line 18). Next, we combine the returns (denoted advs) with the log
probabilities to form the policy loss (line 19). This has the same form as seen in Code 2.1
(lines 50–51), so that we can utilize PyTorch’s automatic differentiation feature.

An optional addition to the loss is an entropy term to encourage exploration
(lines 20–23). This is discussed in more detail in Section 6.3.
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Code 2.5 REINFORCE implementation: calculating the policy loss

1 # slm_lab/agent/algorithm/reinforce.py

2

3 class Reinforce(Algorithm):

4 ...

5

6 def calc_ret_advs(self, batch):

7 rets = math_util.calc_returns(batch['rewards'], batch['dones'],

self.gamma)↪→

8 if self.center_return:

9 rets = math_util.center_mean(rets)

10 advs = rets

11 ...

12 return advs

13

14 def calc_policy_loss(self, batch, pdparams, advs):

15 action_pd = policy_util.init_action_pd(self.body.ActionPD, pdparams)

16 actions = batch['actions']

17 ...

18 log_probs = action_pd.log_prob(actions)

19 policy_loss = - self.policy_loss_coef * (log_probs * advs).mean()

20 if self.entropy_coef_spec:

21 entropy = action_pd.entropy().mean()

22 self.body.mean_entropy = entropy # update logging variable

23 policy_loss += (-self.body.entropy_coef * entropy)

24 return policy_loss

2.6.5 REINFORCE Training Loop
Code 2.6 shows the training loop and associated memory sampling method. train makes
one parameter update to the policy network using a batch of collected trajectories.
Training will only be triggered once sufficient data has been collected. The trajectories are
obtained from the agent’s memory by calling sample (line 17).

After sampling a batch of data, we compute the action probability distribution
parameters pdparams and the returns advs used to calculate the policy loss (lines 19–21).
Then, we update the policy network parameters using the loss (line 22).

Code 2.6 REINFORCE implementation: training method

1 # slm_lab/agent/algorithm/reinforce.py

2

3 class Reinforce(Algorithm):

4 ...
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5

6 @lab_api

7 def sample(self):

8 batch = self.body.memory.sample()

9 batch = util.to_torch_batch(batch, self.net.device,

self.body.memory.is_episodic)↪→

10 return batch

11

12 @lab_api

13 def train(self):

14 ...

15 clock = self.body.env.clock

16 if self.to_train == 1:

17 batch = self.sample()

18 ...

19 pdparams = self.calc_pdparam_batch(batch)

20 advs = self.calc_ret_advs(batch)

21 loss = self.calc_policy_loss(batch, pdparams, advs)

22 self.net.train_step(loss, self.optim, self.lr_scheduler,

clock=clock, global_net=self.global_net)↪→

23 # reset

24 self.to_train = 0

25 return loss.item()

26 else:

27 return np.nan

2.6.6 On-Policy Replay Memory
This section looks at a memory class which implements on-policy sampling. We can see
on line 17 of Code 2.6 that a memory object is called to produce trajectories for training.
Since REINFORCE is an on-policy algorithm, trajectories sampled by the algorithm
should be stored in a Memory class for learning, then flushed after each training step.

Readers uninterested in the details of memory classes can skip this section without loss
of understanding of the REINFORCE algorithm. It is sufficient to know what
information is stored in memory and how it is used in the training loop.

Let’s look at the OnPolicyReplay class which implements this logic. It contains the API
methods:

1. reset clears and resets the memory class variables.

2. update adds an experience to the memory.

3. sample samples a batch of data for training.
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Memory Initialization and Reset __init__ initializes the class variables, including
the storage keys on line 15. It then calls reset to construct empty data structures.

reset in Code 2.7 is used to clear the memory after each training step. This is specific
to an on-policy memory because trajectories cannot be reused for later training.

The memory class can store trajectories from multiple episodes in the attributes
initialized in lines 21–22. Individual episodes are constructed by storing experiences in the
current episode data dictionary self.cur_epi_data, which is reset on line 23.

Code 2.7 OnPolicyReplay: reset

1 # slm_lab/agent/memory/onpolicy.py

2

3 class OnPolicyReplay(Memory):

4 ...

5

6 def __init__(self, memory_spec, body):

7 super().__init__(memory_spec, body)

8 # NOTE for OnPolicy replay, frequency = episode; for other classes

below frequency = frames↪→

9 util.set_attr(self, self.body.agent.agent_spec['algorithm'],

['training_frequency'])↪→

10 # Don't want total experiences reset when memory is

11 self.is_episodic = True

12 self.size = 0 # total experiences stored

13 self.seen_size = 0 # total experiences seen cumulatively

14 # declare what data keys to store

15 self.data_keys = ['states', 'actions', 'rewards', 'next_states',

'dones']↪→

16 self.reset()

17

18 @lab_api

19 def reset(self):

20 '''Resets the memory. Also used to initialize memory vars'''

21 for k in self.data_keys:

22 setattr(self, k, [])

23 self.cur_epi_data = {k: [] for k in self.data_keys}

24 self.most_recent = (None,) * len(self.data_keys)

25 self.size = 0

Memory Update The update function serves as an API method to the memory class.
Adding an experience to memory is mostly straightforward. The only tricky part is keeping
track of the episode boundaries. The steps in Code 2.8 can be broken down as follows:
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1. Add the experience to the current episode (lines 14–15).

2. Check if the episode is finished (line 17). This is given by the done variable which
will be 1 if the episode is finished, 0 otherwise.

3. If the episode is finished, add the entire set of experiences for the episode to the
main containers in the memory class (lines 18–19).

4. If the episode is finished, clear the current episode dictionary (line 20) so that the
memory class is ready to store the next episode.

5. If the desired number of episodes has been collected, set the train flag to 1 in the
agent (lines 23–24). This signals that the agent should train this time step.

Code 2.8 OnPolicyReplay: add experience

1 # slm_lab/agent/memory/onpolicy.py

2

3 class OnPolicyReplay(Memory):

4 ...

5

6 @lab_api

7 def update(self, state, action, reward, next_state, done):

8 '''Interface method to update memory'''

9 self.add_experience(state, action, reward, next_state, done)

10

11 def add_experience(self, state, action, reward, next_state, done):

12 '''Interface helper method for update() to add experience to memory'''

13 self.most_recent = (state, action, reward, next_state, done)

14 for idx, k in enumerate(self.data_keys):

15 self.cur_epi_data[k].append(self.most_recent[idx])

16 # If episode ended, add to memory and clear cur_epi_data

17 if util.epi_done(done):

18 for k in self.data_keys:

19 getattr(self, k).append(self.cur_epi_data[k])

20 self.cur_epi_data = {k: [] for k in self.data_keys}

21 # If agent has collected the desired number of episodes, it is

ready to train↪→

22 # length is num of epis due to nested structure

23 if len(self.states) ==

self.body.agent.algorithm.training_frequency:↪→

24 self.body.agent.algorithm.to_train = 1

25 # Track memory size and num experiences

26 self.size += 1

27 self.seen_size += 1



ptg33646662

44 Chapter 2 REINFORCE

Memory Sample sample in Code 2.9 simply returns all of the completed episodes
packaged into a batch dictionary (line 6). Then it resets the memory (line 7) as the stored
experiences will no longer be valid once the agent has completed a training step.

Code 2.9 OnPolicyReplay: sample

1 # slm_lab/agent/memory/onpolicy.py

2

3 class OnPolicyReplay(Memory):

4

5 def sample(self):

6 batch = {k: getattr(self, k) for k in self.data_keys}

7 self.reset()

8 return batch

2.7 Training a REINFORCE Agent
Deep RL algorithms often have many hyperparameters. For example, the network type,
architecture, activation functions, optimizer, and learning rate need to be specified. More
advanced neural network functionality can involve gradient clipping and learning rate
decay schedules. This is only the “deep” part! RL algorithms also involve hyperparameter
choices, such as the discount rate, γ, and how frequently to train an agent. To make this
more manageable, all of the hyperparameter choices are specified in a JSON file in SLM
Lab known as a spec (i.e., “specification”); for more details on the spec file, see
Chapter 11.

Code 2.10 contains an example spec file for REINFORCE. The file is also available in
SLM Lab at slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json.

Code 2.10 A simple REINFORCE cartpole spec file

1 # slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

2

3 {

4 "reinforce_cartpole": {

5 "agent": [{

6 "name": "Reinforce",

7 "algorithm": {

8 "name": "Reinforce",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "center_return": true,

12 "explore_var_spec": null,

13 "gamma": 0.99,

14 "entropy_coef_spec": {
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15 "name": "linear_decay",

16 "start_val": 0.01,

17 "end_val": 0.001,

18 "start_step": 0,

19 "end_step": 20000,

20 },

21 "training_frequency": 1

22 },

23 "memory": {

24 "name": "OnPolicyReplay"

25 },

26 "net": {

27 "type": "MLPNet",

28 "hid_layers": [64],

29 "hid_layers_activation": "selu",

30 "clip_grad_val": null,

31 "loss_spec": {

32 "name": "MSELoss"

33 },

34 "optim_spec": {

35 "name": "Adam",

36 "lr": 0.002

37 },

38 "lr_scheduler_spec": null

39 }

40 }],

41 "env": [{

42 "name": "CartPole-v0",

43 "max_t": null,

44 "max_frame": 100000,

45 }],

46 "body": {

47 "product": "outer",

48 "num": 1

49 },

50 "meta": {

51 "distributed": false,

52 "eval_frequency": 2000,

53 "max_session": 4,

54 "max_trial": 1,

55 },

56 ...

57 }

58 }
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This may seem like a lot to configure, so it is worth walking through the main
components.

. Algorithm: The algorithm is REINFORCE (line 8). γ is set on line 13, and we
use a baseline for the reinforcing signal by enabling center_return on line 11. We
add entropy with a linear decay schedule to the loss to encourage exploration
(lines 14–20).

. Network architecture: Multilayer perceptron with one hidden layer of 64 units
and SeLU activation function (lines 27–29).

. Optimizer: The optimizer is Adam [68] with a learning rate of 0.002 (lines 34–37).
The learning rate is constant throughout because we have specified a null learning
rate scheduler (line 38).

. Training frequency: Training is episodic because we have selected OnPolicyReplay

memory (line 24) and the agent is trained at the end of every episode. This is
controlled by the training_frequency parameter (line 21) since it means the
network will be trained every 1 episodes.

. Environment: The environment is OpenAI Gym’s CartPole [18] (line 42).

. Training length: Training consists of 100,000 time steps (line 44).

. Evaluation: The agent is evaluated every 2,000 time steps (line 52). During
evaluation, four episodes are run, then the mean total rewards are calculated and
reported.

To train this REINFORCE agent using SLM Lab, run the commands shown in
Code 2.11 in a terminal.

Code 2.11 Training a REINFORCE agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

reinforce_cartpole train↪→

This will use the specified spec file to run a training Trial consisting of four repeated
Sessions7 to obtain an average result, which is then plotted as a trial graph with an error
band. Additionally, the trial graph is also plotted with a moving average over a window of
100 evaluation checkpoints to provide a smoothed curve. Both graphs are shown in
Figure 2.2.8

7. A Trial should be run with many Sessions using the same spec and different random seeds. This is taken care
of automatically in SLM Lab.
8. Total rewards are denoted mean_returns in the graphs. For evaluation, mean_returns are computed without
discounting.
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(a) Trial graph (b) Trial graph with moving average

Figure 2.2 REINFORCE trial graphs from SLM Lab, plotted by averaging four repeated

sessions. The vertical axis shows the total rewards (denoted mean_returns) averaged over eight

episodes during checkpoints, and the horizontal axis shows the total training frames. The graph on

the right is a smoothed version which plots the moving average with a window of 100 evaluation

checkpoints. Note that the maximum total reward for CartPole is 200.

2.8 Experimental Results
In this section, we use the experimentation feature of SLM Lab to study the effects of
some components of the algorithm. The first experiment compares the effect of different
values of the discount factor γ; the second shows the improvement from using a baseline in
the reinforcing signal.

2.8.1 Experiment: The Effect of Discount Factor γ
The discount factor γ controls the weight of future rewards when calculating the return
R(τ) that is used as reinforcing signal. The higher the discount factor, the more weight is
placed on future rewards. The optimal value of γ is problem-specific. For problems where
an agent needs to consider the effect of its actions on future rewards over a longer time
horizon, γ should be larger.

To study the effects of the discount factor, we can run the REINFORCE algorithm
and search over different values of γ. To do this, modify the spec file from Code 2.10 by
adding a search spec for γ. This is shown in Code 2.12, where line 15 specifies a grid
search over the gamma hyperparameter. The full spec file is already available in SLM Lab at
slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json.
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Code 2.12 REINFORCE spec file with search spec for different gamma values

1 # slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

2

3 {

4 "reinforce_cartpole": {

5 ...

6 "meta": {

7 "distributed": false,

8 "eval_frequency": 2000,

9 "max_session": 4,

10 "max_trial": 1,

11 },

12 "search": {

13 "agent": [{

14 "algorithm": {

15 "gamma__grid_search": [0.1, 0.5, 0.7, 0.8, 0.90, 0.99, 0.999]

16 }

17 }]

18 }

19 }

20 }

To run the experiment in SLM Lab, use the commands shown in Code 2.13. This is
not very different from training an agent—we simply reuse the same spec file and
substitute the mode train with search.

Code 2.13 Run an experiment to search over different gamma values as defined in the spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

reinforce_cartpole search↪→

This will run an Experiment which spawns multiple Trials, each with a different value
of gamma substituted into the original REINFORCE spec. Each Trial runs four repeated
Sessions to obtain an average along with an error band. This is used to plot a multitrial
graph. A smoothed plot with moving average over 100 evaluation checkpoints is also
provided for easier comparison. These are shown in Figure 2.3.

Figure 2.3 shows that γ values above 0.90 perform better, with γ = 0.999 from trial 6
giving the best result. When γ is too low, the algorithm fails to learn a policy that solves
the problem, and the learning curve stays flat.
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(a) Multitrial graph (b) Multitrial with moving average

Figure 2.3 The effect of setting the discount factor γ to different values. For CartPole,

a lower γ performs worse, and γ = 0.999 from trial 6 performs best. In general,

different problems may have different optimal values for γ.

2.8.2 Experiment: The Effect of Baseline
We learned in this chapter that using a baseline can help reduce the variance of the Monte
Carlo policy gradient estimate. Let’s run an experiment to compare the performance of
REINFORCE with and without a baseline. The baseline can be toggled on or off with
the algorithm spec hyperparameter center_return.

To run an experiment, we copy the original REINFORCE spec and rename it to
reinforce_baseline_cartpole. This spec is shown partly in Code 2.14. Then, add a
search spec to perform a grid search by toggling center_return on and off (line 15).
The spec file is also available in SLM Lab at slm_lab/spec/benchmark/reinforce
/reinforce_cartpole.json.

Code 2.14 REINFORCE spec file with search spec for toggling baseline (center_return) on

and off

1 # slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

2

3 {

4 "reinforce_baseline_cartpole": {

5 ...

6 "meta": {

7 "distributed": false,

8 "eval_frequency": 2000,

9 "max_session": 4,
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10 "max_trial": 1,

11 },

12 "search": {

13 "agent": [{

14 "algorithm": {

15 "center_return__grid_search": [true, false]

16 }

17 }]

18 }

19 }

20 }

To run the experiment in SLM Lab, use the commands shown in Code 2.15.

Code 2.15 Run an experiment to compare performance with and without baseline as defined

in the spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/reinforce/reinforce_cartpole.json

reinforce_baseline_cartpole search↪→

This will run an Experiment with two Trials with four Sessions each. The multitrial
graph and its moving average over 100 evaluation checkpoints are shown in Figure 2.4.

(a) Multitrial graph (b) Multitrial graph with moving average

Figure 2.4 These graphs show that when a baseline is used to reduce the variance of

policy gradient estimates, performance is improved.
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As expected, REINFORCE with a baseline outperforms its variant without a baseline
by reducing the variance of policy gradient estimates. Figure 2.4 shows that the baseline
variant from trial 0 learns faster and obtains higher total rewards.

This section was a minimal introduction to show how we can run specific experiments
using the experimentation feature in SLM Lab. Chapter 11 goes into more detail on
experiment design with SLM Lab. We will only need to understand this feature with more
advanced use cases, and it is not necessary for understanding the algorithms discussed in
this book.

2.9 Summary
This chapter introduced REINFORCE, a policy gradient algorithm. The key idea is that
the parameters of a policy network are adjusted to maximize the objective, which is the
expected return J(πθ) = Eτ∼πθ

[R(τ)] for an agent.
We introduced and derived the policy gradient. It is an elegant expression which allows

us to adjust the policy action probabilities to encourage good actions and discourage bad
ones. In REINFORCE, the policy gradient is estimated using Monte Carlo sampling.
This estimate can have high variance, and one common method to reduce it is by
introducing a baseline.

The algorithm can be implemented quite simply as shown in Code 2.1. We also
discussed its implementation in SLM Lab as an introduction to the algorithm API used
throughout this book.

2.10 Further Reading
. “Sep 6: Policy gradients introduction, Lecture 4,”CS 294: Deep Reinforcement
Learning, Fall 2017, Levine [74].

. “Lecture 14: Reinforcement Learning,”CS231n: Convolutional Neural Networks for
Visual Recognition, Spring 2017 [39].

. “The Beginning of the Monte Carlo Method,” Metropolis, 1987. [85]

2.11 History
Monte Carlo was popularized by Stanislaw Ulam who was working at the Los Alamos
research lab in the 1940s. The name “Monte Carlo” does not carry any special
connotations; it is simply a memorable alternative to “random estimation.” Still, it does
have an entertaining origin. It was suggested by Nicholas Metropolis, a physicist and
computer designer, responsible for the wryly named MANIAC computer [5]. Metropolis
heard about Ulam’s uncle who borrowed money from relatives because he “just had to go
to Monte Carlo.” After that, the name just seemed obvious [85].
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During the same period, the ENIAC computer had been developed at the University
of Pennsylvania in Philadelphia. A vast machine, consisting of more than 18,000 vacuum
tubes, it was one of the earliest general-purpose electronic computers. Ulam was impressed
by the computational power and flexibility of the ENIAC, and contemplated that it would
be an appropriate tool for the many tedious calculations needed to make use of statistical
techniques in function evaluation. John von Neumann, a brilliant polymath and Los
Alamos colleague, immediately saw the value of the Monte Carlo approach and in 1947
outlined the technique in a note to the head of the Theoretical Division at Los
Alamos [85]. For more information on the emergence of Monte Carlo methods, see “The
Beginning of the Monte Carlo Method,” N. Metropolis, Los Alamos Science Special
Issue, 1987.
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SARSA

In this chapter we look at SARSA, our first value-based algorithm. It was invented
by Rummery and Niranjan in their 1994 paper “On-Line Q-Learning Using
Connectionist Systems” [118] and was given its name because “you need to know
State-Action-Reward-State-Action before performing an update.”1

Value-based algorithms evaluate state-action pairs (s, a) by learning one of the value
functions—V π(s) or Qπ(s, a)—and use these evaluations to select actions. Learning
value functions stands in contrast to REINFORCE (Chapter 2) in which an agent directly
learns a policy which maps states to actions. The SARSA algorithm learns Qπ(s, a)
whereas other algorithms, such as the Actor-Critic algorithm, learn V π(s). Section 3.1
discusses why learning Qπ(s, a) is a good choice in this case.

The SARSA algorithm consists of two core ideas. The first is a technique for learning
the Q-function known as temporal difference (TD) learning. It is an alternative to Monte
Carlo sampling for estimating state or state-action values from the experiences an agent
gathers in an environment. TD learning is the subject of Section 3.2.

The second core idea is a method for generating actions using the Q-function. This
raises the question of how agents discover good actions. One of the fundamental
challenges in RL is achieving a good balance between exploiting what an agent
knows and exploring the environment in order to learn more. This is known as the
exploration-exploitation tradeoff covered in Section 3.3. We also introduce a simple approach
for solving this problem—an ε-greedy policy.

Having introduced the main ideas behind SARSA, Section 3.4 covers the algorithm
and Section 3.5 contains an implementation. The chapter ends with instructions for
training a SARSA agent.

1. SARSA was not actually called SARSA by Rummery and Niranjan in their 1994 paper “On-Line Q-Learning
Using Connectionist Systems” [118]. The authors preferred “Modified Connectionist Q-Learning.” The
alternative was suggested by Richard Sutton and it appears that SARSA stuck.
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3.1 The Q- and V-Functions
In this section, we give motivation for why SARSA learns the Q-function instead of the
V -function. We will review their definitions and give an intuitive explanation for what
each function measures, then describe the advantages of Q.

Section 1.3 introduced the two value functions, V π(s) and Qπ(s, a). The Q-function
measures the value of state-action pairs (s, a) under a particular policy π, as defined in
Equation 3.1. The value of (s, a) is the expected cumulative discounted reward from
taking action a in state s, and then continuing to act under the policy π.

Qπ(s, a) = Es0=s,a0=a,τ∼π

[ T∑
t=0

γtrt

]
(3.1)

Value functions are always defined with respect to a particular policy π, which is why
they are denoted with the π superscript. To see why, suppose we are evaluating (s, a).
Qπ(s, a) depends on the sequences of rewards an agent can expect to experience after
taking action a in state s. These rewards depend on the future sequences of states and
actions, and these depend on a policy. Different policies may generate different future
action sequences given (s, a), which may result in different rewards.

V π(s) measures the value of state s under a particular policy π and is defined in
Equation 3.2. The value of a state, V π(s), is the expected cumulative discounted reward
from that state s onwards under a specific policy π.

V π(s) = Es0=s,τ∼π

[ T∑
t=0

γtrt

]
(3.2)

Qπ(s, a) is closely related to V π(s). V π(s) is the expectation over the Q-values for all
of the actions a available in a particular state s under the policy π.

V π(s) = Ea∼π(s)[Q
π(s, a)] (3.3)

Which function is it better for an agent to learn, Qπ(s, a) or V π(s)?
Let’s first put this in context by considering the game of chess from one player’s

perspective. This player can be represented as a policy π. A certain configuration of the
chessboard pieces is a state s. A good chess player will have an intuition about whether
certain chess positions are good or bad. V π(s) is this intuition expressed quantitatively
with a number—for example, between 0 and 1. When the game begins, V π(s) is equal to
0.5, since both sides start out equal. As it progresses, our player makes gains or losses, and
V π(s) goes up or down with each move. If our player develops a huge upside, then V π(s)
becomes close to 1. In this particular case, V π(s) is akin to our player’s probability of
winning, evaluated at every position of the game. However, the range of V π(s) depends
on the definition of the reward signal r, so in general it is not necessarily equal to the
winning probability. Furthermore, for single-player games there is no notion of winning
probability.
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In addition to evaluating positions, a chess player will also consider a number of
alternative moves and the likely consequences of making each move. Qπ(s, a) provides a
quantitative value for each move. This value can be used to decide on the best move
(action) to make in a particular position (state). Another way to evaluate a chess move
using just V π(s) is to consider the next state s′ from each legal move a, calculate V π(s′)
for each of these next states, and select the action leading to the best s′. However, this is
time-consuming and relies on knowing the transition function, which is available in chess
but not in many other environments.

Qπ(s, a) has the benefit of giving agents a direct method for acting. Agents can
calculate Qπ(s, a) for each of the actions a ∈ As available in a particular state s, and select
the action with the maximum value. In the optimal case, Qπ(s, a) represents the optimal
expected value from taking action a in state s, denoted by Q∗(s, a). It represents the best
you could possibly do if you acted optimally in all subsequent states. Knowing Q∗(s, a)
therefore yields an optimal policy.

The disadvantage of learning Qπ(s, a) is that the function approximation is more
computationally complex and requires more data to learn from compared to V π(s).
Learning a good estimate for V π(s) requires that the data covers the state space reasonably
well, whereas learning a good estimate for Qπ(s, a) requires that data covers all (s, a)
pairs, not just all states s [76, 132]. The combined state-action space is often significantly
larger than the state space, so more data is needed to learn a good Q-function estimate. To
make this more concrete, suppose there are 100 possible actions in state s and an agent
tried each action once. If we are learning V π(s), then each of these 100 data points can
contribute to learning the value of s. However, if we are learning Qπ(s, a), then we only
have one datapoint for each (s, a) pair. Typically, the more data we have, the better the
function approximation. For the same quantity of data, the V -function estimate will likely
be better than the Q-function estimate.

V π(s) may be a simpler function to approximate but it has one significant disadvantage.
To use V π(s) to choose actions, agents need to be able to take each of the actions a ∈ As

available in a state s and observe s′, the next state the environment transitions to,2 along
with the next reward r. Then an agent can act optimally by selecting the action which led
to the largest expected cumulative discounted rewards E[r + V π(s′)]. However, if state
transitions are stochastic (taking action a in state s can result in different next states s′), the
agent may need to repeat this process many times to get a good estimation of the expected
value of taking a particular action. This is a potentially computationally expensive process.

Consider the following example. Suppose that taking action a in state s leads to state s′1
with reward r′1 = 1 half the time, and state s′2 with reward r′2 = 2 the other half of the
time. Furthermore, suppose the values of states s′1 and s′2 are known and are V π(s′1) = 10
and V π(s′2) = −10, respectively. We get

r′1 + V π(s′1) = 1 + 10 = 11 (3.4)

r′2 + V π(s′2) = 2− 10 = −8 (3.5)

2. At this point, for simplicity, we drop the time step subscript and adopt the standard notation of (s, a, r, s′, a′, r′)
to denote the tuples (s, a, r) at the current time step t and (s′, a′, r′) at the next time step t+ 1.
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Then, the expected value is E[r + V π(s′)] = 1.5, as shown in Equation 3.6.

E[r + V π(s′)] =
1

2

(
r′1 + V π(s′1) + r′2 + V π(s′2)

)
=

1

2
(11− 8) = 1.5 (3.6)

However, a single sample would yield for E[r + V π(s′)] an estimate of 11 or −8, both
of which are far from the expected value of 1.5.

This one-step lookahead requirement for V π(s) is often a problem. For example, it might
not be possible to restart the agent in any state in order to try out every available action, or
the restarting process might be expensive. Qπ(s, a) avoids this problem because it directly
learns the value of (s, a). It can be thought of as storing the one-step lookahead for every
action a in every state s [132]. As a result, RL algorithms which select actions using a
learned value function tend to approximate Qπ(s, a).

3.2 Temporal Difference Learning
In this section we discuss how to learn the Q-function using temporal difference (TD)
learning. The main idea is to use a neural network which produces Q-value estimates
given (s, a) pairs as inputs. This is known as value network.

The workflow for learning the value network parameters goes as follows. We generate
trajectories τ s and predict a Q̂-value for each (s, a) pair. Then, we use the trajectories to
generate target Q-values Qtar. Finally, we minimize the distance between Q̂ and Qtar using
a standard regression loss such as MSE (mean squared error). We repeat this process many
times. This is similar to the supervised learning workflow in which each prediction is
associated with a target value. However, in this case we need a way of generating them for
each trajectory, whereas in supervised learning the target values are given in advance.

TD learning is how we will produce the target values Qtar in SARSA. To motivate this,
it is helpful to consider how it can be done with Monte Carlo sampling which we
discussed in Section 2.4.

Given N trajectories τi, i ∈ {1, . . . , N} starting in state s where the agent took action
a, the Monte Carlo (MC) estimate of Qπ

tar(s, a) is the average of all the trajectories’
returns, shown in Equation 3.7. Note that Equation 3.7 can also be applied to any set of
trajectories with any starting (s, a) pair.

Qπ
tar:MC(s, a) =

1

N

N∑
i=1

R(τi) (3.7)

If we have access to an entire trajectory τi, it is possible to calculate the actual Q-value
the agent received in that particular case for each (s, a) pair in τi. This follows from the
definition of the Q-function (Equation 3.1), since the expectation of future cumulative
discounted rewards from a single example is just the cumulative discounted reward from
the current time step to the end of the episode for that example. Equation 3.7 shows that
this is also the Monte Carlo estimate for Qπ(s, a) where the number of trajectories used in
the estimate is N = 1.



ptg33646662

3.2 Temporal Difference Learning 57

Now, each (s, a) pair in the dataset is associated with a target Q-value. The dataset can
be said to be “labeled” since each datapoint (s, a) has a corresponding target value
Qπ

tar(s, a).
One disadvantage of Monte Carlo sampling is that an agent has to wait for episodes to

end before any of the data from that episode can be used to learn from. This is evident
from Equation 3.7. To calculate Qπ

tar:MC(s, a), we need the rewards for the remainder of
the trajectory starting from (s, a). Episodes might have many time steps as measured by T ,
which delays training. This motivates an alternative approach to learning Q-values—TD
learning.

The key insight in TD learning is that Q-values for the current time step can be
defined in terms of Q-values of the next time step. That is, Qπ(s, a) is defined recursively,
as shown in Equation 3.8.

Qπ(s, a) = Es′∼p(s′|s,a),r∼R(s,a,s′)

[
r + γEa′∼π(s′)[Q

π(s′, a′)]
]

(3.8)

Equation 3.8 is known as the Bellman equation. If the Q-function is correct for the
policy π, Equation 3.8 holds exactly. It also suggests a way of learning Q-values. We just
saw how Monte Carlo sampling can be used to learn Qπ(s, a) given many trajectories of
experiences. The same idea can be applied here, using TD learning to derive the target
value Qπ

tar(s, a) for each (s, a) pair.
Assume we have a neural network to represent the Q-function, Qθ. In TD learning,

Qπ
tar(st, at) is derived by estimating the right-hand side of Equation 3.8 using Qθ. At each

training iteration, Q̂π(st, at) is updated to bring it closer to Qπ
tar(st, at).

If Qπ
tar(st, at) is derived using the same neural network which produces Q̂π(st, at),

then why does this work? Why can it result in a good approximation of the Q-function
after many steps? This is discussed in more detail in Section 3.2.1, but in brief, Qπ

tar(st, at)

uses information one time step into the future when compared with Q̂π(st, at) and thus
has access to the reward r from the next state s′. Consequently, Qπ

tar(st, at) is slightly more
informative about how the trajectory will ultimately turn out. Underlying this formulation
is the assumption that information about the objective—maximizing cumulative
rewards—is revealed as the trajectory progresses and is not available at the start of an
episode. This is a fundamental characteristic of RL problems.

However, there are two problems with Equation 3.8 if it is to be used to construct
Qπ

tar(st, at)—the two expectations. The first problem is the outer expectation
Es′∼p(s′|s,a),r∼R(s,a,s′)[. . .] due to the next state and reward. This can be illustrated by
supposing we have a collection of trajectories, {τ1, τ2, . . . , τM}. Each trajectory τi
contains (s, a, r, s′) tuples. For each tuple (s, a, r, s′), only one example of the next state
s′ is available given the action selected.

If the environment is deterministic, then it is correct to only consider the actual next
state when calculating the expectation over the next states. However, if the environment is
stochastic, this breaks down. Taking action a in states s could transition the environment
into a number of different next states, but only one next state was actually observed at each
step. This problem can be overcome by considering only one example—the one that
actually happened. This does mean that the Q-value estimate may have high variance if the
environment is stochastic, but it helps make the estimation more tractable. Using just one
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example to estimate the distribution over next states s′ and rewards r, we can take the outer
expectation out and the Bellman equation can be rewritten as shown in Equation 3.9.

Qπ(s, a) = r + γEa′∼π(s′)[Q
π(s′, a′)] (3.9)

The second problem is the inner expectation Ea′∼π(s′)[. . .] of Equation 3.8 over the
actions. We have access to the Q-value estimates for all of the actions in the next state s′,
because we are using the current estimate of the Q-function to calculate the values. The
problem arises from not knowing the probability distribution over actions which is needed
to calculate the expectation. There are two ways to solve this, each corresponding to a
different algorithm—SARSA and DQN (Chapter 4).

SARSA’s solution is to use the action actually taken in the next state, a′

(Equation 3.10). Over the course of many examples, the proportion of actions selected
should approximate the probability distribution over actions, given states. DQN’s solution
is to use the maximum Q-value (Equation 3.11). This corresponds to an implicit policy of
selecting the action with the maximum Q-value with probability 1. As we will see in
Chapter 4, the implicit policy in Q-learning is greedy with respect to Q-values, and so the
transformation of the equation is valid.3

SARSA: Qπ(s, a) ≈ r + γQπ(s′, a′) = Qπ
tar:SARSA(s, a) (3.10)

DQN: Qπ(s, a) ≈ r + γ max
a′
i

Qπ(s′, a′i) = Qπ
tar:DQN(s, a) (3.11)

Now Qπ
tar(s, a) can be calculated using the right-hand side Equation 3.10 for each

tuple (s, a, r, s′, a′).4 As in Monte Carlo sampling, each (s, a) pair in the dataset is
associated with a Q-value, so the same supervised learning techniques can be used to train
the neural network function approximator for Qπ(s, a). Notice that only the information
from the next step in the environment was required to calculate the target Q-values,
instead of a whole episode’s trajectory. This makes it possible to update the Q-function in a
batched (after a few examples) or online (after one example) manner when using TD
learning instead of having to wait for an entire trajectory to finish.

TD learning is a bootstrapped learning method because the existing estimates of
Q-values for a (s, a) pair are used when calculating Qπ

tar(s, a). This has the advantage of
lowering the variance of the estimate as compared to Monte Carlo sampling. TD learning
only uses the actual reward r from the next state s′ and combines it with Q-value estimates
to approximate the remaining part of the value. The Q-function represents an expectation
over different trajectories and so typically has lower variance than the whole trajectory
used by Monte Carlo sampling. However, it also introduces bias into the learning approach
since the Q-function approximator is not perfect.

3. A third alternative is to derive the probability distribution over actions from the policy and calculate the
expectation. This algorithm is known as Expected SARSA. For more information, see Chapter 6 of
“Reinforcement Learning, An Introduction” by Sutton and Barto, 2nd Edition [132].
4. The SARSA Bellman equation (Equation 3.10) requires knowing the action that was actually taken by an agent in
the next state s′, denoted a′. Consequently, each experience tuple for SARSA includes an additional element a′ to
make (s, a, r, s′, a′). DQN, in contrast, only needs to know the next state s′, so an experience tuple is (s, a, r, s′).
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3.2.1 Intuition for Temporal Difference Learning
To build some intuition for how TD learning works, let’s consider an example. Suppose an
agent is learning to play the toy environment shown in Figure 3.1. This is a essentially a
corridor and the agent has to learn to navigate to the end of the corridor to the good
terminal state sT2, denoted with a star. There are five states in total—s1, s2, s3 and two
terminal states sT1, sT2. There are only two actions, aUP and aDOWN. Choosing aUP

moves the agent one cell up the corridor; choosing aDOWN moves the agent one cell down
the corridor. The agent always starts the game in state s1, denoted S, and the game ends if
the agent reaches either of the terminal states. sT2 is the goal state—the agent receives a
reward of 1 if it reaches this state. The agent receives rewards of 0 in all other states. The
agent’s discount rate γ is 0.9. The game is therefore optimally solved by a policy which
reaches sT2 in the smallest number of steps because an agent values rewards received
sooner more than rewards received later in time. In this case, the smallest number of steps
an agent can take to optimally solve the environment is 3.

Figure 3.1 Simple environment: five states, two actions per state

For this very simple environment, the Q-function can be represented by a table, known
at a tabular Q-function, with one cell per (s, a) pair. This makes six pairs in total since the
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agent cannot act once it has moved to the terminal states. The optimal Q-function is
defined as the expected cumulative discounted rewards from taking action a in state s and
thereafter following the optimal policy. For this environment, the optimal policy is to
select the action aDOWN in all states since this is the quickest way to reach sT2 from any of
the other states. The optimal Q-function for this environment is shown in tabular form in
Figure 3.2.

Figure 3.2 OptimalQ-values for the simple environment from Figure 3.1, γ = 0.9

The optimal Q-values are derived from the definition of the Q-function. Let’s consider
some examples.

. (s0, aUP): The agent moves out of the corridor, receives a reward of 0, and the
episode terminates, so Q∗(s0, aUP) = 0.

. (s3, aDOWN): The agent reaches the terminal state, receives a reward of 1, and the
episode terminates, so Q∗(s3, aDOWN) = 1.

. (s2, aDOWN): The agent receives a reward of 0 and moves to s3, so
Q∗(s2, aDOWN) = r2 + 0.9 Q∗(s3, aDOWN) = 0 + 0.9 ∗ 1.0 = 0.9.

. (s3, aUP): The agent receives a reward of 0 and moves to s2, so
Q∗(s3, aUP) = r3 + 0.9 Q∗(s2, aDOWN) = 0 + 0.9(0 + 0.9 ∗ 1.0) = 0.81.

How can we learn the optimal Q-function using TD learning? Suppose we initialize
the Q-value table to 0 for every cell. The process of learning the Q-function involves
randomly sampling a set of trajectories and, every time the agent experiences a (s, a, r, s′)
tuple, updating the Q-value table using the Bellman equation. That is, set:

Q∗(s, a) = r + γQ∗(s′, a′) (3.12)

= r + 0.9 Q∗(s′, aDOWN) (3.13)

Figure 3.3 illustrates the process of learning the optimal Q-function in tabular form
using a set of five trajectories from the environment. The diagram is split into five blocks
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from top to bottom. Each block corresponds to a single episode of experiences in the
environment; the first block corresponds to the first episode, the second block the second
episode, and so on. Each block contains a number of columns. They are interpreted from
left to right as follows:

. Q-function episode start: The value of the Q-function at the start of the episode.
At the beginning of episode 1, all of the values are initialized to 0 since we have no
information yet about the function.

. Episode: The episode number.

. Time step: Each block contains a variable number of experiences. For example,
there are three experiences in episode 2 and seven experiences in episode 4. The
time index of each experience within the block is indicated by the time step.

. Action: The action the agent took at each time step.

. (s, a, r, s′): The agent’s experience at each time step. This consists of the current
state s, the action the agent took a, the reward received r, and the next state the
environment transitioned into s′.

. r + γQ∗(s′, a): The target value (i.e., the right-hand side of the equation) to use in
the Bellman update: Q∗(s, a) = r + γQ∗(s′, a′).

. Q-function episode end: The value of Q-function at the end of the episode. The
Bellman update has been applied for each experience of the episode in time step
order. This means that the Bellman update was applied first for the experience
corresponding to time step 1, then time step 2, and so on. The table shows the final
result after all of the Bellman updates have been applied for the episode.

After five trajectories consisting of 21 time steps in total, the tabular Q-function has the
same values as the optimal Q-function shown in Figure 3.2. That is, it has converged to
the optimal Q-function.

The TD update makes use of the actual reward received in the following state. This has
the effect of gradually backing up reward signals from future time steps to earlier time steps
by one time step each update. Each time there is a TD backup, the Q-function
incorporates information about an additional time step in the future. Over the course of
many backups, more information about the future is incorporated into the Q-function
estimate at time t. This mechanism makes it possible for the Q-function to incorporate
long-term information.

The number of time steps that the Q-function will take to converge depends on both
the environment and the actions an agent takes, as they both affect the experiences that are
used to learn the Q-function. If, for example, the agent didn’t select the UP action until
the sixth episode, then the Q-function would have taken longer (in terms of episodes) to
converge because we would not have any information about the left-hand side of the
Q-table until episode 6.

The value of the discount factor γ affects the optimal Q-values. Figure 3.4 shows the
optimal Q-values for the extreme values of γ, 0 or 1. If γ = 0, the agent becomes myopic,
only caring about the reward it receives in the current state. In this case, the only (s, a)
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Figure 3.3 Learning theQ∗(s, a) for the simple environment from Figure 3.1

pair with a nonzero Q-value is (s3,DOWN). This is not very useful because information
about the reward in future time steps is no longer incorporated in the Q-values.
Consequently, the agent doesn’t get any clues about how to act in s1 and s2. If γ = 1,
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Figure 3.4 OptimalQ-values for the simple environment from Figure 3.1,

γ = 0 (left), γ = 1 (right)

then all (s, a) pairs except (s1,UP) (which leads to the game ending with no reward) have
a Q-value of 1 because the agent does not care about receiving the reward for reaching
sT2 sooner rather than later.

Another way to think about γ is to consider how it affects the speed at which the
Q-function can be learned. Small values of γ correspond to the agent having a short time
horizon—it only cares about a few time steps into the future, so the Q-values will only
need to be backed up for a few steps. It will likely be faster to learn the Q-function under
these circumstances. However, there may be important information about rewards further
into the future that is not captured by this Q-function, thus negatively affecting an agent’s
performance. If γ is large, then the Q-function may take much longer to learn because
there are many time steps of information to back up, but the resulting function may be
much more useful to the agent. Consequently, the optimal value of γ depends on the
environment; we will see examples of specific values for γ throughout this book. Box 3.1
discusses the role of γ in more detail.

Box 3.1 Problem Horizon

The discount factor γ controls the problem horizon of an agent. It is such a crucial
parameter affecting all algorithms that it is worth showing the time horizon that is
implied by different values of γ.

γ determines how much an agent weights rewards received in the future
compared to the current time step. Consequently, changing γ transforms the
nature of a RL problem as perceived by an agent. If γ is small, then an agent will
only care about the rewards received in the current time step and just a few steps in
the future. This effectively reduces the length of the RL problem to a few time
steps and can drastically simplify the credit assignment problem. Learning may be
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faster with a small γ, since it either takes fewer time steps to back up the Q-value
over the horizon the agent cares about, or reduces the length of a trajectory
needed for policy gradient updates. Whether this will lead to good performance
depends on the nature of the problem since an agent will learn to maximize
rewards received in the near future.

Table 3.1 shows the discount applied to a reward received k time steps into the
future for different values of γ. This gives an idea of the problem horizon for an
agent under different γs. For example, if γ is 0.8, the effective problem horizon is
around 10 steps, whereas if γ is 0.99, it is around 200–500 steps.

Table 3.1 Discount applied to rewards after k time steps

Time step

γ 10 50 100 200 500 1000 2000

0.8 0.11 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.35 0.01 0.00 0.00 0.00 0.00 0.00

0.95 0.60 0.08 0.01 0.00 0.00 0.00 0.00

0.99 0.90 0.61 0.37 0.13 0.07 0.00 0.00

0.995 0.95 0.78 0.61 0.37 0.08 0.01 0.00

0.999 0.99 0.95 0.90 0.82 0.61 0.37 0.14

0.9997 0.997 0.985 0.970 0.942 0.861 0.741 0.549

A good value for γ depends on how delayed rewards typically are in an
environment. This may be tens, hundreds, or thousands of steps. Fortunately, γ
tends to require less tuning; 0.99 is a good default value to use for a wide range of
problems. For example, 0.99 was used in this book in the training examples for
Atari games.

One simple datapoint that can be useful is the maximum length of an episode.
Some environments have maximum time steps. For example, CartPole has a
maximum length of 200 by default. If an environment only lasts for 200 steps, then
there is not much point in using a large γ which implies caring about rewards
many hundreds of time steps into the future. In contrast, when learning to play the
game of Dota 2, which has around 80,000 time steps per game, OpenAI found it
helpful to gradually increase γ during training from 0.998 to 0.9997 [104].

Most environments in deep RL (and the associated optimal Q-functions) are much
more complex than the simple environment we have discussed in this section. In more
complex cases, the Q-function cannot be represented in tabular form. Instead, we will use
neural networks to represent them. One consequence of this is that the backup of
information through time will be slower. Q̂π(s, a) is not fully updated to r + γQπ(s′, a)
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for each experience because neural networks learn gradually, using gradient descent. Each
update only moves Q̂π(s, a) partially towards r + γQπ(s′, a). However, despite the
simplicity of the example we worked through, it illustrates a fundamental concept—that
TD learning is a mechanism for backing up information about an environment’s reward
function through time, from later to earlier time steps.

3.3 Action Selection in SARSA
Now we return to the open question from the previous section. How can a technique for
learning a good approximation of the Q-function be transformed into an algorithm
for learning a good policy? TD learning gives us a method for learning how to evaluate
actions. What is missing is a policy—a mechanism for selecting actions.

Suppose we had already learned the optimal Q-function. Then the value of each
state-action pair will represent the best possible expected value from taking that action.
This gives us a way to reverse-engineer the optimal way of acting. If the agent always
selects the action which corresponds to the maximum Q-value in each state—that is, if
the agent acts greedily with respect to the Q-values—then it will be acting optimally. This
also implies that the SARSA algorithm is limited to discrete action spaces, as explained
in Box 3.2.

Box 3.2 SARSA Is Limited to Discrete Action Spaces

To identify the maximum Q-value in state s, we need to compute the Q-values
for all the possible actions in that state. When actions are discrete, this is
straightforward because we can list all the possible actions and compute their
Q-values. However, when actions are continuous, the actions cannot be fully
enumerated, and this becomes a problem. For this reason, SARSA and other
value-based methods such as DQN (Chapters 4 and 5) are generally restricted to
discrete action spaces. However, there are methods, such as QT-Opt [64], which
approximate the maximum Q-value by sampling from a continuous action space.
These are beyond the scope of this book.

Unfortunately, the optimal Q-function is typically not known. However, the
relationship between the optimal Q-function and acting optimally tells us that if we have a
good Q-function, then we can derive a good policy. It also suggests an iterative approach
to improving the Q-value.

First, randomly initialize a neural network with parameters θ to represent the
Q-function, denoted Qπ(s, a; θ). Then, repeat the following steps until the agent stops
improving, as evaluated by the total undiscounted5 cumulative rewards received during an
episode:

5. Reward discounting is only used by the agent. Evaluation of agent performance is typically done with
undiscounted cumulative rewards.
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1. Use Qπ(s, a; θ) to act in the environment, by acting greedily with respect to the
Q-values. Store all of the (s, a, r, s′) experiences.

2. Use the stored experiences to update Qπ(s, a; θ) using the SARSA Bellman
equation (Equation 3.10). This improves the Q-function estimate which, in turn,
improves the policy, since the Q-value estimates are now better.

3.3.1 Exploration and Exploitation
One issue with acting greedily with respect to the Q-values is that this strategy is
deterministic, which means an agent may not explore the entire state-action space
sufficiently. If an agent always selects the same action a in state s, then there may be many
(s, a) pairs that an agent never experiences. As a result, the Q-function estimates for
some (s, a) pairs may be inaccurate since they were randomly initialized and there were no
actual experiences of (s, a). There was no opportunity for a network to learn about this
part of the state-action space—so the agent may make suboptimal actions and get stuck in
a local minimum.

To mitigate this issue, it is common to use an ε-greedy6 policy, instead of a purely
greedy policy, for the agent. Under this policy, an agent selects the greedy action
with probability 1− ε and acts randomly with probability ε, which is known as the
exploration probability since acting randomly ε× 100% of the time helps an agent explore
the state-action space. Unfortunately, this comes at a cost: such a policy may not be as
good as the greedy policy because the agent is taking random actions with nonzero
probability, instead of the Q-value maximizing action.

The tension between the potential value of exploring during training and taking the
best actions based on the information available to an agent (Q-values) is known as the
exploration-exploitation tradeoff. Should the agent exploit its current knowledge to perform
as best it can, or explore by acting randomly? Exploring risks poor performance for some
time, but it also opens up the possibility of discovering better states and ways of acting.
Another way of expressing this is that if the agent had access to the optimal Q-function, it
should be acting greedily, but while it is learning the Q-function, acting greedily can
prevent it from getting better.

A common approach to managing this tradeoff is to start with high ε, 1.0 or close to
this, so that the agent acts almost randomly and rapidly explores the state-action space. As
the agent has not yet learned anything at the beginning of training, there is nothing to
exploit. Over time, ε is gradually decayed, so that after many steps the policy, hopefully,
approaches the optimal policy. As the agent learns better Q-functions, and so better
policies, there is less benefit to exploring and the agent should act more greedily.

In the ideal case, after some time the agent will have discovered the optimal
Q-function, so ε can then be reduced to 0. In practice, due to limited time, continuous or
high-dimensional discrete state spaces, and nonlinear function approximators, the learned
Q-function does not fully converge to the optimal policy. Therefore, ε is typically

6. Pronounced “epsilon-greedy.”
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annealed to a small value, for example 0.1–0.001, and fixed to allow a small amount of
continued exploration.

TD learning has been proven to converge to the optimal Q-function for linear function
approximators [131, 137]. However, much of the recent progress in reinforcement learning
has been driven by the introduction of complex nonlinear function approximators, such as
neural networks, because they can represent much more complex Q-functions.
Unfortunately, the move to nonlinear function approximation means that there are no
guarantees that TD learning will converge. A complete explanation of this is beyond the
scope of this book; interested readers should watch Sergey Levine’s excellent lecture on
the theory of value function learning given as part of UC Berkeley’s CS294 course.7

Fortunately, in practice it has been shown that good results can be achieved [88, 135] even
without this guarantee.

3.4 SARSA Algorithm
We now describe the SARSA algorithm and discuss why it is on-policy.

The pseudocode for SARSA with an ε-greedy policy is given in Algorithm 3.1. The
Q-function estimate Q̂π(s, a) is parameterized by a network with parameters θ, denoted
Qπθ , so we have Q̂π(s, a) = Qπθ (s, a). Note that the good start and minimum values for
ε, as well as the rate at which we decay ε, depend on the environment.

Algorithm 3.1 SARSA

1: Initialize learning rate α
2: Initialize ε
3: Randomly initialize the network parameters θ
4: for m = 1 . . .MAX_STEPS do
5: Gather N experiences (si, ai, ri, s′i, a

′
i) using the current ε-greedy policy

6: for i = 1 . . . N do
7: # Calculate target Q-values for each example
8: yi = ri + δs′iγ Qπθ (s′i, a

′
i) where δs′i = 0 if s′i is terminal, 1 otherwise

9: end for
10: # Calculate the loss, for example using MSE
11: L(θ) = 1

N

∑
i(yi −Qπθ (si, ai))

2

12: # Update the network’s parameters
13: θ = θ − α∇θJ(θ)
14: Decay ε
15: end for

7. The video is publicly available at https://youtu.be/k1vNh4rNYec [76].

https://youtu.be/k1vNh4rNYec
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3.4.1 On-Policy Algorithms
An important feature of SARSA is that it is an on-policy algorithm. Recall from Chapter 2
that an algorithm is on-policy if the information used to improve the current policy
depends on the policy used to gather data. This can happen in two ways.

First, the target value used to train the Q-function can depend on the policy that was
used to generate experiences. SARSA is an example, as shown in Algorithm 3.1 (line 7).
The target value yi depends on the actual action a′ taken in the next state s′. The actual
action taken depends on the experience-generating policy—that is, the current ε-greedy
policy.

The second way in which an algorithm can be on-policy is if the policy is being
learned directly. Learning a policy involves changing it so as to make good actions more
likely and poor actions less likely. To make this improvement, it is necessary to have access
to the probabilities that the current policy assigned to the actions taken. REINFORCE
(Chapter 2) is an example of an on-policy algorithm where the policy is directly learned.

The fact that SARSA is an on-policy algorithm has implications for the type
of experiences that can be used to train the Q-function approximator over time. Only
experiences collected using the current policy can be used in each training iteration. Once
the parameters of the function approximator have been updated once, all of the experiences
must be discarded and the experience-collection process must begin again. This holds even
if the update to the parameters is small, as is typically the case for a single parameter update
when training neural networks, since this changes the policy. Algorithm 3.1 makes this
explicit since new experiences are collected for each training iteration m.

Why does it matter that only experiences collected with the current policy are used to
update the Q-function in each iteration? Let’s revisit the SARSA TD update in
Equation 3.14.

Qπ1(s, a) ≈ r + γQπ1(s′, a′1) (3.14)

The second term of the update, γQπ1(s′, a′1), assumes that a′ has been selected using
the policy π1. This follows from the definition of the Q-function, which is the expected
future value of (s, a) assuming that the agent acts according to policy π1. There is no place
for experiences generated using a different policy.

Suppose we have an example (s, a, r, s′, a′2) generated using a different policy π2, for
example from an earlier iteration during training with different values for θ (the
parameters of the Q-function approximator). a′2 is not necessarily the same as a′1. The
action taken in s′ by π2 might not be the same as the action that the current policy π1

takes. If this is the case, then Qπ1(s, a) will not reflect the expected cumulative future
discounted rewards from taking action a in state s under π1.

Qπ1
tar (s, a) = r + γQπ1(s′, a′1) 6= r + γQπ1(s′, a′2) (3.15)

Equation 3.15 shows that if (s, a, r, s′, a′2) was used instead of (s, a, r, s′, a′1), then
Qπ1(s, a) will have been updated incorrectly. This is because it uses Q-value estimates
derived from a course of action different to the one that the current policy would have
taken.
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3.5 Implementing SARSA
This section walks you through an implementation of the SARSA algorithm. First, we
look at the epsilon_greedy code. This determines how the SARSA agent acts in an
environment. Next, we review the method for calculating the target Q-value. The section
ends with the network training loop and a discussion of Memory classes for SARSA.

3.5.1 Action Function: ε-Greedy
An action function returns the action a an agent should carry out in state s. Every action
function takes in a state, an algorithm from which the neural network function
approximator can be accessed, and an agent’s body which stores information about the
exploration variable (e.g., ε) and the action space. Action functions return the action
selected by the agent and the probability distribution from which the action was sampled.
In the case of SARSA, the distribution is degenerate. All the probability mass is assigned to
the Q-value-maximizing action.

epsilon_greedy in Code 3.1 has three elements:

. The agent decides whether to act randomly or greedily (line 5). This depends on the
current value of ε (line 4).

. If acting randomly, call the random action function (line 6). This returns an action
from the action space by sampling from a random uniform distribution over the
actions.

. If acting greedily, estimate the Q-value for each action in state. Choose the action
which corresponds to the maximum Q-value. This is handled by the call to the
default action function (lines 11–14).

One important implementation detail for the Q-function approximator is that it
outputs all of the Q-values for a particular state at the same time. Structuring a neural
network to approximate the Q-function in this way is more efficient than the alternative of
taking a state and an action as input and outputting a single value. It only requires one
forward pass through the network instead of action_dim forward passes. For more details
on building and initializing different types of networks, see Chapter 12.

Code 3.1 SARSA implementation: ε-greedy action function

1 # slm_lab/agent/algorithm/policy_util.py

2

3 def epsilon_greedy(state, algorithm, body):

4 epsilon = body.explore_var

5 if epsilon > np.random.rand():

6 return random(state, algorithm, body)

7 else:

8 # Returns the action with the maximum Q-value

9 return default(state, algorithm, body)
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10

11 def default(state, algorithm, body):

12 pdparam = calc_pdparam(state, algorithm, body)

13 action = sample_action(body.ActionPD, pdparam)

14 return action

3.5.2 Calculating the Q-Loss
The next step in the SARSA algorithm is to calculate the Q-loss. This value is used to
update the parameters of the Q-function approximator.

In Code 3.2, first, Q̂π(s, a) is calculated for the action a taken by the agent in the
current state s for each experience in the batch. This involves a forward pass through the
value network to obtain the Q-value estimates for all of the (s, a) pairs (line 11). Recall
that in the SARSA version of the Bellman equation, we use the action actually taken by
the agent in the next state to calculate Qπ

tar(s, a).

Q̂π(s, a) = r + γQ̂π(s′, a′) = Qπ
tar(s, a) (3.16)

So we repeat the same step with next states instead of the current states (lines 12–13).
Note that we treat the target Q-values as fixed, so we do not compute the gradient for this
step. Hence, the forward pass is called under a torch.no_grad() context to prevent
PyTorch from tracking the gradient.

Next, we extract the Q-value estimate for the action actually taken in both cases
(lines 15–16). With this, we can estimate Qπ

tar(s, a) using act_next_q_preds (line 17).
Care is taken to handle terminal states for which Qπ

tar(s, a) is just the reward received. This
is achieved by multiplying Q̂π(s′, a′) (act_next_q_preds) with a one-hot vector
1 - batch['dones'], which is 0 if the state is terminal and 1 otherwise. Once we have
the current and target Q-value estimates (q_preds and act_q_targets, respectively),
calculating the loss is straightforward (line 18).

One important element to be aware of is that for each experience, the agent only
receives information about the action actually taken. Consequently, it can only learn
something about this action, not the other actions available. This is why the loss is only
calculated using values that correspond to the actions taken in the current and next states.

Code 3.2 SARSA implementation: calculatingQ-targets and the corresponding loss

1 # slm_lab/agent/algorithms/sarsa.py

2

3 class SARSA(Algorithm):

4 ...

5

6 def calc_q_loss(self, batch):

7 '''Compute the Q value loss using predicted and target Q values from

the appropriate networks'''↪→
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8 states = batch['states']

9 next_states = batch['next_states']

10 ...

11 q_preds = self.net(states)

12 with torch.no_grad():

13 next_q_preds = self.net(next_states)

14 ...

15 act_q_preds = q_preds.gather(-1,

batch['actions'].long().unsqueeze(-1)).squeeze(-1)↪→

16 act_next_q_preds = next_q_preds.gather(-1,

batch['next_actions'].long().unsqueeze(-1)).squeeze(-1)↪→

17 act_q_targets = batch['rewards'] + self.gamma * (1 - batch['dones']) *

act_next_q_preds↪→

18 q_loss = self.net.loss_fn(act_q_preds, act_q_targets)

19 return q_loss

3.5.3 SARSA Training Loop
The training loop in Code 3.3 proceeds as follows:

1. At each time step, train is called and the agent checks if it is ready to train (line 10).
The self.to_train flag is set by the memory class discussed in the following section.

2. If it is time to train, then the agent samples the data from memory by calling
self.sample() (line 11). For the SARSA algorithm, a batch is all of the experiences
collected since the last time the agent was trained.

3. Calculate the Q-loss for the batch (line 13).

4. Use the Q-loss to make a single update of the value network parameters (line 14).
With the loss defined, PyTorch conveniently handles the parameter update using
automatic differentiation.

5. Reset self.to_train to 0 to ensure that the agent is not trained until it is ready
again (line 16)—that is, it has gathered a sufficient number of new experiences.

6. Update ε (explore_var) (line 23) with a chosen strategy, such as linear decay.

Code 3.3 SARSA implementation: training loop

1 # slm_lab/agent/algorithm/sarsa.py

2

3 class SARSA(Algorithm):

4 ...

5

6 @lab_api



ptg33646662

72 Chapter 3 SARSA

7 def train(self):

8 ...

9 clock = self.body.env.clock

10 if self.to_train == 1:

11 batch = self.sample()

12 ...

13 loss = self.calc_q_loss(batch)

14 self.net.train_step(loss, self.optim, self.lr_scheduler,

clock=clock, global_net=self.global_net)↪→

15 # reset

16 self.to_train = 0

17 return loss.item()

18 else:

19 return np.nan

20

21 @lab_api

22 def update(self):

23 self.body.explore_var = self.explore_var_scheduler.update(self,

self.body.env.clock)↪→

24 return self.body.explore_var

Summary At a high level, an implementation of SARSA has three main components.

1. epsilon_greedy: Define a method for acting in the environment using the current
policy.

2. calc_q_loss: Use the experiences collected to calculate Q-targets and the
corresponding loss.

3. train: Make one parameter update of the value network parameters using the
Q-loss. Update any relevant variables such as explore_var (ε).

3.5.4 On-Policy Batched Replay Memory
The code in the previous section assumed that when it was time to train the agent, a set of
examples containing the relevant experiences was available to the agent.

We saw this through self.sample() in the train() function of the SARSA algorithm
class. This section walks you through storing experiences and providing them to agents
when they need them to train.

The mechanism for storing and retrieving experiences—(s, a, r, s′, a′) tuples—is
abstracted into the Memory classes introduced in Chapter 2. The type of experiences that
can be used to train function approximators is shared by on-policy algorithms. These are
experiences collected using the current policy. Recall that each memory class must
implement an update function which adds an agent’s experiences to the memory, a sample

function which returns a batch of data for training, and a reset function which clears the
memory.
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SARSA is a temporal difference learning algorithm, so it is only necessary to wait until
the next time step before the algorithm’s parameters can be updated using a single
(s, a, r, s′, a′) tuple. This makes it possible for SARSA to be an online algorithm.
However, using just one example per update can be very noisy, so it is common to wait for
a number of steps and update the algorithm’s parameters using the average loss computed
over multiple experiences. This is known as batch training. An alternative strategy is to
gather one or more full episodes of experiences and update the algorithm’s parameters
using all of this data at once. This is known as episodic training.

The different choices reflect a tradeoff between speed and variance. Data from multiple
episodes typically has the least variance, but the algorithm may learn more slowly, since the
parameters are updated infrequently. Updates using a single experience have the highest
variance but can lead to rapid learning. The choice of how many experiences to use in
each update depends on the environment and the algorithm. Some environments may
result in extremely high-variance data, in which case many experiences may be needed to
reduce the variance sufficiently for the agent to learn. Other environments may result in
low-variance data; in this case the number of examples per update can be quite small,
increasing the potential learning speed.

Two Memory classes provide this spectrum of functionality—from online to
batch to episodic learning. OnPolicyReplay implements episodic training, and
OnPolicyBatchReplay, which inherits from OnPolicyReplay, implements batch training.
Online training is also covered in this class by setting a batch size to 1. Note that for
SARSA, at least two steps in the environment are needed for online training so that the
next state and action are known, corresponding to a batch size of 2.

OnPolicyReplay was introduced in Chapter 2, so here we just focus on
OnPolicyBatchReplay.

Batch Memory Update It is easy to adapt the episodic memory to batch by using
class inheritance and overriding the add_experience function, as shown in Code 3.4.

Batch memory does not require the nested structure of the episodic memory, so the
current experience is added directly to the main memory containers in Code 3.4
(lines 8–9). If enough examples have been collected, the memory sets the agent’s train flag
(lines 14–15).

Code 3.4 OnPolicyBatchReplay: add experience

1 # slm_lab/agent/memory/onpolicy.py

2

3 class OnPolicyBatchReplay(OnPolicyReplay):

4 ...

5

6 def add_experience(self, state, action, reward, next_state, done):

7 self.most_recent = [state, action, reward, next_state, done]

8 for idx, k in enumerate(self.data_keys):

9 getattr(self, k).append(self.most_recent[idx])



ptg33646662

74 Chapter 3 SARSA

10 # Track memory size and num experiences

11 self.size += 1

12 self.seen_size += 1

13 # Decide if agent is to train

14 if len(self.states) == self.body.agent.algorithm.training_frequency:

15 self.body.agent.algorithm.to_train = 1

3.6 Training a SARSA Agent
We configure a SARSA agent using a spec file shown in Code 3.5. The file is also
available in SLM Lab at slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json.

Code 3.5 A simple SARSA CartPole spec file

1 # slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json

2

3 {

4 "sarsa_epsilon_greedy_cartpole": {

5 "agent": [{

6 "name": "SARSA",

7 "algorithm": {

8 "name": "SARSA",

9 "action_pdtype": "Argmax",

10 "action_policy": "epsilon_greedy",

11 "explore_var_spec": {

12 "name": "linear_decay",

13 "start_val": 1.0,

14 "end_val": 0.05,

15 "start_step": 0,

16 "end_step": 10000

17 },

18 "gamma": 0.99,

19 "training_frequency": 32

20 },

21 "memory": {

22 "name": "OnPolicyBatchReplay"

23 },

24 "net": {

25 "type": "MLPNet",

26 "hid_layers": [64],

27 "hid_layers_activation": "selu",

28 "clip_grad_val": 0.5,

29 "loss_spec": {
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30 "name": "MSELoss"

31 },

32 "optim_spec": {

33 "name": "RMSprop",

34 "lr": 0.01

35 },

36 "lr_scheduler_spec": null

37 }

38 }],

39 "env": [{

40 "name": "CartPole-v0",

41 "max_t": null,

42 "max_frame": 100000

43 }],

44 "body": {

45 "product": "outer",

46 "num": 1

47 },

48 "meta": {

49 "distributed": false,

50 "eval_frequency": 2000,

51 "max_trial": 1,

52 "max_session": 4

53 },

54 ...

55 }

56 }

Let’s walk through the main components.

. Algorithm: The algorithm is SARSA (line 6), the action policy is ε-greedy (line 10)
with linear decay (lines 11–17) of the exploration variable ε, and γ is set on line 18.

. Network architecture: Multilayer perceptron with one hidden layer of 64 units
and SeLU activation function (lines 25–27).

. Optimizer: The optimizer is RMSprop [50] with a learning rate of 0.01
(lines 32–35).

. Training frequency: Training is batch-wise because we have selected
OnPolicyBatchReplay memory (line 22) and the batch size is 32 (line 19). This is
controlled by the training_frequency parameter (line 19) since it means the
network will be trained every 32 steps.

. Environment: The environment is OpenAI Gym’s CartPole [18] (line 40).

. Training length: Training consists of 100,000 time steps (line 42).
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. Evaluation: The agent is evaluated every 2000 time steps (line 50). During
evaluation, ε is set to its final value (line 14). Four episodes are run, then the mean
total rewards are calculated and reported.

To train this SARSA agent using SLM Lab, run the commands shown in Code 3.6 in a
terminal.

Code 3.6 Training a SARSA agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json

sarsa_epsilon_greedy_cartpole train↪→

(a) Trial graph (b) Trial graph with moving average

Figure 3.5 SARSA trial graphs from SLM Lab averaged over four sessions. The vertical axis

shows the total rewards (mean_return for evaluation is computed without discount) averaged over

eight episodes during checkpoints, and the horizontal axis shows the total training frames. The

graph on the right is a moving average with a window of 100 evaluation checkpoints.

This will use the spec file to run a training Trial with four Sessions to obtain an
average result. The result is then plotted with an error band. A moving average version
with a window of 100 evaluations is also generated. Both graphs are shown in Figure 3.5.

3.7 Experimental Results
This section will look at the effect of learning rate on the performance of SARSA in the
CartPole environment. We use the experimentation feature of SLM Lab to perform a grid
search over the learning rates, then plot and compare them.
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3.7.1 Experiment: The Effect of Learning Rate
The learning rate controls the size of the parameter update of a network. Higher learning
rate can make learning faster, but it may also overshoot in parameter space if parameter
updates are too large. Conversely, small learning rate is less likely to overshoot, but may take
longer to converge. To find an optimal learning rate, we often use hyperparameter tuning.

In this experiment, we look at the effect of using different learning rates on SARSA by
performing a grid search over multiple learning rates. To do so, use the spec file from
Code 3.5 to add a search spec, as shown in Code 3.7. Line 10 specifies a grid search over
a list of learning rate lr values. The full spec file is already available in SLM Lab at
slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json.

Code 3.7 SARSA spec file with search spec for different learning rate values

1 # slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json

2

3 {

4 "sarsa_epsilon_greedy_cartpole": {

5 ...

6 "search": {

7 "agent": [{

8 "net": {

9 "optim_spec": {

10 "lr__grid_search": [0.0005, 0.001, 0.001, 0.005, 0.01, 0.05, 0.1]

11 }

12 }

13 }]

14 }

15 }

16 }

To run the experiment in SLM Lab, use the commands shown in Code 3.8.

Code 3.8 Run an experiment to search over different learning rates as defined in the spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/sarsa/sarsa_cartpole.json

sarsa_epsilon_greedy_cartpole search↪→

This will run an Experiment which spawns multiple Trials, each with a different value
of lr substituted in the original SARSA spec. Each Trial runs four Sessions to obtain an
average. The multitrial graph and its moving average over a window of 100 evaluation
checkpoints are shown in Figure 3.6.



ptg33646662

78 Chapter 3 SARSA

(a) Multitrial graph (b) Multitrial with moving average

Figure 3.6 The effect of higher learning rates on the performance of SARSA. As expected,

the agent learns faster with a higher learning rate.

Figure 3.6 shows a clear effect of increasing the learning rate on the learning curve of
SARSA, as long as the learning rate is not too high. In trials 5 and 6, SARSA quickly
obtains the maximum total reward of 200 for CartPole. In contrast, when learning rate is
low, the agent learns too slowly, as shown in trials 0, 1, 2.

3.8 Summary
The SARSA algorithm has two main elements—learning the Q-function with TD
learning and a method for acting using the Q-value estimates.

First, we discussed why the Q-function is a good choice of value function to learn for
SARSA. The Q-function is approximated with TD learning which seeks to minimize the
difference between two formulations of the Q-function based on the Bellman equation.
A crucial idea behind TD learning is that rewards are revealed over time in RL problems.
It takes advantage of this to back up information from future time steps to earlier ones in
the Q-function estimates.

After we learned the Q-function, we saw that a good policy can be derived by acting
ε-greedily with respect to the Q-values. This means that the agent acts randomly with
probability ε, otherwise it selects the action corresponding to the maximum Q-value
estimate. The ε-greedy policy is a simple way to address the exploration-exploitation
problem in RL. Agents need to balance exploiting what they know with exploring the
environment to discover better solutions.

When implementing the SARSA algorithm, the most important components are the
action function—a function for calculating the Q-values and the associated loss—and the
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training loop. These were implemented through epsilon_greedy, calc_q_loss, and the
train methods. The experiences a SARSA agent collects are stored in an agent’s Memory.
These experiences are provided by the Memory to the agent each time training occurs. We
saw that SARSA is an on-policy algorithm because Qπ

tar(s, a), which is used to train the
value network, depends on the experience-gathering policy. Using experiences that were
not gathered under the current policy would lead to incorrect Q-values. Consequently, the
Memory is cleared each time an agent trains.

Monte Carlo sampling and TD learning can be interpreted as occupying two ends of a
spectrum of the tradeoff between bias and variance. The SARSA algorithm can be
extended to incorporate this tradeoff by parameterizing the number of steps of actual
rewards an agent uses before estimating the remaining value with the value network. This
stands in contrast to the single step of actual rewards used in the standard SARSA
algorithm. “Reinforcement Learning, An Introduction” [132] contains more details on
this topic, as well as the related, more computationally efficient, approach involving
eligibility traces.

3.9 Further Reading
. Chapters 4 and 5, Reinforcement Learning: An Introduction, Second Edition, Sutton and

Barto, 2018 [132].

. On-Line Q-Learning Using Connectionist Systems, Rummery and Niranjan,
1994 [118].

. “Temporal Difference Learning and TD-Gammon,” Tesauro, 1995, pp. 58–68 [135].

3.10 History
Temporal difference (TD) techniques were first used almost sixty years ago by Arthur
Samuel in his checkers-playing algorithm [119, 120]. Thirty years later, Richard Sutton
provided the first formal results [131], proving the convergence of a subset of linear TD
algorithms. In 1997, Tsitsiklis and Van Roy [137] extended this, proving the convergence
of TD algorithms in general with linear function approximators. TD learning is also
behind the earliest deep reinforcement learning algorithm, TD-Gammon [135]. Gerald
Tesauro’s algorithm combined a multilayer perceptron with TD learning and self-play to
achieve master-level performance in 1991. The assessment was conducted by Bill
Robertie, a backgammon grandmaster and former world champion [135]. For more
information, see “Temporal Difference Learning and TD-Gammon,” Gerald Tesauro,
originally published in Communications of the ACM, March 1995.

The Bellman equation was named after Richard Bellman, a renowned mathematician
who invented dynamic programming [34]. The Bellman equation incorporates the
“Principle of Optimality” [16] which states that “an optimal policy has the property that
whatever the initial state and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.” It can be
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summarized as follows. Suppose you knew how to act perfectly in for all future states
except the current state. Then the optimal action in the current state reduces to comparing
the outcomes from all the possible actions in the current state, incorporating your
knowledge about the value of actions in all of the following states, and selecting the best
one. That is, the value of the current state can be defined recursively in terms of the value
of future states. See “Richard Bellman on the Birth of Dynamic Programming” by Stuart
Dreyfus [34] for a brief and charming history, in Bellman’s own words, of the emergence
of dynamic programming.
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Deep Q-Networks (DQN)

This chapter introduces the Deep Q-Networks algorithm (DQN) proposed by Mnih et
al. [88] in 2013. Like SARSA, DQN is a value-based temporal difference (TD) algorithm
that approximates the Q-function. The learned Q-function is then used by an agent to
select actions. DQN is only applicable to environments with discrete action spaces.
However, DQN learns a different Q-function compared to SARSA—the optimal
Q-function instead of the Q-function for the current policy. This small but crucial change
improves the stability and speed of learning.

In Section 4.1, we first discuss why DQN learns the optimal Q-function by looking at
the Bellman equation for DQN. One important implication is that this makes DQN an
off-policy algorithm. This optimal Q-function does not depend on the data-gathering
policy, which means DQN can learn from experiences gathered by any agent.

In theory, any policy can be used to generate training data for DQN. In practice,
however, some policies are more appropriate than others. Section 4.2 looks at the
characteristics of a good data-gathering policy and introduces the Boltzmann policy as an
alternative to the ε-greedy policy discussed in Section 3.4.

In Section 4.3, we consider how to use the fact that DQN is off-policy to improve its
sample efficiency compared to SARSA. During training, the experiences gathered by
older policies are stored in an experience replay [82] memory and are reused.

Section 4.4 presents the DQN algorithm and in Section 4.5 we discuss an example
implementation. The chapter ends with a comparison of DQN agent performance in the
CartPole environment from OpenAI Gym as we vary the network architecture.

We will see in this chapter that it only takes a small change to the Q-function update to
transform SARSA into DQN, but the result is an algorithm which addresses many of
SARSA’s limitations. DQN makes it possible to decorrelate and reuse experiences by
sampling random batches from a large experience replay memory, and allows for multiple
parameter updates using the same batch. These ideas, which significantly improve DQN’s
efficiency relative to SARSA, are the subject of this chapter.
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4.1 Learning the Q-Function in DQN
DQN, like SARSA, learns the Q-function using TD learning. Where the two algorithms
differ is in how Qπ

tar(s, a) is constructed.
Equations 4.1 and 4.2 show the Bellman equation for DQN and SARSA, respectively.

Qπ
DQN(s, a) ≈ r + γ max

a′
Qπ(s′, a′) (4.1)

Qπ
SARSA(s, a) ≈ r + γQπ(s′, a′) (4.2)

Correspondingly, Equations 4.3 and 4.4 show how Qπ
tar(s, a) is constructed in each

algorithm.

Qπ
tar:DQN(s, a) = r + γ max

a′
Qπ(s′, a′) (4.3)

Qπ
tar:SARSA(s, a) = r + γQπ(s′, a′) (4.4)

Instead of using the action a′ actually taken in the next state s′ to estimate Qπ
tar(s, a),

DQN uses the maximum Q-value over all of the potential actions available in that state.
In DQN, the Q-value that is used in the next state s′ doesn’t depend on the policy used

to gather experiences. Since the reward r and the next state s′ are produced by the
environment given the current state s and action a, this means that no part of the
Qπ

tar:DQN(s, a) estimation depends on the data-gathering policy. This makes DQN an
off-policy algorithm because the function being learned is independent of the policy being
followed to act in the environment and gather experiences [132]. In contrast, SARSA is
on-policy because it uses the action a′ taken by the current policy in state s′ to calculate
the Q-value for the next state. It directly depends on the policy used to gather
experiences.

Suppose we have two policies π1 and π2 and let Q̂π1

(s, a) and Q̂π2

(s, a) be the
Q-functions which correspond to these policies. Let (s, a, r, s′, a′1) be a sequence of data
generated using π1, and (s, a, r, s′, a′2), by π2. If π1 is the current policy and π2 is an
older policy from an earlier point in the training process, then Section 3.4.1 showed how
using (s, a, r, s′, a′2) to update the parameters of Q̂π1

(s, a) would be incorrect.
However, if we are using DQN, then neither a′1 or a′2 are used when calculating

Qπ
tar:DQN(s, a). Since the next state s′ is the same in both cases, each experience results in

the same value for Qπ
tar:DQN(s, a) = r + γ max

a′
Qπ(s′, a′), and so both are valid. Even

though different policies were used to gather each sequence of data, Qπ
tar:DQN(s, a) is

the same.
If the transition and reward functions are stochastic, then choosing action a in state s

multiple times may result in a different r and a different s′. Qπ accounts for this because it
is defined as the expected future return from taking action a in state s, so it is still valid to
use (s, a, r, s′, a′2) to update Q̂π1

(s, a). Another way of looking at this is that the
environment is responsible for the reward r and transition into the next state s′. This is
external to the agent and the agent’s policy, so Qπ

tar:DQN(s, a) is still independent of the
policy used to gather experiences.
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If Qπ
tar:DQN(s, a) does not depend on the policy used to gather the data, then what

policy does it correspond to? It is the optimal policy as defined by Sutton and Barto [132]:

A policy π′ is defined to be better than or equal to a policy π if its expected
return is greater than or equal to that of π for all states. In other words, π′ ≥ π
if and only if V π′

(s) ≥ V π(s) for all s ∈ S. There is always at least one policy
that is better than or equal to all other policies. This is an optimal policy, π∗.

The optimal Q-function is defined as taking action a in state s and afterwards following
the optimal policy π∗. This is shown in Equation 4.5.

Q∗(s, a) = max
π

Qπ(s, a) = Qπ∗
(s, a) (4.5)

Let’s reconsider Qπ
tar:DQN(s, a) in light of Equation 4.5. If the estimates for Qπ were

correct, then selecting the action which maximizes Qπ(s′, a′) would be optimal. It is
the best an agent could possibly do. This implies that the policy that Qπ

tar:DQN(s, a)
corresponds to is the optimal policy π∗.

It is important to note that just because DQN’s objective is to learn the optimal
Q-function doesn’t mean it will. There may be many reasons for this. For example, the
hypothesis space represented by the neural network may not actually contain the optimal
Q-function; nonconvex optimization methods are imperfect and might not find a global
minimum; and computation and time constraints place a limit on how long we can train
an agent. However, we can say that the upper bound on performance with DQN is
optimal, compared to a potentially suboptimal upper bound for SARSA resulting from
learning the Q-function under an ε-greedy policy.

4.2 Action Selection in DQN
Even though DQN is an off-policy algorithm, how a DQN agent gathers experiences still
matters. There are two important factors to consider.

First, an agent still faces the exploration-exploitation tradeoff discussed in Chapter 3.
An agent should rapidly explore the state-action space at the beginning of training to
increase the chances of discovering good ways to act in an environment. As training
progresses and the agent learns more, it should gradually decrease the rate of exploration
and spend more time exploiting what it has learned. This improves the efficiency of
training as the agent focuses on better actions.

Second, if the state-action space is very large because it consists of continuous values or
is discrete with high dimensionality,1 then it will be intractable to experience all (s, a)
pairs, even once. In this case, Q-values for the unvisited (s, a) pairs may be no better than
random guessing.

1. For example, the state space might be described via digital representations of images. Pixels values are typically
discrete, such as between 0 and 255 for a grayscale image, but a single image can have thousands or millions of
such pixels.
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Fortunately, function approximation with neural networks mitigates this problem
because they are able generalize from visited (s, a) pairs to similar2 states and actions, as
discussed in Box 4.1. However, this does not completely solve the problem. There may
still be parts of the state-action space that are far away and very different to the states and
actions an agent has experienced. A neural network is unlikely to generalize well in these
cases and the estimated Q-values may be inaccurate.

Box 4.1 Generalization and Neural Networks

An important property of function-approximation methods is how well they
generalize to unseen inputs. For example, how good is a Q-function estimate for
unvisited (s, a) pairs? Linear (e.g., linear regression) and nonlinear (e.g., neural
networks) function approximation methods are both capable of some
generalization, whereas tabular methods are not.

Let’s consider a tabular representation for Q̂π(s, a). Suppose the state-action
space is very large, with millions of (s, a) pairs, and at the beginning of training
each cell representing a particular Q̂π(s, a) is initialized to 0. During training, an
agent visits (s, a) pairs and the table is updated, but the unvisited (s, a) pairs
continue to have Q̂π(s, a) = 0. Since the state-action space is large, many (s, a)
pairs will remain unvisited and their Q-value estimates will remain at 0 even if
(s, a) is desirable, with Qπ(s, a)� 0. The main issue is that a tabular function
representation does not learn anything about how different states and actions relate
to each other.

In contrast, neural networks can extrapolate from Q-values for known (s, a) to
unknown (s′, a′) because they learn how different states and actions are related
to each other. This is very useful when (s, a) is large or has infinitely many
elements because it means an agent does not have to visit all (s, a) to learn a good
estimate of the Q-function. An agent only needs to visit a representative subset of
the state-action space.

There are limitations to how well a network will generalize, and there are two
common cases where it often fails. First, if a network receives inputs that are
significantly different to the inputs it has been trained on, it is unlikely to produce
good outputs. Generalization is typically much better in small neighborhoods
of the input space surrounding the training data. Second, neural networks are
likely to generalize poorly if the function they are approximating has sharp
discontinuities. This is because neural networks implicitly assume that the input

2. There are many ways to define what a similar state or action means; this is a large topic in its own right. A
simple measure of similarity is the L2 distance. The smaller the distance, the more similar two states or actions are.
However, for high-dimensional states such as images, the L2 distance in pixel space may not capture important
similarities—for example, similar game states may look visually different. Other approaches try to deal with this
problem, for instance, by first learning a lower-dimensional representation of states and then measuring the
L2 distance between state representations.
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space is locally smooth. If the inputs x and x′ are similar, then the corresponding
outputs y and y′ should also be similar.

Consider the example shown in Figure 4.1. It represents a one-dimensional
environment in which an agent can walk on a flat mountain top. The state is the
agent’s position on the x-axis, the action is the change in x per time step δx, and
the reward is shown on the y-axis. There is a cliff in this environment—a vertical
drop in the reward when the agent reaches state s = x = 1. “Falling off” the cliff
by moving from s = x = 0.99 to s′ = x′ = 1.0 will lead to a sharp drop in the
reward received even though s and s′ are close to each other. Moving the same
distance in other parts of the state space does not produce such a significant change
in reward.

Figure 4.1 Cliff environment with a discontinuous reward function

If an environment has a large state-action space, it is unlikely that an agent will be able
to learn good Q-value estimates for all parts of this space. It is still possible to achieve good
performance in such environments if an agent focuses learning on the states and actions
that a good policy is likely to visit often. When this strategy is combined with neural
networks, the Q-function approximation is likely to be good in local regions surrounding
the commonly visited parts of the state-action space.

The policy used by a DQN agent should therefore visit states and select actions that are
reasonably similar to those that would be visited by acting greedily with respect to the
agent’s current Q-function estimate, which is the current estimate of the optimal policy.
We say that the two policies should generate similar data distributions.
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In practice, this can be achieved by using the ε-greedy policy discussed in Chapter 3 or
the Boltzmann policy introduced in the next section. Using either of these policies helps
focus the agent on learning from data it would likely experience when using its estimate of
the optimal policy.3

4.2.1 The Boltzmann Policy
A greedy or an ε-greedy policy are not the only options available to a DQN or SARSA
agent. In this section we discuss a third option—the Boltzmann policy, named after the
Boltzmann probability distribution.

Good policies should strike a balance between exploring the state-action space and
exploiting knowledge learned by an agent.

ε-greedy policies balance exploration and exploitation by reducing the probability ε of
taking random actions as training progresses. Such a policy explores more at the start of
training, and exploits more over time. One problem with this is that the exploration
strategy is naive. Agents explore randomly and do not use any previously learned
knowledge about the environment.

The Boltzmann policy tries to improve over random exploration by selecting actions
using their relative Q-values. The Q-value-maximizing action a in state s will be selected
most often, but other actions with relatively high Q-values will also have a high probability
of being chosen. Conversely, actions with very low Q-values will hardly ever be taken.
This has the effect of focusing exploration on more promising actions off the
Q-value-maximizing path instead of selecting all actions with equal probability.

To produce a Boltzmann policy, we construct a probability distribution over the
Q-values for all actions a in state s by applying the softmax function (Equation 4.6). The
softmax function is parameterized by a temperature parameter τ ∈ (0,∞), which controls
how uniform or concentrated the resulting probability distribution is. High values of τ
push the distribution to become more uniform, low values of τ make it more
concentrated. Actions are then sampled according to this distribution, as shown in
Equation 4.7.

psoftmax(a | s) =
eQ

π(s,a)∑
a′

eQπ(s,a′)
(4.6)

pboltzmann(a | s) =
eQ

π(s,a)/τ∑
a′

eQπ(s,a′)/τ
(4.7)

The role of the temperature parameter τ in the Boltzmann policy is analogous to that
of ε in the ε-greedy policy. It encourages exploration of the state-action space. To see why,
let’s look at the examples shown in Equation 4.8.

3. The challenges of learning a Q-function for a large state-action space also apply to SARSA. However, since
SARSA is on-policy, learning is automatically focused on the area of the state-action space that is frequently
visited by the policy.
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Softmax: x : [1, 2]→ p(x) : [0.27, 0.73]

Boltzmann, τ = 5: x : [1, 2]→ p(x) : [0.45, 0.55]

Boltzmann, τ = 2: x : [1, 2]→ p(x) : [0.38, 0.62]

Boltzmann, τ = 0.5: x : [1, 2]→ p(x) : [0.12, 0.88]

Boltzmann, τ = 0.1: x : [1, 2]→ p(x) : [0.00, 1.00]

(4.8)

High values of τ (e.g., τ = 5) move the probability distribution closer to a uniform
distribution. This results in an agent acting very randomly. Low values of τ (e.g., 0.1)
increase the probability of the action corresponding to the largest Q-value, so the agent
will act more greedily. τ = 1 reduces to the softmax function. Adjusting the value of τ
during training balances exploration and exploitation: high values of τ at the beginning of
training will encourage exploration; as τ is decreased over time, the policy will approach
the greedy policy.

The main advantage of the Boltzmann policy when compared to the ε-greedy policy is
that it explores the environment less randomly. Each time an agent selects an action, it
samples a from the probability distribution over the actions generated by the Boltzmann
policy. Instead of acting randomly with probability ε, the agent selects action a with
probability pboltzmann(a | s), so actions with higher Q-values are more likely to be chosen.
Even if an agent does not select the Q-maximizing action, it is more likely to select the
second than the third or fourth best action as measured by Q̂π(s, a).

A Boltzmann policy also results in a smoother relationship between Q-value estimates
and action probabilities compared to an ε-greedy policy. Consider the example shown in
Table 4.1. There are two available actions, a1 and a2, in state s. Table 4.1 compares the
probability of selecting a1 and a2 in state s under the ε-greedy and Boltzmann policies as
we vary Qπ(s, a1) and Qπ(s, a2). In this example, τ = 1 and ε = 0.1.

Table 4.1 Action probabilities: this table compares the probabilities of selecting a1 and a2
in s when using an ε-greedy and a Boltzmann policy asQπ(s, a) is varied, with τ = 1 and
ε = 0.1.

Qπ(s, a1) Qπ(s, a2) pε(a1 | s) pε(a2 | s) pB(a1 | s) pB(a2 | s)
1.00 9.00 0.05 0.95 0.00 1.00

4.00 6.00 0.05 0.95 0.12 0.88

4.90 5.10 0.05 0.95 0.45 0.55

5.05 4.95 0.95 0.05 0.53 0.48

7.00 3.00 0.95 0.05 0.98 0.02

8.00 2.00 0.95 0.05 1.00 0.00

The two leftmost columns show the Q-values for a1 and a2. When these values are
very different—for example, when Qπ(s, a1) = 1 and Qπ(s, a2) = 9—both policies
assign low probability to a1. However, when these values are similar—for example, when
Qπ(s, a1) = 5.05 and Qπ(s, a2) = 4.95—the ε-greedy policy assigns most of the
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probability to a2 since it corresponds to the maximum Q-value. In contrast, the Boltzmann
policy assigns almost equal probability to both actions, p(a1) = 0.53 and p(a2) = 0.48.

Intuitively, this seems better than the ε-greedy policy. Actions a1 and a2 are
approximately equivalent to take in s because they have very similar Q-values, so they
should be selected with roughly equal probability. This is what the Boltzmann policy does.
ε-greedy policies lead to more extreme behavior. If one of the Q-values is a fraction
higher than the other, an ε-greedy policy will assign all of the nonrandom probability
(1− ε) to that action. If in the next iteration the other Q-value becomes slightly higher,
ε-greedy will immediately switch and assign all of the nonrandom probability to the other
action. An ε-greedy policy can therefore be more unstable than a Boltzmann policy, which
can make it more difficult for an agent to learn.

A Boltzmann policy can cause an agent to get stuck in a local minimum if the
Q-function estimate is inaccurate for some parts of the state space. Consider again two
actions, a1 and a2, available in s. Let Q∗(s, a1) = 2 and Q∗(s, a2) = 10, and suppose the
current estimate is Q̂π(s, a1) = 2.5 and Q̂π(s, a2) = −3. The optimal action is a2, but
the Boltzmann policy will have an extremely low probability of selecting a2 (< 0.5% if
τ = 1). This leaves very few opportunities for the agent to try a2 and discover that it is
better. The agent is likely to remain stuck taking a1 in s. In contrast, an ε-greedy policy
will select a2 with probability p = ε/2 regardless of the Q-value estimates. This makes it
more likely that the Q-value estimate will be corrected over time.

One way to tackle this problem with the Boltzmann policy is to use a large value of τ at
the beginning of training so that the action probability distribution is more uniform. As
training progresses and the agent learns more, τ can be decayed, allowing the agent to
exploit what it has learned. However, care must be taken not to decay τ too quickly,
otherwise a policy may get stuck in a local minimum.

4.3 Experience Replay
In this section we discuss how DQN improves on the sample efficiency of SARSA by
using an experience replay memory [82]. Let’s first look at two things that make on-policy
algorithms sample-inefficient.

First, we have seen that on-policy algorithms can only use data gathered by the current
policy to update the policy parameters. Each experience is used just once. This is
problematic when combined with function approximation methods which learn using
gradient descent, such as neural networks. Each parameter update must be small, because
the gradient only conveys meaningful information about a descent direction in a small area
around the current parameter values. However, the optimal parameter update for some
experiences may be large—for example, if there is a large difference between the Q-value
a network predicts, Q̂π(s, a1) and Qπ(s, a1). In these cases, a network’s parameters may
need to be updated many times, using the experiences, to make use of all of the
information conveyed in them. On-policy algorithms cannot do this.
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Second, the experiences used to train on-policy algorithms are highly correlated.
This is because the data used to compute a single parameter update is often from a single
episode, whereas future states and rewards depend on previous states and actions.4 This can
lead to high variance in parameter updates.

Off-policy algorithms such as DQN do not have to discard experiences once they have
been used. Long-Ji Lin [82] first made this observation in 1992 and proposed an
augmentation to Q-learning called experience replay. He observed that TD learning could
be slow due to the trial-and-error mechanism for gathering data inherent in RL and the
need to propagate information backwards through time. Speeding up TD learning
amounts to either speeding up the credit assignment process or shortening the
trial-and-error process [82]. Experience replay focuses on the latter by facilitating the reuse
of experiences.

An experience replay memory stores the k most recent experiences an agent has
gathered. If memory is full, the oldest experience is discarded to make space for the
latest one. Each time an agent trains, one or more batches of data are sampled
random-uniformly from the experience replay memory. Each of these batches is used in
turn to update the parameters of the Q-function network. k is typically quite large,
between 10,000 and 1,000,000, whereas the number of elements in a batch is much
smaller, typically between 32 and 2048.

The size of the memory should be large enough to contain many episodes of
experiences. Each batch will typically contain experiences from different episodes and
different policies, which decorrelates the experiences used to train an agent. In turn, this
reduces the variance of the parameter updates, helping to stabilize training. However, the
memory should also be small enough so that each experience is likely to be sampled more
than once before being discarded, which makes learning more efficient.

Discarding the oldest experiences is also important. As an agent learns, the distribution
of (s, a) pairs that an agent experiences changes. Older experiences become less useful
because an agent is less likely to visit the older states. With finite time and computational
resources, it is preferable for an agent to focus on learning from the more recently
gathered experiences, since these tend to be more relevant. Storing just the k most
recent experiences in the memory implements this idea.

4.4 DQN Algorithm
Having introduced all of the components of DQN, we now describe the algorithm. The
pseudocode for DQN with a Boltzmann policy is given in Algorithm 4.1. The Q-function
estimate Q̂π(s, a) is parameterized by a network with parameters θ, denoted Qπθ , so we
have Q̂π(s, a) = Qπθ (s, a).

4. It is possible to collect multiple episodes of data. However, this delays learning and the experiences within each
episode are still highly correlated.
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Algorithm 4.1 DQN

1: Initialize learning rate α
2: Initialize τ
3: Initialize number of batches per training step, B
4: Initialize number of updates per batch, U
5: Initialize batch size N
6: Initialize experience replay memory with max size K
7: Randomly initialize the network parameters θ
8: for m = 1 . . .MAX_STEPS do
9: Gather and store h experiences (si, ai, ri, s′i) using the current policy

10: for b = 1 . . . B do
11: Sample a batch b of experiences from the experience replay memory
12: for u = 1 . . . U do
13: for i = 1 . . . N do
14: # Calculate target Q-values for each example
15: yi = ri + δs′iγ max

a′
i

Qπθ (s′i, a
′
i) where δs′i = 0 if s′i is terminal,

↪→ 1 otherwise
16: end for
17: # Calculate the loss, for example using MSE
18: L(θ) = 1

N

∑
i(yi −Qπθ (si, ai))

2

19: # Update the network’s parameters
20: θ = θ − α∇θL(θ)
21: end for
22: end for
23: Decay τ
24: end for

We start by gathering and storing some data (line 9) using the Boltzmann policy with
Q-values generating using the current Qπθ . Note that we could also use an ε-greedy
policy. To train an agent, sample B batches of experiences from the experience replay
memory (lines 10–11). For each batch of data, complete U parameter updates as follows.
First, we calculate the target Q-values for each element in the batch (line 15). Notice that
this calculation involves selecting the Q-value-maximizing action in the next state s′. This
is one reason why DQN is only applicable to environments with discrete action spaces.
When the action space is discrete, this calculation is straightforward—we simply calculate
the Q-values for all the actions and select the maximum. However, when the action
space is continuous, there are infinitely many possible actions—we cannot calculate
the Q-value for every action. The other reason is the same as we saw for SARSA: the
Q-value-maximizing action is required for the ε-greedy policy.

Then, we calculate the loss (line 18). Finally, calculate the gradient of the loss and
update the network parameters θ (line 20). After a full training step has been completed
(lines 10–22), update τ (line 23).



ptg33646662

4.5 Implementing DQN 91

Algorithm 4.1 demonstrates two practical consequences of DQN being an off-policy
algorithm. First, in each training iteration we can use more than one batch of experiences
to update the Q-function estimate. Second, the agent is not limited to one parameter
update per batch. If desired, the Q-function approximator can be trained to convergence
for each batch. These steps increase the computational burden per training iteration when
compared to SARSA, but they can also make learning significantly faster. There is a
tradeoff between learning more from the experiences the agent has currently gathered and
using the improved Q-function to gather better experiences to learn from. The number of
parameter updates per batch, U , and the number of batches per training step, B, reflect
this tradeoff. Good values for these parameters depend on the problem and computational
resources available; however, 1 to 5 batches and parameter updates per batch are common.

4.5 Implementing DQN
DQN can be understood as a modification to the SARSA algorithm. In this section, we
will see how DQN can be implemented as an extension to the SARSA class in SLM Lab.

VanillaDQN extends SARSA and reuses most of its methods. Since the Q-function
estimate in DQN is different, we need to override calc_q_loss. train also needs to be
changed to reflect the additional choices of the number of batches and parameter updates
per batch. Finally, we need to implement experience replay. This is handled through a new
Memory class, Replay.

4.5.1 Calculating the Q-Loss
DQN’s calc_q_loss method is shown in Code 4.1. Its form is very similar to SARSA’s.

First, Q̂π(s, a) is calculated for all the actions for each state s in the batch (line 9). We
repeat the same step for the next state s′ but without tracking the gradient (lines 10–11).

Then, we select the Q-value estimate for the action a taken by the agent in the current
state s for each experience in the batch (line 12). Line 13 selects the maximum Q-value
estimate for each of the next states and this is used to calculate Qπ

tar:DQN(s, a) (line 14).
Finally, we calculate the loss using Q̂π(s, a) and Qπ

tar:DQN(s, a) (act_q_preds and
max_q_targets, respectively).

Code 4.1 DQN implementation: calculatingQ-targets and the corresponding loss

1 # slm_lab/agent/algorithms/dqn.py

2

3 class VanillaDQN(SARSA):

4 ...

5

6 def calc_q_loss(self, batch):

7 states = batch['states']

8 next_states = batch['next_states']
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9 q_preds = self.net(states)

10 with torch.no_grad():

11 next_q_preds = self.net(next_states)

12 act_q_preds = q_preds.gather(-1,

batch['actions'].long().unsqueeze(-1)).squeeze(-1)↪→

13 max_next_q_preds, _ = next_q_preds.max(dim=-1, keepdim=False)

14 max_q_targets = batch['rewards'] + self.gamma * (1 - batch['dones']) *

max_next_q_preds↪→

15 q_loss = self.net.loss_fn(act_q_preds, max_q_targets)

16 ...

17 return q_loss

4.5.2 DQN Training Loop
The training loop in Code 4.2 proceeds as follows:

1. At each time step, train is called and the agent checks if it is ready to train (line 10).
The self.to_train flag is set by the memory class.

2. If it is time to train, the agent samples self.training_iter batches from memory
(line 12) by calling self.sample() (line 13).

3. Each batch is used to make self.training_batch_iter parameter updates
(lines 15–18). Each parameter update proceeds as follows.

4. Calculate the Q-loss for the batch (line 16).

5. Use the Q-loss to make a single update of the value network parameters (line 17).
With the loss defined, PyTorch conveniently handles the parameter update using
automatic differentiation.

6. Accumulate the loss (line 18).

7. After all of the parameter updates have been completed, compute the average loss for
logging (line 19).

8. Reset self.to_train to 0 to ensure that the agent is not trained until it is ready
again (line 20).

Code 4.2 DQN implementation: training method

1 # slm_lab/agent/algorithms/dqn.py

2

3 class VanillaDQN(SARSA):

4 ...

5

6 @lab_api
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7 def train(self):

8 ...

9 clock = self.body.env.clock

10 if self.to_train == 1:

11 total_loss = torch.tensor(0.0)

12 for _ in range(self.training_iter):

13 batch = self.sample()

14 ...

15 for _ in range(self.training_batch_iter):

16 loss = self.calc_q_loss(batch)

17 self.net.train_step(loss, self.optim, self.lr_scheduler,

clock=clock, global_net=self.global_net)↪→

18 total_loss += loss

19 loss = total_loss / (self.training_iter *

self.training_batch_iter)↪→

20 self.to_train = 0

21 return loss.item()

22 else:

23 return np.nan

4.5.3 Replay Memory
This section looks at the Replay memory class which implements experience replay. This
section can be skipped on a first reading without loss of understanding of the DQN
algorithm. It is sufficient to understand the main ideas behind experience replay discussed
in Section 4.3.

Replay memory conforms to the Memory API in SLM Lab, and has three core
methods—memory reset, adding an experience, and sampling a batch.

Replay Memory Initialization and Reset __init__ in Code 4.3 initializes the
class variables, including the storage keys in line 20. In Replay memory, we need to keep
track of the current size of the memory (self.size) and the location of the most recent
experience (self.head). It then calls reset to construct empty data structures.

reset is used to create the data structures. In Replay memory all the experience data is
stored in lists. Unlike OnPolicyReplay from Section 2.6.6, this is only called once when
the memory is initialized. The memory is retained across training steps so that experiences
can be reused.

Code 4.3 Replay: init and reset

1 # slm_lab/agent/memory/replay.py

2

3 class Replay(Memory):
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4 ...

5

6 def __init__(self, memory_spec, body):

7 super().__init__(memory_spec, body)

8 util.set_attr(self, self.memory_spec, [

9 'batch_size',

10 'max_size',

11 'use_cer',

12 ])

13 self.is_episodic = False

14 self.batch_idxs = None

15 self.size = 0 # total experiences stored

16 self.seen_size = 0 # total experiences seen cumulatively

17 self.head = -1 # index of most recent experience

18 self.ns_idx_offset = self.body.env.num_envs if body.env.is_venv else 1

19 self.ns_buffer = deque(maxlen=self.ns_idx_offset)

20 self.data_keys = ['states', 'actions', 'rewards', 'next_states',

'dones']↪→

21 self.reset()

22

23 def reset(self):

24 for k in self.data_keys:

25 if k != 'next_states': # reuse self.states

26 setattr(self, k, [None] * self.max_size)

27 self.size = 0

28 self.head = -1

29 self.ns_buffer.clear()

Replay Memory Update add_experience in Replay memory (Code 4.4) behaves
differently from the on-policy memory classes.

To add an experience, increment self.head, the index of the most recent experience,
wrapping around back to 0 if the index is incremented out of bounds (line 13). If the
memory is not full, it will point to a blank slot in the memory. If it is full, it will point to
the oldest experience, which will be replaced. This way, Replay stores the self.max_size

most recent experiences. Next, the experience is added to memory (lines 14–18) by
setting the values of the elements in the storage lists indexed by self.head to the elements
of the current experience. Lines 20–22 track the actual size of the memory and the
total number of experiences gathered by the agent, and lines 23–24 set the training flag,
algorithm.to_train.
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Code 4.4 Replay: add experience

1 # slm_lab/agent/memory/replay.py

2

3 class Replay(Memory):

4 ...

5

6 @lab_api

7 def update(self, state, action, reward, next_state, done):

8 ...

9 self.add_experience(state, action, reward, next_state, done)

10

11 def add_experience(self, state, action, reward, next_state, done):

12 # Move head pointer. Wrap around if necessary

13 self.head = (self.head + 1) % self.max_size

14 self.states[self.head] = state.astype(np.float16)

15 self.actions[self.head] = action

16 self.rewards[self.head] = reward

17 self.ns_buffer.append(next_state.astype(np.float16))

18 self.dones[self.head] = done

19 # Actually occupied size of memory

20 if self.size < self.max_size:

21 self.size += 1

22 self.seen_size += 1

23 algorithm = self.body.agent.algorithm

24 algorithm.to_train = algorithm.to_train or (self.seen_size >

algorithm.training_start_step and self.head %

algorithm.training_frequency == 0)

↪→

↪→

Replay Memory Sample Sampling a batch involves sampling a set of valid indices
and using these indices to extract the relevant examples from each of the memory storage
lists to build a batch (see Code 4.5). First, batch_size indices are selected by calling the
sample_idxs function (line 8). The indices are sampled random-uniformly with
replacement from a list of indices ∈ {0, . . . , self.size} (line 18). If self.size ==

self.max_size, the memory is full, and this corresponds to sampling indices from the
entire memory store. The batch is then assembled using these indices (lines 9–14).

One further detail regarding sampling is worth mentioning. To save space in memory
(RAM), the next states are not explicitly stored. They already exist in the state buffer,
with the exception of the very latest next state. Consequently, assembling the batch of
next states is a little more involved and is handled by the sample_next_states function
called in line 12. Interested readers can look at the implementation in SLM Lab at
slm_lab/agent/memory/replay.py.
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Code 4.5 Replay: sample

1 # slm_lab/agent/memory/replay.py

2

3 class Replay(Memory):

4 ...

5

6 @lab_api

7 def sample(self):

8 self.batch_idxs = self.sample_idxs(self.batch_size)

9 batch = {}

10 for k in self.data_keys:

11 if k == 'next_states':

12 batch[k] = sample_next_states(self.head, self.max_size,

self.ns_idx_offset, self.batch_idxs, self.states,

self.ns_buffer)

↪→

↪→

13 else:

14 batch[k] = util.batch_get(getattr(self, k), self.batch_idxs)

15 return batch

16

17 def sample_idxs(self, batch_size):

18 batch_idxs = np.random.randint(self.size, size=batch_size)

19 ...

20 return batch_idxs

4.6 Training a DQN Agent
Code 4.6 is an example spec file which trains a DQN agent. The file is available in SLM
Lab at slm_lab/spec/benchmark/dqn/dqn_cartpole.json.

Code 4.6 A DQN spec file

1 # slm_lab/spec/benchmark/dqn/dqn_cartpole.json

2

3 {

4 "vanilla_dqn_boltzmann_cartpole": {

5 "agent": [{

6 "name": "VanillaDQN",

7 "algorithm": {

8 "name": "VanillaDQN",

9 "action_pdtype": "Categorical",

10 "action_policy": "boltzmann",

11 "explore_var_spec": {

12 "name": "linear_decay",
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13 "start_val": 5.0,

14 "end_val": 0.5,

15 "start_step": 0,

16 "end_step": 4000,

17 },

18 "gamma": 0.99,

19 "training_batch_iter": 8,

20 "training_iter": 4,

21 "training_frequency": 4,

22 "training_start_step": 32

23 },

24 "memory": {

25 "name": "Replay",

26 "batch_size": 32,

27 "max_size": 10000,

28 "use_cer": false

29 },

30 "net": {

31 "type": "MLPNet",

32 "hid_layers": [64],

33 "hid_layers_activation": "selu",

34 "clip_grad_val": 0.5,

35 "loss_spec": {

36 "name": "MSELoss"

37 },

38 "optim_spec": {

39 "name": "Adam",

40 "lr": 0.01

41 },

42 "lr_scheduler_spec": {

43 "name": "LinearToZero",

44 "frame": 10000

45 },

46 "gpu": false

47 }

48 }],

49 "env": [{

50 "name": "CartPole-v0",

51 "max_t": null,

52 "max_frame": 10000

53 }],

54 "body": {

55 "product": "outer",

56 "num": 1
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57 },

58 "meta": {

59 "distributed": false,

60 "eval_frequency": 500,

61 "max_session": 4,

62 "max_trial": 1

63 },

64 ...

65 }

66 }

As with SARSA, there are several components. All line numbers refer to Code 4.6.

. Algorithm: The algorithm is "VanillaDQN" (line 8), to distinguish from "DQN" with
target network from Chapter 5. The action policy is the Boltzmann policy
(lines 9–10) with linear decay (lines 11–17) of the temperature parameter τ known
as exploration variable explore_var (line 11). γ is set on line 18.

. Network architecture: Multilayer perceptron with one hidden layer of 64 units
(line 32) and SeLU activation functions (line 33).

. Optimizer: The optimizer is Adam [68] with a learning rate of 0.01 (lines 38–41).
The learning rate is specified to decay linearly to zero over the course of training
(lines 42–45).

. Training frequency: Training starts after the agent has made 32 steps in the
environment (line 22) and occurs every 4 steps from then on (line 21). At each
training step, 4 batches are sampled from the Replay memory (line 20) and used to
make 8 parameter updates (line 19). Each batch has 32 elements (line 26).

. Memory: A maximum of 10,000 most recent experiences are stored in the Replay

memory (line 27).

. Environment: The environment is OpenAI Gym’s CartPole [18] (line 50).

. Training length: Training consists of 10,000 time steps (line 52).

. Checkpointing: The agent is evaluated every 500 time steps (line 60).

When training with Boltzmann policies, it is important to set action_pdtype to
Categorical so that the agent samples actions from the categorical probability distribution
generated by the Boltzmann action policy. This is different to ε-greedy policies which
have an argmax “distribution.” That is, the agent will select the action with the maximum
Q-value with probability 1.0.

Notice also that the maximum value for τ in the Boltzmann policy (line 14) is not
constrained to 1 as it is for ε-greedy policies. The exploration variable in this case, τ , does
not represent a probability but a temperature, so it can take any positive value. However, it
should never be zero, as this will lead to division-by-0 numerical errors.

To train this DQN agent using SLM Lab, run the commands shown in Code 4.7 in a
terminal.
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Code 4.7 Training a DQN agent to play CartPole

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/dqn/dqn_cartpole.json

vanilla_dqn_boltzmann_cartpole train↪→

This will use the spec file to run a training Trial with four Sessions to obtain an
average result and plot the trial graphs shown in Figure 4.2.

(a) Trial graph (b) Trial graph with moving average

Figure 4.2 DQN trial graphs from SLM Lab averaged over four sessions. The vertical axis

shows the total rewards (mean_return for evaluation is computed without discount) averaged over

eight episodes during checkpoints, and the horizontal axis shows the total training frames. The

graph on the right is a moving average with a window of 100 evaluation checkpoints.

4.7 Experimental Results
This section will look at how changing the neural network architecture affects the
performance of DQN on CartPole. We will use the experimentation feature of SLM Lab
to perform a grid search over network architecture parameters.

4.7.1 Experiment: The Effect of Network Architecture
The architecture of neural networks affects their capability to approximate functions. In
this experiment, we will perform a simple grid search over a number of hidden layer
configurations, then plot and compare their performance. The experiment spec file,
extended from Code 4.6, is shown in Code 4.8. Lines 8–15 specify a grid search over the
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architecture of the Q-network’s hidden layers net.hid_layers. The full spec file is
available in SLM Lab at slm_lab/spec/benchmark/dqn/dqn_cartpole.json.

Code 4.8 DQN spec file with search spec over different network architectures

1 # slm_lab/spec/benchmark/dqn/dqn_cartpole.json

2

3 {

4 "vanilla_dqn_boltzmann_cartpole": {

5 ...

6 "search": {

7 "agent": [{

8 "net": {

9 "hid_layers__grid_search": [

10 [32],

11 [64],

12 [32, 16],

13 [64, 32]

14 ]

15 }

16 }]

17 }

18 }

19 }

Code 4.9 shows the command to run this experiment. Note that we are using the same
spec file as training, but now we replace the mode train with search.

Code 4.9 Run an experiment to search over different network architectures as defined in the

spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/dqn/dqn_cartpole.json

vanilla_dqn_boltzmann_cartpole search↪→

This will run an Experiment which spawns four Trials by substituting different values
of net.hid_layers into the original spec of DQN with a Boltzmann policy. Each Trial

runs four repeated Sessions to obtain an average. Figure 4.3 shows the multitrial graphs
plotted from this experiment.

Figure 4.3 shows that networks with two hidden layers (trials 2 and 3) perform better
than networks with a single layer (trials 0 and 1) thanks to their increased learning capacity.
When the number of layers is the same, networks with fewer units (trials 0 and 2),
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(a) Multitrial graph (b) Multitrial with moving average

Figure 4.3 The effect of different network architectures. Networks with two hidden layers and

therefore a greater learning capacity perform slightly better than networks with

a single hidden layer.

provided they have sufficient learning capacity, learn slightly faster because there are fewer
parameters to tune. Neural network architecture design is the subject of Chapter 12.

We can see from the training trial and experiment that the plain DQN algorithm can
be unstable and not too performant, as seen from the large error envelopes in the learning
curves and the total rewards of less than 200 for CartPole. In the next chapter, we will look
at methods to improve DQN and make it powerful enough to solve Atari problems.

4.8 Summary
This chapter introduced the DQN algorithm. We saw that DQN is very similar to
SARSA, with one critical difference. DQN uses the maximum Q-value in the next state
to calculate Q-target values. As a result, DQN learns the optimal Q-function instead of the
Q-function corresponding to the current policy. This makes DQN an off-policy algorithm
in which the learned Q-function is independent of the experience-gathering policy.

Consequently, a DQN agent can reuse experiences gathered previously that are stored
in an experience replay memory. At each training iteration, one or more batches are
randomly sampled for learning the Q-function. Additionally, this also helps to decorrelate
the experiences used during training. The combination of data-reuse and decorrelation
significantly improves the sample efficiency of DQN when compared with SARSA.

We saw that the experience gathering policy in DQN should have two
characteristics—it should facilitate exploration of the state space and approximate the
optimal policy over time. ε-greedy is one such policy, but this chapter also introduced an
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alternative known as the Boltzmann policy. The two main advantages of this policy are
that it explores the state-action space less randomly than ε-greedy policy and that it
samples actions from a probability distribution that varies smoothly with Q-values.

4.9 Further Reading
. Playing Atari with Deep Reinforcement Learning, Mnih et al., 2013 [88].

. “Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and
Teaching,” Lin, 1992 [82].

. Chapters 6 and 7, Reinforcement Learning: An Introduction, Second Edition, Sutton and
Barto, 2018 [132].

. “Sep 13: Value functions introduction, Lecture 6,”CS 294: Deep Reinforcement
Learning, Fall 2017, Levine [76].

. “Sep 18: Advanced Q-learning algorithms, Lecture 7,”CS 294: Deep Reinforcement
Learning, Fall 2017, Levine [77].

4.10 History
The Q-learning component of DQN was invented in 1989 by Christopher Watkins in his
PhD thesis titled “Learning from Delayed Rewards” [145]. Experience replay quickly
followed, invented by Long-Ji Lin in 1992 [82]. This played a major role in improving the
efficiency of Q-learning. In the years that followed, however, there were no major success
stories involving deep Q-learning. This is perhaps not surprising given the combination of
limited computational power in the 1990s and early 2000s, data-hungry deep learning
architectures, and the sparse, noisy, and delayed feedback signals experienced in RL.
Progress had to wait for the emergence of general-purpose GPU programming, for
example with the launch of CUDA in 2006 [96], and the reignition of interest in deep
learning within the machine learning community that began in the mid-2000s and rapidly
accelerated after 2012.

2013 saw a major breakthrough with the paper from DeepMind, “Playing Atari with
Deep Reinforcement Learning” [88]. The authors coined the term DQN or “Deep
Q-Networks” and demonstrated the first example of learning a control policy directly
from high-dimensional image data using RL. Improvements quickly followed; Double
DQN [141] and Prioritized Experience Replay [121] were both developed in 2015.
However, the fundamental breakthrough was the algorithm presented in this chapter
combined with a simple convolutional neural network, state processing, and GPU training.
See Chapter 5 for a more detailed discussion of the “Playing Atari with Deep
Reinforcement Learning” paper [88].
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Improving DQN

In this chapter, we will look at three modifications to the DQN algorithm—target
networks, Double DQN [141], and Prioritized Experience Replay [121]. Each
modification addresses a separate issue with DQN, so they can be combined to yield
significant performance improvements.

In Section 5.1 we discuss target networks which are lagged copies of Q̂π(s, a). The
target network is then used to generate the maximum Q-value in the next state s′ when
calculating Qπ

tar, in contrast to the DQN algorithm from Chapter 4 which used Q̂π(s, a)
when calculating Qπ

tar. This helps to stabilize training by reducing the speed at which Qπ
tar

changes.
Next, we discuss the Double DQN algorithm in Section 5.2. Double DQN uses two

Q-networks to calculate Qπ
tar. The first network selects the action which corresponds to

its estimate of maximum Q-value. The second network produces the Q-value for the
action selected by the first network. The value produced by the second network is used
in the Qπ

tar calculation. This modification addresses the fact that DQN systematically
overestimates the true Q-values, which may lead to slower training and weaker policies.

DQN can be further improved by changing how batches are sampled from experience
replay. Instead of sampling random-uniformly, experiences can be prioritized according to
how informative they currently are to an agent. Known as Prioritized Experience Replay,
experiences that an agent can learn more from are sampled more frequently than those an
agent can learn little from. This is discussed in Section 5.3.

Having introduced the main ideas behind each modification, in Section 4.5 we look at
an implementation which incorporates these changes.

The chapter ends by putting together all of the different elements discussed in
Chapters 4 and 5 and training a DQN agent to play the Atari games Pong and Breakout.
The implementations, network architecture, and hyperparameters are based on the
algorithms described in three papers: “Human-Level Control through Deep
Reinforcement Learning” [89], “Deep Reinforcement Learning with Double
Q-Learning” [141], and “Prioritized Experience Replay” [121].
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5.1 Target Networks
The first adjustment to the DQN algorithm is to use a target network to calculate Qπ

tar.
It was introduced by Mnih et al. in “Human-Level Control through Deep Reinforcement
Learning” [89] and helps to stabilize training. It motivated by the fact that in the original
DQN algorithm, Qπ

tar is constantly changing because it depends on Q̂π(s, a). During
training, the Q-network parameters θ are adjusted to minimize the difference between
Q̂π(s, a) = Qπθ (s, a) and Qπ

tar, but this is difficult when Qπ
tar changes at each training step.

To reduce the changes in Qπ
tar between training steps, we use a target network. A target

network is a second network with parameters ϕ which is a lagged copy of the Q-network
Qπθ (s, a). The target network Qπϕ(s, a) is used to calculate Qπ

tar, as shown in the
modified Bellman update shown in Equation 5.2. The original DQN update is shown in
Equation 5.1 for ease of comparison.

Qπθ
tar (s, a) = r + γ max

a′
Qπθ (s′, a′) (5.1)

Q
πϕ
tar (s, a) = r + γ max

a′
Qπϕ(s′, a′) (5.2)

Periodically, ϕ is updated to the current values for θ. This is known as a replacement
update. The update frequency for ϕ is problem-dependent. For example, in the Atari
games ϕ is updated every 1,000–10,000 environment steps. For simpler problems it may
not be necessary to wait so long; updating ϕ every 100–1,000 steps will be sufficient.

Why does this help to stabilize training? Every time Qπθ
tar (s, a) is calculated, the

Q-function represented by the parameters θ will be slightly different, so Qπθ
tar (s, a) may be

different for the same (s, a). It is possible that between one training step and the next,
Qπθ

tar (s, a) differs significantly from the previous estimate. This “moving target” can
destabilize training because it makes it much less clear what values a network should be
trying to approach. Introducing a target network literally stops the target from moving. In
between updating ϕ to θ, ϕ is fixed, so the Q-function represented by ϕ doesn’t change.
This transforms the problem into a standard supervised regression [77]. Whilst this does
not fundamentally change the underlying optimization problem, a target network helps
stabilize training and makes divergence or oscillation of the policy less likely [77, 89, 141].

The algorithm for DQN with a target network is given in Algorithm 5.1. The
differences when compared with the original DQN algorithm (Algorithm 4.1) are as
follows:

. The target update frequency F is an additional hyperparameter that needs to be
chosen (line 7).

. In line 8 we initialize an additional network as the target network and set its
parameters ϕ to θ.

. In line 17, yi is calculated using the target network Q
πϕ
tar .

. The target network is periodically updated (lines 26–29).
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Note that it is the network parameters θ that are used to calculate Qπθ (s, a) (line 20)
and are updated during training (line 22). This is the same as in the original DQN
algorithm.

Algorithm 5.1 DQN with a target network

1: Initialize learning rate α
2: Initialize τ
3: Initialize number of batches per training step, B
4: Initialize number of updates per batch, U
5: Initialize batch size N
6: Initialize experience replay memory with max size K
7: Initialize target network update frequency F
8: Randomly initialize the network parameters θ
9: Initialize the target network parameters ϕ = θ

10: for m = 1 . . .MAX_STEPS do
11: Gather and store h experiences (si, ai, ri, s′i) using the current policy
12: for b = 1 . . . B do
13: Sample a batch of experiences b from the experience replay memory
14: for u = 1 . . . U do
15: for i = 1 . . . N do
16: # Calculate target Q-values for each example
17: yi = ri + δs′iγ max

a′
i

Qπϕ(s′i, a
′
i) where δs′i = 0 if s′i is terminal,

↪→ 1 otherwise
18: end for
19: # Calculate the loss, for example using MSE
20: L(θ) = 1

N

∑
i(yi −Qπθ (si, ai))

2

21: # Update the network’s parameters
22: θ = θ − α∇θL(θ)
23: end for
24: end for
25: Decay τ
26: if (m mod F ) == 0 then
27: # Update the target network
28: ϕ = θ
29: end if
30: end for

Periodically replacing the target network parameters ϕ with a copy of the network
parameters θ is a common way to perform the update. Alternatively, at each time step, ϕ
can be set to a weighted average of ϕ and θ, as shown in Equation 5.4. This is known as a
Polyak update and can be thought of as a “soft update”: at each step, the parameters ϕ
and θ are mixed to produce a new target network. In contrast to a replacement update
(Equation 5.3), ϕ changes each time step, but more slowly than the training network θ.
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The hyperparameter β controls the speed at which ϕ changes by specifying how much of
the old target network ϕ is kept at each update. The larger β, the more slowly ϕ changes.

Replacement update: ϕ← θ (5.3)

Polyak update: ϕ← βϕ+ (1− β)θ (5.4)

Each approach has its advantages and neither one is clearly better than the other. The
main advantage of a replacement update is that ϕ is fixed for a number of steps, which
temporarily eliminates the “moving target.” In contrast, when using a Polyak update, ϕ still
changes each training iteration but more gradually than θ. However, a replacement update
has a dynamic lag between ϕ and θ which depends on the number of time steps since the
last update of ϕ; a Polyak update doesn’t have this quirk as the mix between ϕ and θ
remains constant.

One disadvantage of target networks is that they can slow down training, since
Qπ

tar(s, a) is generated from the older target network. If ϕ and θ are too close, then training
may be unstable, but if ϕ changes too slowly then training may be unnecessarily slow. The
hyperparameter which controls how fast ϕ changes (the update frequency or β) needs to be
tuned to find a good balance between stability and training speed. In Section 5.6 we show
the effect of varying the update frequency for a DQN agent trained to play Atari Pong.

5.2 Double DQN
The second adjustment to DQN is to use double estimation to calculate Qπ

tar(s, a). Known
as the Double DQN algorithm [140, 141], this modification addresses the problem of
overestimating Q-values. Let’s first look at why the original DQN algorithm overestimates
Q-values and why this is a problem, then describe how to address that using Double DQN.

In DQN, we construct Qπ
tar(s, a) by selecting the maximum Q-value estimate in state

s′ as shown in Equation 5.5.

Qπθ
tar (s, a) = r + γ max

a′
Qπθ (s′, a′)

= r + max
(
Qπθ (s′, a′1), Q

πθ (s′, a′2), . . . , Q
πθ (s′, a′n)

) (5.5)

Q-values are the expected future return from taking action a in state s, so calculating
max
a′

Qπθ (s′, a′) involves selecting the maximum from a set of expected values,

(Qπθ (s′, a′1), Q
πθ (s′, a′2), . . . , Q

πθ (s′, a′n)).
In the paper “Deep Reinforcement Learning with Double Q-Learning” [141], van

Hasselt et al. showed that if Qπθ (s′, a′) contain any errors, then max
a′

Qπθ (s′, a′) will be

positively biased and the resulting Q-values will be overestimated. Unfortunately, there are
many reasons why Qπθ (s′, a′) will not be exactly correct. Function approximation using
neural networks is not perfect, an agent may not fully explore the environment, and the
environment itself may be noisy. We should therefore expect Qπθ (s′, a′) to contain some
error, so the Q-values will be overestimated. Furthermore, the more actions are there to
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choose from in state s′, the greater the overestimation is likely to be. We show a concrete
example in Box 5.1.

Box 5.1 Estimating the Maximum Expected Value

Q-value overestimation is a specific instance of a more general and well-known
problem: the expected maximum value of a set of estimated values is positively
biased when the value estimates contain some noise [128]. In DQN, the maximum
expected value is E

[
max
a

Qπ(s, a)
]
and the noisy estimates are generated

from Qπθ .
As a way to build intuition for how this issue emerges, consider a state s in

which Qπ∗
(s, a) = 0 for all the available actions a and suppose that our Q-value

estimates are noisy but unbiased. This can be simulated by assuming that the
Q-values are drawn from a standard normal distribution with mean 0 and standard
deviation of 1.

The extent to which max
a′

Qπ(s′, a′) will be overestimated can be seen by

sampling k values from the standard normal distribution and selecting the
maximum. In this case, k represents the number of actions a′ in state s′. We repeat
this process many times and calculate the average of all of the maximum values to
estimate the expected maximum value for each k.

Table 5.1 shows the expected maximum value for k = 1 . . . 10, with 10,000
samples for each k. The correct value for max

a′
Qπ(s′, a′) = 0 and, when k = 1,

the estimation is correct in expectation. However, as k increases, the
estimation becomes more positively biased. For example, when k = 2,
E
[
max
a

Qπ(s, a)
]
= 0.56 and when k = 10, E

[
max
a

Qπ(s, a)
]
= 1.53.

Table 5.1 Expected value of max
a

Qπ(s, a) when the estimates forQπ(s, a) are

unbiased but noisy andQπ(s, a) = 0 for all a. This is a reproduction of Smith and
Winkler’s experiment from “The Optimizer’s Curse” [128].

Number of E[max
a

Qπ(s, a)] Number of E[max
a

Qπ(s, a)]

actions actions

1 0.00 6 1.27

2 0.56 7 1.34

3 0.86 8 1.43

4 1.03 9 1.48

5 1.16 10 1.53

It is not immediately obvious to what extent Q-value overestimation is a problem. For
example, if all of the Q-values were uniformly overestimated, then the agent would still
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select the correct action a in state s and we can expect no drop in performance.
Furthermore, overestimation in the face of uncertainty can be useful [61]. For example, at
the beginning of training it can be helpful to overestimate Qπ(s, a) for unvisited or rarely
visited (s, a) pairs because this increases the likelihood that these states will be visited,
allowing an agent to gain experience about how good or bad they are.

However, DQN overestimates Qπ(s, a) for the (s, a) pairs that have been visited often.
This becomes a problem if an agent does not explore (s, a) uniformly. Then the
overestimation of Qπ(s, a) will also be nonuniform and this may incorrectly change the
rank of actions as measured by Qπ(s, a). Under these circumstances, the a an agent thinks
is best in s is in fact not the best action to take. When overestimating Qπ(s, a) is
combined with bootstrapped learning (as in DQN), the incorrect relative Q-values will be
propagated backwards in time to earlier (s, a) pairs and add error to those estimates as
well. It is therefore beneficial to reduce the overestimation of Q-values.

The Double DQN algorithm reduces the overestimation of Q-values by learning two
Q-function estimates using different experiences. The Q-maximizing action a′ is selected
using the first estimate, and the Q-value that is used to calculate Qπ

tar(s, a) is generated by
the second estimate using the action a selected by the first estimate. The use of a second
Q-function trained with different experiences removes the positive bias in the estimation.

Modifying DQN into Double DQN is simple. The required change is made clearer by
rewriting Qπ

tar(s, a) as shown in Equation 5.6.

Qπ
tar:DQN(s, a) = r + γ max

a′
Qπθ (s′, a′)

= r + γQπθ
(
s′,max

a′
Qπθ (s′, a′)

) (5.6)

The DQN algorithm uses the same network θ to select action a′ and to evaluate the
Q-function for that action. Double DQN uses two different networks, θ and ϕ. θ is used
to select a′, and ϕ is used to calculate the Q-value for (s′, a′), as shown in Equation 5.7.

Qπ
tar:DoubleDQN(s, a)r + γQπϕ

(
s′,max

a′
Qπθ (s′, a′)

)
(5.7)

After introducing target networks in Section 5.1, we already have two networks: the
training network θ and the target network ϕ. These two networks have been trained with
overlapping experiences, but if the number of time steps between setting ϕ = θ is large
enough, then in practice they are sufficiently different to work as the two different
networks for Double DQN.

The training network θ is used to select the action. It is important to ensure that we are
still learning the optimal policy after introducing the Double DQN modification [141].
The target network ϕ is used to evaluate that action. Note that if there is no lag between ϕ
and θ—that is, if ϕ = θ, then Equation 5.7 reduces to the original DQN.

Double DQN with a target network is shown in Algorithm 5.2. In line 17, yi is
calculated using both networks θ and ϕ. This is the only difference when compared with
Algorithm 5.1.
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Algorithm 5.2 Double DQN with a target network

1: Initialize learning rate α
2: Initialize τ
3: Initialize number of batches per training step, B
4: Initialize number of updates per batch, U
5: Initialize batch size N
6: Initialize experience replay memory with max size K
7: Initialize target network update frequency F
8: Randomly initialize the network parameters θ
9: Initialize the target network parameters ϕ = θ

10: for m = 1 . . .MAX_STEPS do
11: Gather and store h experiences (si, ai, ri, s′i) using the current policy
12: for b = 1 . . . B do
13: Sample a batch, b, of experiences from the experience replay memory
14: for u = 1 . . . U do
15: for i = 1 . . . N do
16: # Calculate target Q-values for each example
17: yi = ri + δs′iγQ

πϕ(s′i,max
a′
i

Qπθ (s′i, a
′
i)) where δs′i = 0

↪→ if s′i is terminal, 1 otherwise
18: end for
19: # Calculate the loss, for example using MSE
20: L(θ) = 1

N

∑
i(yi −Qπθ (si, ai))

2

21: # Update the network’s parameters
22: θ = θ − α∇θL(θ)
23: end for
24: end for
25: Decay τ
26: if (m mod F ) == 0 then
27: # Update the target network
28: ϕ = θ
29: end if
30: end for

5.3 Prioritized Experience Replay (PER)
The final modification to DQN is to use a Prioritized Experience Replay memory
introduced by Schaul et al. in 2015 [121]. The main idea is that some experiences in the
replay memory are more informative than others. If we can train an agent by sampling
informative experiences more frequently than uninformative ones, the agent may learn
faster.
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Intuitively, when learning a new task, we can imagine that some experiences are more
informative than others. Consider, for example, a humanoid agent trying to learn how to
stand up. At the beginning of each episode, the agent is always initialized sitting on the
floor. Initially, most actions will result in the agent flailing around on the ground, and only
a few experiences will convey meaningful information about how to combine joint
movements so as to balance and stand up. These experiences are more important for
learning how to stand than those in which the agent is stuck on the ground. They help the
agent learn what to do right instead of the many things it can do wrong. An alternative
way to look at this is to consider the experiences in which Qπθ (s, a) deviates most
significantly from Qπ

tar(s, a). These are the experiences that are most “surprising” to an
agent—they can be thought of as the experiences it has the most to learn from. An agent
might learn faster if it is trained with these experiences relatively more often than with the
experiences for which it can accurately predict Qπ

tar(s, a). In light of these considerations,
can we do better than sampling experiences uniformly from replay memory—can we,
instead, have the agent prioritize learning from some experiences over others?

Prioritized Experience Replay is based on this simple and intuitive idea, but it presents
two implementation challenges. First, how can we automatically assign each experience a
priority? Second, how to sample efficiently from the replay memory using these priorities?

A natural solution to the first problem is for the priority to be derived from the
absolute difference between Qπθ (s, a) and Qπ

tar(s, a), known as the TD error. The larger
the difference between these two values, the larger the mismatch between an agent’s
expectations and what happened in the next step, and the more an agent should correct
Qπθ (s, a). Additionally, the TD error is available for each experience as part of the DQN
or Double DQN algorithms with very little computation and implementation effort. The
only remaining issue is what priority to assign to experiences initially when there is no TD
error available. Typically, this is solved by setting the score to a large constant value to
encourage each experience to be sampled at least once.

Schaul et al. propose two different options for sampling using the scores: rank-based
and proportional prioritization. Both approaches are based on an interpolation between
greedy prioritization (always picking the experiences with the top n scores) and uniform
random sampling. This ensures that experiences with higher scores are sampled more often
but that each experience has a nonzero probability of being sampled. We consider only the
proportional prioritization method here; for details on rank-based prioritization, refer to
the “Prioritized Experienced Replay” [121] paper. If ωi is the TD error for experience i,
ε is a small positive number,1 and η ∈ [0,∞), then the priority of an experience is shown
in Equation 5.8.

P (i) =
(|ωi|+ ε)η∑
j(|ωj |+ ε)η

(5.8)

ε prevents experiences from never being sampled if ωi = 0. η determines how much
to prioritize. η = 0 corresponds to uniform sampling, since all experiences will have a
priority of 1. The larger η, the greater the prioritization, as shown in Equation 5.9.

1. This ε is not related to the ε-greedy policy—it’s a different constant.



ptg33646662

5.3 Prioritized Experience Replay (PER) 111

η = 0.0 : (ω1 = 2.0, ω2 = 3.5)→
(
P (1) = 0.50, P (2) = 0.50

)
η = 0.5 : (ω1 = 2.0, ω2 = 3.5)→

(
P (1) = 0.43, P (2) = 0.57

)
η = 1.0 : (ω1 = 2.0, ω2 = 3.5)→

(
P (1) = 0.36, P (2) = 0.64

)
η = 1.5 : (ω1 = 2.0, ω2 = 3.5)→

(
P (1) = 0.30, P (2) = 0.70

)
η = 2.0 : (ω1 = 2.0, ω2 = 3.5)→

(
P (1) = 0.25, P (2) = 0.75

)
(5.9)

5.3.1 Importance Sampling
Prioritizing certain examples changes the expectation of the entire data distribution,
which introduces bias into the training process. This can be corrected by multiplying the
TD error for each example by a set of weights—this is known as importance sampling. If the
bias is small, it is unclear how effective importance sampling is because there are other
factors, such as action noise or a highly nonstationary data distribution, that may dominate
the effect of a small bias, especially in the early stages of learning. Schaul et al. [121]
hypothesize that correcting for the bias is only likely to matter towards the end of training,
and show that the effect of making the correction is mixed. In some cases, adding
importance sampling led to improved performance; in others, it made little difference or
caused performance to deteriorate. For simplicity, importance sampling has been omitted
from the implementation discussed in this chapter; we refer readers to the “Prioritized
Experience Replay” paper [121] and Lecture 4 (https://youtu.be/tWNpiNzWuO8) from
Sergey Levine’s Deep Reinforcement Learning class [74] for more details.

It is conceptually straightforward to extend the Double DQN with target networks
algorithm to include PER, as shown in Algorithm 5.3. Four modifications are needed:

1. The replay memory needs to store an additional element per experience—the
priority of that experience (line 14).

2. When batches are sampled from memory, experiences are sampled in proportion to
their priority (line 16).

3. The TD error per training experience needs to be calculated and stored (line 22).

4. Finally, the TD errors are used to update the priorities of the corresponding
examples in memory (lines 29–30).

Algorithm 5.3 Double DQN with a target network and Prioritized Experience Replay

1: Initialize learning rate α
2: Initialize τ
3: Initialize number of batches per training step, B
4: Initialize number of updates per batch, U
5: Initialize batch size N
6: Initialize experience replay memory with max size K
7: Initialize target network update frequency F
8: Initialize maximum priority P
9: Initialize ε

https://youtu.be/tWNpiNzWuO8
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10: Initialize prioritization parameter η
11: Randomly initialize the network parameters θ
12: Initialize the target network parameters ϕ = θ
13: for m = 1 . . .MAX_STEPS do
14: Gather and store h experiences (si, ai, ri, s′i, pi) where pi = P
15: for b = 1 . . . B do
16: Sample a prioritized batch, b, of experiences from the experience replay

↪→ memory
17: for u = 1 . . . U do
18: for i = 1 . . . N do
19: # Calculate target Q-values for each example
20: yi = ri + δs′iγQ

πϕ(s′i,max
a′
i

Qπθ (s′i, a
′
i)) where δs′i = 0

↪→ if s′i is terminal, 1 otherwise
21: # Calculate the absolute TD error for each example
22: ωi = |yi −Qπθ (si, ai)|
23: end for
24: # Calculate the loss, for example using MSE
25: L(θ) = 1

N

∑
i(yi −Qπθ (si, ai))

2

26: # Update the network’s parameters
27: θ = θ − α∇θL(θ)
28: # Calculate the priorities for each example
29: pi =

(|ωi|+ε)η∑
j(|ωj |+ε)η

30: Update the experience replay memory with the new priorities
31: end for
32: end for
33: Decay τ
34: if (m mod F ) == 0 then
35: # Update the target network
36: ϕ = θ
37: end if
38: end for

5.4 Modified DQN Implementation
In this section, we introduce an implementation of DQN that flexibly incorporates a
target network and the Double DQN algorithm. Prioritized Experience Replay is
implemented by a new Memory class, PrioritizedReplay, and by adding just a few lines of
code to calc_q_loss.

The modifications to the DQN algorithm are implemented in the DQNBase class which
inherits from VanillaDQN. Most of the code can be reused but we need to modify
init_nets, calc_q_loss, and update.



ptg33646662

5.4 Modified DQN Implementation 113

To make the different DQN variations and the relationship between them as clear as
possible, each variant is associated with a separate class even if no additional code is
required. DQN with target networks is therefore implemented in the DQN class which
extends DQNBase. Double DQN is implemented in DoubleDQN which extends DQN.

5.4.1 Network Initialization
It makes sense to briefly look at the init_nets method in DQNBase (Code 5.1) because it
shows how the two networks are handled.

In lines 12–13, the networks are initialized. self.net is the training network with
parameters θ and self.target_net is the target network with parameters ϕ. Additionally,
there are two more class attributes, self.online_net and self.eval_net (lines 16–17).
Depending on the variant of DQN being run, self.online_net and self.eval_net point
to either self.net or self.target_net. They may also point to different networks, one to
self.net and the other to self.target_net. This approach makes it easy to switch
between DQN and Double DQN with target networks by changing which networks are
assigned to self.online_net and self.eval_net. In DQNBase, they both point to the
target network.

Code 5.1 Modified DQN implementation: initializing networks

1 # slm_lab/agent/algorithm/dqn.py

2

3 class DQNBase(VanillaDQN):

4 ...

5

6 @lab_api

7 def init_nets(self, global_nets=None):

8 ...

9 in_dim = self.body.state_dim

10 out_dim = net_util.get_out_dim(self.body)

11 NetClass = getattr(net, self.net_spec['type'])

12 self.net = NetClass(self.net_spec, in_dim, out_dim)

13 self.target_net = NetClass(self.net_spec, in_dim, out_dim)

14 self.net_names = ['net', 'target_net']

15 ...

16 self.online_net = self.target_net

17 self.eval_net = self.target_net

5.4.2 Calculating the Q-Loss
calc_q_loss is shown in Code 5.2. There are two differences compared to the original
DQN implementation—estimating Qπ(s′, a′) and updating the batch priorities.
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We first calculate Q̂π(s, a) for all actions a for each state in the batch (line 9) and select
the Q-value-maximizing action (line 15) for each state s.

Then we calculate Q̂π(s′, a′) for all actions a′ for each next state s′ in the batch. This
is done twice using self.online_net and self.eval_net (lines 11–14). Next, we select
the Q-value-maximizing action for each s′ using self.online_net and store them in
online_actions (line 16). Then, we select the Q-values that correspond to these actions
using self.eval_net (line 17). max_next_q_preds is the estimate for Q̂π(s′, a′).

Qπ
tar(s, a) is calculated on line 18. This and the q_loss (line 20) calculation are the

same as in the original DQN implementation.
To incorporate Prioritized Experience Replay, we optionally calculate the TD error for

each experience in the batch (line 23) and use these values to update the priorities
(line 24).

Code 5.2 Modified DQN implementation: calculatingQ-loss

1 # slm_lab/agent/algorithm/dqn.py

2

3 class DQNBase(VanillaDQN):

4 ...

5

6 def calc_q_loss(self, batch):

7 states = batch['states']

8 next_states = batch['next_states']

9 q_preds = self.net(states)

10 with torch.no_grad():

11 # Use online_net to select actions in next state

12 online_next_q_preds = self.online_net(next_states)

13 # Use eval_net to calculate next_q_preds for actions chosen by

online_net↪→

14 next_q_preds = self.eval_net(next_states)

15 act_q_preds = q_preds.gather(-1,

batch['actions'].long().unsqueeze(-1)).squeeze(-1)↪→

16 online_actions = online_next_q_preds.argmax(dim=-1, keepdim=True)

17 max_next_q_preds = next_q_preds.gather(-1, online_actions).squeeze(-1)

18 max_q_targets = batch['rewards'] + self.gamma * (1 - batch['dones']) *

max_next_q_preds↪→

19 ...

20 q_loss = self.net.loss_fn(act_q_preds, max_q_targets)

21

22 if 'Prioritized' in util.get_class_name(self.body.memory): # PER

23 errors = (max_q_targets -

act_q_preds.detach()).abs().cpu().numpy()↪→

24 self.body.memory.update_priorities(errors)

25 return q_loss
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5.4.3 Updating the Target Network
After each training step, an algorithm’s update method is called. This is modified to
incorporate the target network update shown in Code 5.3.

The implementation is straightforward. If we are using replacement update, then we
directly copy self.net to self.target_net (lines 13–14, 21–22). If we are using a Polyak
update, then we calculate a weighted average of each parameter in self.net and the
current self.target_net, then update self.target_net with the result (lines 15–16,
24–26).

Code 5.3 Modified DQN implementation: updating the target network

1 # slm_lab/agent/algorithm/dqn.py

2

3 class DQNBase(VanillaDQN):

4 ...

5

6 @lab_api

7 def update(self):

8 self.update_nets()

9 return super().update()

10

11 def update_nets(self):

12 if util.frame_mod(self.body.env.clock.frame,

self.net.update_frequency, self.body.env.num_envs):↪→

13 if self.net.update_type == 'replace':

14 net_util.copy(self.net, self.target_net)

15 elif self.net.update_type == 'polyak':

16 net_util.polyak_update(self.net, self.target_net,

self.net.polyak_coef)↪→

17 ...

18

19 # slm_lab/agent/net/net_util.py

20

21 def copy(src_net, tar_net):

22 tar_net.load_state_dict(src_net.state_dict())

23

24 def polyak_update(src_net, tar_net, old_ratio=0.5):

25 for src_param, tar_param in zip(src_net.parameters(),

tar_net.parameters()):↪→

26 tar_param.data.copy_(old_ratio * src_param.data + (1.0 - old_ratio) *

tar_param.data)↪→
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5.4.4 DQN with Target Networks
We do not need any additional code to implement DQN with target networks, as shown
in Code 5.4.

DQN inherits from DQNBase and, as we saw in Code 5.1, self.target_net is initialized
and assigned to self.online_net and self.eval_net. Consequently, in calc_q_loss,
self.target_net is the only network that is used to calculate Qπ

tar(s, a).

Code 5.4 The DQN class

1 # slm_lab/agent/algorithm/dqn.py

2

3 class DQN(DQNBase):

4

5 @lab_api

6 def init_nets(self, global_nets=None):

7 super().init_nets(global_nets)

5.4.5 Double DQN
DoubleDQN inherits from DQN, as shown in Code 5.5. When the networks are initialized in
init_nets, self.net is assigned to self.online_net and self.target_net is assigned to
self.eval_net (lines 8–9).

Now, when we calculate Qπ
tar(s, a), self.net is used to select action a′ because

self.online_net points to it, and self.target_net estimates the Q-value for (s′, a′)
because self.eval_net points to it.

Code 5.5 The DoubleDQN class

1 # slm_lab/agent/algorithm/dqn.py

2

3 class DoubleDQN(DQN):

4

5 @lab_api

6 def init_nets(self, global_nets=None):

7 super().init_nets(global_nets)

8 self.online_net = self.net

9 self.eval_net = self.target_net
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5.4.6 Prioritized Experienced Replay
Prioritized Experience Replay (PER) changes how experiences are sampled from memory
to improve the sample efficiency of DQN. As with the preceding sections on memory
classes, this section can be skipped on first reading without loss of understanding of the
improvements to DQN. It is sufficient to understand the main ideas behind Prioritized
Experience Replay discussed in Section 5.3.

To implement PER, we need a new Memory class, PrioritizedReplay. Much of the
implementation is shared with Replay memory class which PrioritizedReplay extends.
However, we need to add three features—storing priorities, updating priorities, and
proportional sampling.

. Storing priorities: An experience should contain its priority, so we need to add an
additional buffer in a replay memory to keep track of priorities. This can be handled
by overriding the __init__, reset, and add_experience functions of the Replay

memory class.

. Updating priorities: Each time an agent is trained, the priority of each experience
in a batch may change. We add a new function update_priorities which modifies
the priorities of experiences stored in memory and keeps track of the indices of the
most recently sampled batch so it knows which experiences to update.

. Proportional sampling: This is the trickiest part of implementing PER.
Experiences need to be sampled in proportion to their priority—but this sampling
still has to be fast, even when the memory is very large, so as not to slow down
training. Consequently, sample_idxs needs overriding and we need a new data
structure, a SumTree, to store the priorities and achieve efficient sampling even as the
memory size increases. Note that Replay memory does not have this problem since
each index is sampled randomly.

In what follows, we first discuss the new data structure, a SumTree, and why it is useful
for implementing PER. Then we review the PrioritizedReplay memory class and discuss
how it implements each of the features required by PER.

Algorithm 5.3 demonstrated that it is straightforward to extract the absolute TD error
Qπθ (s, a) and Qπ

tar(s, a) for each experience in a batch. Equation 5.8 showed how to
translate this measure of error (referred to as |ω|) into a priority for each element.

To calculate the priority of a single experience, we need to keep track of the sum of
un-normalized priorities

∑
j(|ωj |+ ε)η (the denominator of Equation 5.8), which is

calculated using all of the experiences in the memory. Once we have all of the priorities
P (i), we can sample from the memory using them.

Consider the following approach to sampling a batch of experiences:

1. Modify Algorithm 5.3 to also keep track of
∑

j(|ωj |+ ε)η. When updating the
priorities, first calculate the change in

∑
j(|ωj |+ ε)η so that it can be updated

appropriately.

2. Randomly sample a number, x, uniformly from the range 0 to
∑

j(|ωj |+ ε)η.
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3. Iterate through the all the experiences in memory summing all the |ωi|+ ε seen
so far.

4. When
∑k

i (|ωi|+ ε) ≥ x, stop. The index, k, of the current |ωk|+ ε is the index of
the experience to sample from memory.

5. Repeat steps 3–4 until you have a full batch of indices.

6. Construct a batch of experiences with the indices identified in steps 5.

This method will sample experiences from memory in proportion to their priority
because x is uniformly distributed from 0 to

∑
j(|ωj |+ ε)η, and the larger |ωj |+ ε, the

higher proportion of the range of x the experience j will take up, and the more likely it is
to be the experience which changes

∑
i(|ωi|+ ε) ≤ x to

∑
i(|ωi|+ ε) ≥ x.

The problem with this approach is that it is slow because identifying the index k of the
experience to be sampled requires iterating sequentially through the entire memory. It has
computational complexity O(n), where n is the current size of the memory. When
sampling a batch, this process needs to be repeated N (batch size) times.

Replay memories can be large, with a million elements or more, and batches are
sampled very often while an agent is training. A sampling method that iterates through
each experience in the memory will slow training down significantly. Training that took
hours or days may now take weeks.

As an alternative, we can use a binary tree known as a sum tree to store the priorities.
This data structure makes it possible to sample an experience with computational
complexity O(log2 n) instead of O(n), as discussed in Box 5.2. This is a significant
improvement if memory is large. For example, if the memory contains 1 million
experiences, sampling an index will require just 20 steps, since log2(1,000,000) ≈ 20,
instead of 1,000,000 steps in the worst-case scenario of iterating through the entire
memory.

Box 5.2 Sum Trees

A sum tree is a binary tree in which the leaves store the priorities of experiences
and each internal node stores the sum of the values stored by the node’s children.
Consequently, the root note will store the sum of (|ωj |+ ε)η. This is exactly the
denominator of Equation 5.8.

The structure of a sum tree makes it straightforward to sample experiences in
proportion to their priorities. First, sample a number, x, random-uniformly
between 0 and

∑
j(|ωj |+ ε)η; the latter value can be obtained in constant time by

querying the value stored in the root node. Then, traverse the tree until you reach
a leaf. The decision to choose the left or right child of a node is made as follows. If
x <= node.left_child, select the left child and set that to the current node;
otherwise, set x = x - node.left_child and set the right child to the current
node. Repeat until you have reached a leaf, then return the index of that leaf.

To build intuition for why this results in proportional sampling, it is helpful to
work through an example of just a few elements. Figure 5.1 shows an example for
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six elements, corresponding to six experiences. The (|ωj |+ ε)η values for
each element, shown in the leaf nodes at the bottom of the tree, are
(5, 25, 10, 0, 35, 24).

∑
j(|ωj |+ ε)η = 99, as can be seen in the root node at the

top of the tree.
If x is sampled random-uniformly between 0 and 99, the values of x for which

each element will be selected are shown below each leaf, along with the
corresponding percentage of times each element will be sampled. The larger
(|ωj |+ ε)η, the more often element i will be sampled. For example, element 5
with (|ωj |+ ε)η = 35 will be sampled 35% of the time, whereas element 3 with
(|ωj |+ ε)η = 10 will only be sampled 10% of the time.

Figure 5.1 also shows a traversal of the tree when x = 37. At the root node,
since x ≤ 40 which is the value of the left child node, we move to the left child.
Next, x > 30 so we move to the right child with value 10 and set x to
x− 30 = 7. Finally, we compare 7 with 10, and since 7 ≤ 10, we select the left
child and have reached a leaf. The index of this leaf is 3, and this is what we select.

Figure 5.1 A sum tree containing six elements
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The number of steps required to sample the index of an experience to include
in a batch is now just the height of the binary tree, which is log2 n. For example, if
there are 100,000 experiences in the memory, sampling an index takes only
17 steps, since log2(100,000) ≈ 17.

Memory Initialization and Reset __init__ in Code 5.6 calls the parent class init
(line 13) which initializes the class variables, including the storage keys. In
PrioritizedReplay memory we also need to store the priorities and initialize the sum
tree. This is done by redefining the storage keys self.data_keys with an additional
“priorities” element (line 18) and then calling self.reset again (line 19).

reset calls the parent class method and additionally initializes the sum tree (line 23).

Code 5.6 Prioritized Experience Replay: initialization and reset

1 # slm_lab/agent/memory/prioritized.py

2

3 class PrioritizedReplay(Replay):

4

5 def __init__(self, memory_spec, body):

6 util.set_attr(self, memory_spec, [

7 'alpha',

8 'epsilon',

9 'batch_size',

10 'max_size',

11 'use_cer',

12 ])

13 super().__init__(memory_spec, body)

14

15 self.epsilon = np.full((1,), self.epsilon)

16 self.alpha = np.full((1,), self.alpha)

17 # adds a 'priorities' scalar to the data_keys and call reset again

18 self.data_keys = ['states', 'actions', 'rewards', 'next_states',

'dones', 'priorities']↪→

19 self.reset()

20

21 def reset(self):

22 super().reset()

23 self.tree = SumTree(self.max_size)
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Storing Priorities In Code 5.7, add_experience first calls the parent class method to
add the (state, action, reward, next_state, done) to the memory (line 7).

Next, we need to get the priority of the experience given the absolute TD error error
(line 8). One heuristic we use is that new experiences are likely to be informative for an
agent, so should have a high probability of being sampled. This is implemented by
assigning them a large error of 100,000.

Finally, we add the priority to both the memory and the sum tree (lines 9–10).

Code 5.7 Prioritized Experience Replay: storing priorities

1 # slm_lab/agent/memory/prioritized.py

2

3 class PrioritizedReplay(Replay):

4 ...

5

6 def add_experience(self, state, action, reward, next_state, done,

error=100000):↪→

7 super().add_experience(state, action, reward, next_state, done)

8 priority = self.get_priority(error)

9 self.priorities[self.head] = priority

10 self.tree.add(priority, self.head)

11

12 def get_priority(self, error):

13 return np.power(error + self.epsilon, self.alpha).squeeze()

Updating Priorities Code 5.8 shows how the priorities are updated. This is
straightforward once the SumTree is implemented. First, the absolute TD errors are
converted to priorities (line 7). Then, the priorities in the main memory structure are
updated (lines 9–10) using the indices of the experiences in the batch. Note that
self.batch_idxs always stores the indices of the last sampled batch. Finally, the priorities
are updated in the SumTree (lines 11–12).

Code 5.8 Prioritized Experience Replay: updating priorities

1 # slm_lab/agent/memory/prioritized.py

2

3 class PrioritizedReplay(Replay):

4 ...

5

6 def update_priorities(self, errors):

7 priorities = self.get_priority(errors)

8 assert len(priorities) == self.batch_idxs.size

9 for idx, p in zip(self.batch_idxs, priorities):
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10 self.priorities[idx] = p

11 for p, i in zip(priorities, self.tree_idxs):

12 self.tree.update(i, p)

Proportional Sampling sample_idxs (Code 5.9) is responsible for identifying the
indices of the experiences that should constitute a batch. To select an index, we first
sample a number between 0 and the sum of

∑
j(|ωj |+ ε)η (line 11). This number is used

to select an element from the tree using the procedure described in Box 5.2 (line 12), and
this element is associated with an index in the PrioritizedReplay memory. Once all the
indices have been selected, they are stored in self.batch_idxs to use when building a
batch of training data (line 13), and in self.tree_idxs to use when updating the priorities
(line 14).

Note that this implementation of proportional sampling is adapted from Jaromar
Janisch’s which is available at his blog: https://jaromiru.com/2016/09/27
/lets-make-a-dqn-theory/. For the sum tree implementation, see slm_lab/agent

/memory/prioritized.py.

Code 5.9 Prioritized Experience Replay: proportional sampling

1 # slm_lab/agent/memory/prioritized.py

2

3 class PrioritizedReplay(Replay):

4 ...

5

6 def sample_idxs(self, batch_size):

7 batch_idxs = np.zeros(batch_size)

8 tree_idxs = np.zeros(batch_size, dtype=np.int)

9

10 for i in range(batch_size):

11 s = random.uniform(0, self.tree.total())

12 (tree_idx, p, idx) = self.tree.get(s)

13 batch_idxs[i] = idx

14 tree_idxs[i] = tree_idx

15

16 batch_idxs = np.asarray(batch_idxs).astype(int)

17 self.tree_idxs = tree_idxs

18 ...

19 return batch_idxs

https://jaromiru.com/2016/09/27/lets-make-a-dqn-theory/
https://jaromiru.com/2016/09/27/lets-make-a-dqn-theory/
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5.5 Training a DQN Agent to Play Atari
Games

At this point, we have all of the elements we need to train DQN agents to play Atari
games from image states. However, to achieve good performance, we need to modify the
environment states and rewards. These modifications were first introduced in the
well-known paper “Human-Level Control through Deep Reinforcement Learning” [89]
and have since become standard practice to apply to the Atari environment.

In this section, we first give some brief background on the Atari games as well as the
modifications to their states and rewards. Then, we configure a spec file for Double DQN
agent with PER to play Atari Pong.

The Atari 2600 was a popular video game console released in 1977. Alongside the
original games, a large number of (now classic) arcade games were ported to the console.
The games available on the Atari 2600 were often complex and challenging to play;
however, the computational demands of the games were low, making them easy to emulate
on a modern computer. The console RAM holds just 128 bytes and the game screen is
only 160 pixels wide by 210 pixels high. In 2012, Bellemare et al. realized that these
conditions make the Atari games an ideal testing ground for reinforcement learning
algorithms, and created the Arcade Learning Environment (ALE) which emulates over
fifty games [14].

(a) Pong (b) Breakout (c) Qbert

Figure 5.2 Example states from three Atari games provided through the OpenAI Gym [18]

SLM Lab uses the Atari games provided through the OpenAI Gym [18]. The state in
each Atari game is a low-resolution RGB image of the gameplay window, encoded as a 3D
array of size (210, 160, 3). The action space is discrete with few dimensions. Depending
on the game, there are 4–18 different actions an agent may take at each time step. For
example, the Pong actions in OpenAI Gym are: 0 (no-op), 1 (fire), 2 (up), and 3 (down).
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The Atari state space has significantly higher dimensionality than any game we have
seen so far. Each state has 210× 160× 3 = 100,800 dimensions compared with four
dimensions for CartPole. The Atari games are also much more complex than CartPole.
Episodes last for thousands of time steps and good performance requires sophisticated
sequences of actions. The combination of these two factors makes the learning problem
for an agent significantly more difficult. To help an agent learn under these conditions, the
authors of [88, 141] made the following adjustments to the standard DQN or Double
DQN algorithms:

. Specialized network design to process images: The Q-function approximator
is a convolutional neural network with three hidden convolutional layers and one
hidden dense layer.

. State preprocessing: This includes image downsizing, grayscaling, frame
concatenation, and frame skipping with max pixel values.

. Reward preprocessing: At every time step, the reward is transformed to −1, 0,+1
based on the sign of the original reward.

. Environment reset: Depending on the game, once a game life is lost, the
environment is reset, start state randomized, and “FIRE” may be pressed at reset.

The network design is implemented using SLM Lab’s ConvNet class. The state, reward,
and environment modifications are discussed in more detail in Section 10.3, “Atari
Tricks.” These modifications are handled using a wrapper around an OpenAI Gym
environment. The wrapper simply wraps an environment without changing its interface,
so it has the advantage of carrying out all of the desired transformations behind the scenes.
This makes it possible to train a DQN or a Double DQN agent with these modifications
without having to change any code in the implementations we have discussed so far.

The configuration to train a Double DQN agent to play Atari Pong using Prioritized
Experience Replay is shown in Code 5.10. The file is also available in SLM Lab at
slm_lab/spec/benchmark/dqn/ddqn_per_pong_spec.json.

Code 5.10 A Double DQN with PER spec file configured to play Atari Pong

1 # slm_lab/spec/benchmark/dqn/ddqn_per_pong.json

2

3 {

4 "ddqn_per_pong": {

5 "agent": [{

6 "name": "DoubleDQN",

7 "algorithm": {

8 "name": "DoubleDQN",

9 "action_pdtype": "Argmax",

10 "action_policy": "epsilon_greedy",

11 "explore_var_spec": {

12 "name": "linear_decay",
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13 "start_val": 1.0,

14 "end_val": 0.01,

15 "start_step": 10000,

16 "end_step": 1000000

17 },

18 "gamma": 0.99,

19 "training_batch_iter": 1,

20 "training_iter": 4,

21 "training_frequency": 4,

22 "training_start_step": 10000

23 },

24 "memory": {

25 "name": "PrioritizedReplay",

26 "alpha": 0.6,

27 "epsilon": 0.0001,

28 "batch_size": 32,

29 "max_size": 200000,

30 "use_cer": false,

31 },

32 "net": {

33 "type": "ConvNet",

34 "conv_hid_layers": [

35 [32, 8, 4, 0, 1],

36 [64, 4, 2, 0, 1],

37 [64, 3, 1, 0, 1]

38 ],

39 "fc_hid_layers": [256],

40 "hid_layers_activation": "relu",

41 "init_fn": null,

42 "batch_norm": false,

43 "clip_grad_val": 10.0,

44 "loss_spec": {

45 "name": "SmoothL1Loss"

46 },

47 "optim_spec": {

48 "name": "Adam",

49 "lr": 2.5e-5,

50 },

51 "lr_scheduler_spec": null,

52 "update_type": "replace",

53 "update_frequency": 1000,

54 "gpu": true

55 }

56 }],
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57 "env": [{

58 "name": "PongNoFrameskip-v4",

59 "frame_op": "concat",

60 "frame_op_len": 4,

61 "reward_scale": "sign",

62 "num_envs": 16,

63 "max_t": null,

64 "max_frame": 4e6

65 }],

66 "body": {

67 "product": "outer",

68 "num": 1

69 },

70 "meta": {

71 "distributed": false,

72 "eval_frequency": 10000,

73 "log_frequency": 10000,

74 "max_session": 4,

75 "max_trial": 1

76 }

77 }

78 }

Let’s review the main components.

. Algorithm: The algorithm is Double DQN (line 8). To use DQN, change line 8
from "name": "DoubleDQN" to "name": "DQN". The action policy is ε-greedy
(line 10) with linear decay. ε is initialized to 1.0 and annealed to 0.01 between time
steps 10,000 and 1,000,000 (lines 12–16).

. Network architecture: The network is a convolutional neural network (line 33)
with ReLU activations (line 40). The network has three convolutional layers
(lines 34–38) followed by one fully connected layer (line 39). Training takes place on
a GPU (line 54).

. Optimizer and loss function: The optimizer is Adam [68] (lines 47–50) and the
loss is the Huber loss, named SmoothL1Loss in PyTorch (lines 44–46). It is quadratic
for absolute values less than 1 and linear everywhere else, making it less sensitive to
outliers.
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. Training frequency: Training starts after an agent has taken 10,000 steps in total in
the environment (line 22) and occurs every four steps from then on (line 21). At
each training step, four batches are sampled from the memory (line 20). Each batch
has 32 elements (line 28) and is used to make one parameter update to the network
(line 19).

. Memory: The memory type is PrioritzedReplay (line 25) and it has a maximum
size of 200,000 experiences (line 29). The prioritization parameter η is set with the
variable alpha (line 26) and the small constant ε is set with the variable epsilon

(line 27).

. Environment: The environment is the Atari game Pong (line 58). Four frames are
concatenated to form a single state (lines 59–60); during training, the rewards for
each time step are transformed into their sign −1, 0, or +1 (line 61). To speed up
training, we use 16 parallel environments (line 62)—this simple technique is the
subject of Chapter 8.

. Training length: Training continues for 4,000,000 time steps (line 64).

. Checkpointing: The agent is evaluated every 10,000 time steps (line 72). The
parameters of the network are also checkpointed after each eval.

To train this DQN agent using SLM Lab, run the commands shown in Code 5.11 in a
terminal.

Code 5.11 Training a Double DQN agent with PER to play Atari Pong

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/dqn/ddqn_per_pong.json ddqn_per_pong

train↪→

This will use the spec file to run a training Trial with four Sessions to obtain an
average result. The result is then plotted with an error band. A moving-average version
with a window of 100 evaluations is also generated. Both graphs are shown in Figure 5.3.
At the beginning of training, an agent will have an average score of −21. Performance
improves steadily for two million frames, after which an agent achieves close to the
maximum score of 21 on average.

Note that training this agent requires more computational resources than the other
agents described so far in this book. The trial should take about one day to complete when
running on a GPU.
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(a) Trial graph (b) Trial graph with moving average

Figure 5.3 Double DQN + PER trial graphs from SLM Lab averaged over four sessions. The

vertical axis shows the total rewards (mean_return for evaluation is computed without discount)

averaged over eight episodes during checkpoints, and the horizontal axis shows the total training

frames. The graph on the right is a moving average with a window of 100 evaluation checkpoints.

5.6 Experimental Results
In this section we will look at the effects of the DQN improvements—namely, target
networks, Double DQN, and PER. Starting with DQN with target network (which we
will simply call DQN), we will run a grid of trials to study the effect of the improvements.
The trials include four combinations: DQN, DQN + PER, Double DQN, and Double
DQN + PER. The trials will be run on Atari Pong environment to produce trial graphs
which are then combined for comparison.

5.6.1 Experiment: The Effect of Double DQN and PER
First, we have the DQN spec file shown in Code 5.12. This is similar to Code 5.10 apart
from using DQN (lines 4–8), disabling PER by using a plain replay memory class
(lines 11–16), and increasing the learning rate (line 21). This file can be found in SLM Lab
at slm_lab/spec/benchmark/dqn /dqn_pong_spec.json.

Code 5.12 A DQN spec file configured to play Atari Pong

1 # slm_lab/spec/benchmark/dqn/dqn_pong.json

2

3 {

4 "dqn_pong": {
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5 "agent": [{

6 "name": "DQN",

7 "algorithm": {

8 "name": "DQN",

9 ...

10 },

11 "memory": {

12 "name": "Replay",

13 "batch_size": 32,

14 "max_size": 200000,

15 "use_cer": false

16 },

17 "net": {

18 ...

19 "optim_spec": {

20 "name": "Adam",

21 "lr": 1e-4,

22 },

23 ...

24 }

25 }

Second, we have the DQN + PER spec file shown in Code 5.13, also similar to
Code 5.10 but modified to use DQN (lines 4–8). This file can be found in SLM Lab at
slm_lab/spec/benchmark/dqn/dqn_per_pong_spec.json.

Code 5.13 A DQN + PER spec file configured to play Atari Pong

1 # slm_lab/spec/benchmark/dqn/dqn_per_pong.json

2

3 {

4 "dqn_per_pong": {

5 "agent": [{

6 "name": "DQN",

7 "algorithm": {

8 "name": "DQN",

9 ...

10 }

11 }

Third, we have the Double DQN spec file shown in Code 5.14 with modifications
from Code 5.10 to disable PER (lines 11–16) and to use a higher learning rate
(line 21). This file can be found in SLM Lab at slm_lab/spec/benchmark/dqn
/ddqn_pong_spec.json.
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Code 5.14 A Double DQN spec file configured to play Atari Pong

1 # slm_lab/spec/benchmark/dqn/ddqn_pong.json

2

3 {

4 "ddqn_pong": {

5 "agent": [{

6 "name": "DoubleDQN",

7 "algorithm": {

8 "name": "DoubleDQN",

9 ...

10 },

11 "memory": {

12 "name": "Replay",

13 "batch_size": 32,

14 "max_size": 200000,

15 "use_cer": false,

16 },

17 "net": {

18 ...

19 "optim_spec": {

20 "name": "Adam",

21 "lr": 1e-4,

22 },

23 ...

24 }

25 }

Finally, we have the Double DQN + PER spec file shown earlier in Code 5.10, also
available in SLM Lab at slm_lab/spec/benchmark/dqn/ddqn_per_pong_spec.json. Note
that when using PER, we tend to use a lower learning rate. This is because PER selects
higher-error transitions more often and leads to larger gradients on average. To
compensate for the larger gradients, Schaul et al. [121] found it was helpful to reduce the
learning rate by a factor of 4.

The four commands to train these four DQN variants using SLM Lab are shown in
Code 5.15. All these trials will each require nearly one day to complete when running on
a GPU, though they may be run separately in parallel if there are sufficient computing
resources.

Code 5.15 Training four variants of DQN, DQN + PER, Double DQN, and Double DQN + PER to

play Atari Pong

1 # run DQN

2 conda activate lab

3 python run_lab.py slm_lab/spec/benchmark/dqn/dqn_pong.json dqn_pong train
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4

5 # run DQN + PER

6 conda activate lab

7 python run_lab.py slm_lab/spec/benchmark/dqn/dqn_per_pong.json dqn_per_pong

train↪→

8

9 # run Double DQN

10 conda activate lab

11 python run_lab.py slm_lab/spec/benchmark/dqn/ddqn_pong.json ddqn_pong train

12

13 # run Double DQN + PER

14 conda activate lab

15 python run_lab.py slm_lab/spec/benchmark/dqn/ddqn_per_pong.json ddqn_per_pong

train↪→

Each of the four Trials will produce its own graphs using an average from four
Sessions. For comparison, they are plotted together, using the viz.plot_multi_trial

utility method in SLM Lab, as a multitrial graph shown in Figure 5.4.

(a) Multitrial graph (b) Multitrial with moving average

Figure 5.4 These graphs compare the performance of the four variants of DQN improvements

using Atari Pong. As expected, Double DQN + PER performs the best, followed by DQN + PER,

Double DQN, and DQN.

Figure 5.4 compares the performance of the four variants of DQN improvements using
Atari Pong. As expected, when using all the improvements, Double DQN + PER
performs the best. This is closely followed by DQN + PER, then Double DQN, and
DQN. Overall, using PER yields significant improvement and helps stabilize learning, as
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seen in the higher, smoother learning returns curve. In comparison, using Double DQN
provides a smaller improvement.

5.7 Summary
This chapter discussed three techniques for improving the DQN algorithm, each
addressing one of its limitations.

. Target network: Using a lagged copy of the original network to calculate
Qπ

tar(s, a) makes the optimization problem easier and helps stabilize training.

. Double DQN: Using two different networks to estimate the Q-value of the next
state when calculating Qπ

tar(s, a) reduces DQN’s tendency to overestimate Q-values.
In practice, the training network θ and the target network ϕ are used as the two
networks.

. Prioritized Experience Replay: Not all experiences are equally informative for
an agent. Prioritizing experiences that the agent can learn the most from, as
measured by the absolute TD error between Q̂π(s, a) and Qπ

tar(s, a), improves the
sample efficiency of DQN.

We also discussed a specific implementation of DQN with a target network and PER
that is designed to play Atari games. Atari games are the most complex environments we
have seen so far; to achieve good performance we needed to modify the states and rewards.
The modifications included reducing the state space dimensionality by downsizing,
cropping, and converting the images to grayscale, stacking the most recent four states so
that an agent can see the recent past when selecting an action, increasing the time elapsed
between consecutive frames by only showing the agent every fourth frame, and designing a
Q-function network specialized for image processing.

5.8 Further Reading
. “Human-Level Control through Deep Reinforcement Learning,” Mnih et al.,

2015 [89].

. “Double Q-Learning,” van Hasselt, 2010 [140].

. “Deep Reinforcement Learning with Double Q-Learning,” van Hasselt et al.,
2015 [141].

. “Prioritized Experience Replay,” Schaul et al., 2015 [121].

. “Dueling Network Architectures for Deep Reinforcement Learning,”Wang et al.,
2016 [144].

. “The Arcade Learning Environment: An Evaluation Platform for General Agents,”
Bellemare et al., 2013 [14].
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6

Advantage Actor-Critic (A2C)

In this chapter, we look at Actor-Critic algorithms which elegantly combine the ideas we
have seen so far in this book—namely, the policy gradient and a learned value function. In
these algorithms, a policy is reinforced with a learned reinforcing signal generated using a
learned value function. This contrasts with REINFORCE which uses a high-variance
Monte Carlo estimate of the return to reinforce the policy.

All Actor-Critic algorithms have two components which are learned jointly—an actor,
which learns a parameterized policy, and a critic which learns a value function to evaluate
state-action pairs. The critic provides a reinforcing signal to the actor.

The main motivation behind these algorithms is that a learned reinforcing signal can be
more informative for a policy than the rewards available from an environment. For
example, it can transform a sparse reward in which the agent only receives +1 upon
success into a dense reinforcing signal. Furthermore, learned value functions typically have
lower variance than Monte Carlo estimates of the return. This reduces the uncertainty
under which a policy learns [11], making the learning process easier. However, training
also becomes more complex. Now learning the policy depends on the quality of the value
function estimate which is being learned simultaneously. Until the value function is
generating reasonable signals for the policy, learning how to select good actions will be
challenging.

It is common to learn the advantage function Aπ(s, a) = Qπ(s, a)− V π(s) as the
reinforcing signals in these methods. The key idea is that it is better to select an action
based on how it performs relative to the other actions available in a particular state, instead
of using the absolute value of that action as measured by the Q-function. The advantage
quantifies how much better or worse an action is than the average available action.
Actor-Critic algorithms which learn the advantage function are known as Advantage
Actor-Critic (A2C) algorithms.

First, we discuss the actor in Section 6.1. This is brief because it is similar to
REINFORCE. Then, in Section 6.2 we introduce the critic and two different methods
for estimating the advantage function—n-step returns and Generalized Advantage
Estimation [123].

Section 6.3 covers the Actor-Critic algorithm and Section 6.4 contains an example of
how it can be implemented. The chapter ends with instructions for training an
Actor-Critic agent.
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6.1 The Actor
Actors learn parametrized policies πθ using the policy gradient as shown in Equation 6.1.
This is very similar to REINFORCE (Chapter 2) except we now use the advantage Aπ

t as
a reinforcing signal instead of a Monte Carlo estimate of the return Rt(τ) (Equation 2.1).

Actor-Critic: ∇θJ(πθ) = Et

[
Aπ

t∇θ logπθ(at | st)
]

(6.1)

REINFORCE: ∇θJ(πθ) = Et

[
Rt(τ)∇θ logπθ(at | st)

]
(6.2)

Next, we look at how to learn the advantage function.

6.2 The Critic
Critics are responsible for learning how to evaluate (s, a) pairs and using this to
generate Aπ.

In what follows, we first describe the advantage function and why it is a good choice
for a reinforcing signal. Then, we present two methods for estimating the advantage
function—n-step returns and Generalized Advantage Estimation [123]. Finally, we discuss
how they can be learned in practice.

6.2.1 The Advantage Function
Intuitively, the advantage function Aπ(st, at) measures the extent to which an action is
better or worse than the policy’s average action in a particular state. The advantage is
defined in Equation 6.3.

Aπ(st, at) = Qπ(st, at)− V π(st) (6.3)

It has a number of nice properties. First, Ea∈A[A
π(st, a)] = 0. This implies that if all

actions are essentially equivalent, then Aπ will be 0 for all actions and the probability of
taking these actions will remain unchanged when the policy is trained using Aπ. Compare
this to a reinforcing signal based on absolute state or state-action values. This signal would
have a constant value in the same situation, but it may not be 0. Consequently, it would
actively encourage (if positive) or discourage (if negative) the action taken. Since all actions
were equivalent, this may not be problematic in practice, although it is unintuitive.

A more problematic example is if the action taken was worse than the average action,
but the expected return is still positive. That is, Qπ(st, at) > 0, but Aπ(st, at) < 0.
Ideally, the action taken should become less likely since there were better options available.
In this case using Aπ yields behavior which matches our intuition more closely since it
will discourage the action taken. Using Qπ, or even Qπ with a baseline, may encourage
the action.

The advantage is also a relative measure. For a particular state s and action a, it
considers the value of the state-action pair, Qπ(s, a), and evaluates whether a will take the
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policy to a better or worse place, measured relative to V π(s). The advantage avoids
penalizing an action for the policy currently being in a particularly bad state. Conversely, it
does not give credit to an action for the policy being in a good state. This is beneficial
because a can only affect the future trajectory, but not how a policy arrived in the current
state. We should evaluate the action based on how it changes the value in the future.

Let’s look at an example. In Equation 6.4, the policy is in a good state with
V π(s) = 100, whereas in Equation 6.5, it is in a bad state with V π(s) = −100. In both
cases, action a yields a relative improvement of 10, which is captured by each case having
the same advantage. However, this would not be clear if we looked at just Qπ(s, a).

Qπ(s, a) = 110, V π(s) = 100, Aπ(s, a) = 10 (6.4)

Qπ(s, a) = −90, V π(s) = −100, Aπ(s, a) = 10 (6.5)

Understood this way, the advantage function is able to capture the long-term effects of
an action, because it considers all future time steps,1 while ignoring the effects of all the
actions to date. Schulman et al. present a similar interpretation in their paper “Generalized
Advantage Estimation” [123].

Having seen why the advantage function Aπ(s, a) is a good choice of reinforcing signal
to use in an Actor-Critic algorithm, let’s look at two ways of estimating it.

6.2.1.1 Estimating Advantage: n-Step Returns
To calculate the advantage Aπ, we need an estimate for Qπ and V π. One idea is that we
could learn Qπ and V π separately with different neural networks. However, this has two
disadvantages. First, care needs to be taken to ensure the two estimates are consistent.
Second, it is less efficient to learn. Instead, we typically learn just V π and combine it with
rewards from a trajectory to estimate Qπ.

Learning V π is preferred to learning Qπ for two reasons. First, Qπ is a more complex
function and may require more samples to learn a good estimate. This can be particularly
problematic in the setting where the actor and the critic are trained jointly. Second, it can
be more computationally expensive to estimate V π from Qπ. Estimating V π(s) from
Qπ(s, a) requires computing the values for all possible actions in state s, then taking the
action-probability weighted average to obtain V π(s). Additionally, this is difficult for
environments with continuous actions since estimating V π would require a representative
sample of actions from a continuous space.

Let’s look at how to estimate Qπ from V π.
If we assume for a moment that we have a perfect estimate of V π(s), then the

Q-function can be rewritten as a mix of the expected rewards for n time steps, followed by
V π(sn+1) as shown in Equation 6.6. To make this tractable to estimate, we use a single
trajectory of rewards (r1, . . . , rn) in place of the expectation, and substitute in V̂ π(s)
learned by the critic. Shown in Equation 6.7, this is known as n-step forward returns.

1. Within the time horizon implicitly given by γ.
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Qπ(st, at) = Eτ∼π[rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n] + γn+1V π(st+n+1) (6.6)

≈ rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n + γn+1V̂ π(st+n+1) (6.7)

Equation 6.7 makes the tradeoff between bias and variance of the estimator explicit.
The n steps of actual rewards are unbiased but have high variance since they come from
only a single trajectory. V̂ π(s) has lower variance since it reflects an expectation over all
of the trajectories seen so far, but is biased because it is calculated using a function
approximator. The intuition behind mixing these two types of estimates is that the
variance of the actual rewards typically increases the more steps away from t you take.
Close to t, the benefits of using an unbiased estimate may outweigh the variance
introduced. As n increases, the variance in the estimates will likely start to become
problematic, and switching to a lower-variance but biased estimate is better. The number
of steps of actual rewards, n, controls the tradeoff between the two.

Combining the n-step estimate for Qπ with V̂ π(st), we get an formula for estimating
the advantage function, shown in Equation 6.8.

Aπ
NSTEP(st, at) =Qπ(st, at)− V π(st)

≈ rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n (6.8)

+ γn+1V̂ π(st+n+1)− V̂ π(st)

The number of steps of actual rewards, n, controls the amount of variance in the
advantage estimator, and is a hyperparameter that needs to be tuned. Small n results in an
estimator with lower variance but higher bias, large n results in an estimator with higher
variance but lower bias.

6.2.1.2 Estimating Advantage: Generalized Advantage
Estimation (GAE)

Generalized Advantage Estimation (GAE) [123] was proposed by Schulman et al. as an
improvement over the n-step returns estimate for the advantage function. It addresses the
problem of having to explicitly choose the number of steps of returns, n. The main idea
behind GAE is that instead of picking one value of n, we mix multiple values of n. That is,
we calculate the advantage using a weighted average of individual advantages calculated
with n = 1, 2, 3, . . . , k. The purpose of GAE is to significantly reduce the variance of the
estimator while keeping the bias introduced as low as possible.

GAE is defined as an exponentially weighted average of all of the n-step forward return
advantages. It is shown in Equation 6.9 and the full derivation for GAE is given in Box 6.1.

Aπ
GAE(st, at) =

∞∑
`=0

(γλ)`δt+l,

where δt = rt + γV π(st+1)− V π(st)

(6.9)

Intuitively, GAE is taking a weighted average of a number of advantage estimators with
different bias and variance. GAE weights the high-bias, low-variance 1-step advantage the
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most, but also includes contributions from lower-bias, higher-variance estimators using
2, 3, . . . , n steps. The contribution decays at an exponential rate as the number of steps
increases. The decay rate is controlled by the coefficient λ. Therefore, the larger λ, the
higher the variance.

Box 6.1 Generalized Advantage Estimation Derivation

The derivation of GAE is a little involved, but worth working through to
understand how GAE estimates the advantage function. Fortunately, at the end of
it we will have a simple expression for GAE that is reasonably straightforward to
implement.

Aπ
t (n) is used to denote the advantage estimator calculated with n-step forward

returns. For example, Equation 6.10 shows Aπ
t (1), A

π
t (2), and Aπ

t (3).

Aπ
t (1) = rt + γV π(st+1)− V π(st)

Aπ
t (2) = rt + γrt+1 + γ2V π(st+2)− V π(st)

Aπ
t (3) = rt + γrt+1 + γ2rt+2 + γ3V π(st+3)− V π(st)

(6.10)

GAE is defined as an exponentially weighted average of all of the n-step
forward return advantage estimators.

Aπ
GAE(st, at) = (1− λ)(Aπ

t (1) + λAπ
t (2) + λ2Aπ

t (3) + · · · ),
where λ ∈ [0, 1]

(6.11)

Equation 6.11 is not very easy to work with. Fortunately, Schulman et al. [123]
introduce a variable δt for simplifying GAE.

δt = rt + γV π(st+1)− V π(st) (6.12)

Notice that rt + γV π(st+1) is the 1-step estimator for Qπ(st, at), so δt
represents the advantage function for time step t calculated with 1-step forward
returns. Let’s consider how to represent the n-step advantage function using δ.
First, Equation 6.10 can be expanded and rewritten as Equation 6.13. Notice that
in Equation 6.13 all of the intermediate V π(st+1) to V π(st+n−1) cancel to leave
just V π(st) and a term involving V π(st+n) for the last time step, as in
Equation 6.10.

Aπ
t (1) = rt + γV π(st+1)− V π(st)

Aπ
t (2) = rt + γV π(st+1)− V π(st)

+ γ
(
rt+1 + γV π(st+2)− V π(st+1)

)
Aπ

t (3) = rt + γV π(st+1)− V π(st)

+ γ
(
rt+1 + γV π(st+2)− V π(st+1)

)
+ γ2

(
rt+2 + γV π(st+3)− V π(st+2)

)
(6.13)
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Writing the advantage function in this form is useful because it shows that it
consists of multiple 1-step advantages weighted exponentially by γ as the time step
increases. Simplify the terms in Equation 6.13 with δ to obtain Equation 6.14.
This shows that the n-step advantage Aπ(n) is the sum of exponentially weighted
δs—that is, 1-step advantages.

Aπ
t (1) = δt

Aπ
t (2) = δt + γδt+1

Aπ
t (3) = δt + γδt+1 + γ2δt+2

(6.14)

Having expressed Aπ(i) in terms of δ, we can substitute it into Equation 6.11
and simplify to obtain a simple expression for GAE shown in Equation 6.15.

Aπ
GAE(st, at) =

∞∑
`=0

(γλ)`δt+l (6.15)

Both GAE and the n-step advantage function estimates include the discount factor γ
which controls how much an algorithm “cares” about future rewards compared to the
current reward. Additionally, they both have a parameter that controls the bias-variance
tradeoff: n for the advantage function and λ for GAE. So what have we gained with GAE?

Even though n and λ both control the bias-variance tradeoff, they do so in different
ways. n represents a hard choice, since it precisely determines the point at which the
high-variance rewards are switched for the V -function estimate. In contrast, λ represents a
soft choice: smaller values of λ will more heavily weight the V -function estimate, whilst
larger values will weight the actual rewards more. However, unless λ = 02 or λ = 1,3 using
λ still allows higher or lower variance estimates to contribute—hence the soft choice.

6.2.2 Learning the Advantage Function
We have seen two ways to estimate the advantage function. Both these methods assume we
have access to an estimate for V π, as shown below.

Aπ
NSTEP(st, at) ≈ rt + γrt+1 + · · ·+ γnrt+n + γn+1V̂ π(st+n+1)− V̂ π(st) (6.16)

Aπ
GAE(st, at) ≈

∞∑
`=0

(γλ)`δt+l, where δt = rt + γV̂ π(st+1)− V̂ π(st) (6.17)

We learn V π using TD learning in the same way we used it to learn Qπ for DQN. In
brief, learning proceeds as follows. Parametrize V π with θ, generate V π

tar for each of the

2. This reduces GAE to the 1-step advantage function estimate—this is the Temporal Difference estimate of returns.
3. In this case, only the actual rewards are used in the estimate—this is the Monte Carlo estimate of returns.
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experiences an agent gathers, and minimize the difference between V̂ π(s; θ) and V π
tar using

a regression loss such as MSE. Repeat this process for many steps.
V π

tar can be generated using any appropriate estimate. The simplest method is to set
V π

tar(s) = r + V̂ π(s′; θ). This naturally generalizes to an n-step estimate, as shown in
Equation 6.18.

V π
tar(st) = rt + γrt+1 + · · ·+ γnrt+n + γn+1V̂ π(st+n+1) (6.18)

Alternatively, we can use a Monte Carlo estimate for V π
tar shown in Equation 6.19.

V π
tar(st) =

T∑
t′=t

γt′−trt′ (6.19)

Or, we can set

V π
tar(st) = Aπ

GAE(st, at) + V̂ π(st) (6.20)

Practically, to avoid additional computation, the choice of V π
tar is often related to the

method used to estimate the advantage. For example, we can use Equation 6.18 when
estimating advantages using n-step returns, or Equation 6.20 when estimating advantages
using GAE.

It is also possible to use a more advanced optimization procedure when learning V̂ π.
For example, in the GAE paper [123], V̂ π is learned using a trust-region method.

6.3 A2C Algorithm
Here we put the actor and critic together to form the Advantage Actor-Critic (A2C)
algorithm, shown in Algorithm 6.1.

Algorithm 6.1 A2C algorithm

1: Set β ≥ 0 # entropy regularization weight
2: Set αA ≥ 0 # actor learning rate
3: Set αC ≥ 0 # critic learning rate
4: Randomly initialize the actor and critic parameters θA, θC4

5: for episode = 0 . . .MAX_EPISODE do
6: Gather and store data (st, at, rt, s′t) by acting in the environment using

↪→ the current policy
7: for t = 0 . . . T do
8: Calculate predicted V -value V̂ π(st) using the critic network θC

4. Note that the actor and critic can either be separate networks or a shared network. For more details, see
Section 6.5.
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9: Calculate the advantage Âπ(st, at) using the critic network θC
10: Calculate V π

tar(st) using the critic network θC and/or trajectory data
11: Optionally, calculate entropy Ht of the policy distribution, using

↪→ the actor network θA. Otherwise, set β = 0
12: end for
13: Calculate value loss, for example using MSE:
14: Lval(θC) =

1
T

∑T
t=0(V̂

π(st)− V π
tar(st))

2

15: Calculate policy loss:
16: Lpol(θA) =

1
T

∑T
t=0(−Âπ(st, at) logπθA(at | st)− βHt)

17: Update critic parameters, for example using SGD:5

18: θC = θC + αC∇θCLval(θC)
19: Update actor parameters, for example using SGD:
20: θA = θA + αA∇θALpol(θA)
21: end for

Each algorithm we have studied so far focused on learning one of two things: how to
act (a policy) or how to evaluate actions (a critic). Actor-Critic algorithms learn both
together. Aside from that, each element of the training loop should look familiar, since
they have been part of the algorithms presented earlier in this book. Let’s go through
Algorithm 6.1 step by step.

. Lines 1–3: Set the values of important hyperparameters: β, αA, αC . β determines
how much entropy regularization to apply (see below for more details). αA and αC

are the learning rates used when optimizing each of the networks. They can be the
same or different. These values vary depending on the RL problem we are trying to
solve, and need to be determined empirically.

. Line 4: Randomly initialize the parameters of both networks.

. Line 6: Gather some data using the current policy network θA. This algorithm
shows episodic training, but this approach also applies to batch training.

. Lines 8–10: For each (st, at, rt, s
′
t) experience in the episode, calculate V̂ π(st),

V π
tar(st), and Âπ(st, at) using the critic network.

. Line 11: For each (st, at, rt, s
′
t) experience in the episode, optionally calculate the

entropy of the current policy distribution πθA using the actor network. The role of
entropy is discussed in detail in Box 6.2.

. Lines 13–14: Calculate the value loss. As with the DQN algorithms, we selected
MSE6 as the measure of distance between V̂ π(st) and V π

tar(st). However, any other
appropriate loss function, such as the Huber loss, could be used.

5. Stochastic gradient descent.
6. Mean squared error.
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. Lines 15–16: Calculate the policy loss. This has the same form as we saw in the
REINFORCE algorithm with the addition of an optional entropy regularization
term. Notice that we are minimizing the loss, but we want to maximize the policy
gradient, hence the negative sign in front of Âπ(st, at) logπθA(at | st) as in
REINFORCE.

. Lines 17–18: Update the critic parameters using the gradient of the value loss.

. Lines 19–20: Update the actor parameters using the policy gradient.

Box 6.2 Entropy Regularization

The role of entropy regularization is to encourage exploration through diverse
actions. This idea was first proposed by Williams and Peng in 1991 [149] and has
since become a popular modification to reinforcement learning algorithms which
involve policy gradients.

To understand why it encourages exploration, first note that a distribution
that is more uniform has higher entropy. The more uniform a policy’s action
distribution is, the more diverse actions it produces. Conversely, policies which are
less uniform and produce similar actions have low entropy.

Let’s see why the entropy modification to the policy gradient shown in
Equation 6.21 encourages a more uniform policy.

Lpol(θA) =
1

T

T∑
i=0

(
− Âπ(st, at) logπθA(at | st)− βHt

)
(6.21)

Entropy H and β are always non-negative, so −βH is always negative. When a
policy is far from uniform, entropy decreases, −βH increases and contributes
more to the loss, and the policy will be encouraged to become more uniform.
Conversely, when a policy is more uniform, entropy increases, −βH decreases and
contributes less to the loss, and the policy will have little incentive to change
through the entropy term.

Modifying the loss in this way expresses a preference for a greater variety of
actions, provided that it does not reduce the term Âπ(st, at) logπθA(at | st) too
much. The balance between these two terms of the objective is controlled through
the β parameter.

6.4 Implementing A2C
We now have all of the elements needed to implement the Actor-Critic algorithms. The
main components are
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. Advantage estimation –for example, n-step returns or GAE

. Value loss and policy loss

. The training loop

In what follows, we discuss an implementation of each of these components, ending
with the training loop which brings them all together. Since Actor-Critic conceptually
extends REINFORCE, it is implemented by inheriting from the Reinforce class.

Actor-Critic is also an on-policy algorithm since the actor component learns a policy
using the policy gradient. Consequently, we train Actor-Critic algorithms using an
on-policy Memory, such as OnPolicyReplay which trains in an episodic manner, or
OnPolicyBatchReplay which trains using batches of data. The code that follows applies to
either approach.

6.4.1 Advantage Estimation

6.4.1.1 Advantage Estimation with n-Step Returns
The main trick when implementing the n-step Qπ estimate is to notice that we have
access to the rewards received in an episode in sequence. We can calculate the discounted
sum of n rewards for each element of the batch in parallel by taking advantage of vector
arithmetic, as shown in Code 6.1. The approach goes as follows:

1. Initialize a vector rets to populate with the Q-value estimates—that is, n-step
returns (line 4).

2. For efficiency, the computation is done from the last term to the first. The
future_ret is a placeholder to accumulate the summed rewards as we work
backwards (line 5). It is initialized to next_v_pred since the last term in the n-step
Q-estimate is V̂ π(st+n+1).

3. not_dones is a binary variable to handle the episodic boundary and stop the sum
from propagating across episodes.

4. Note that the n-step Q-estimate is defined recursively, that is,
Qcurrent = rcurrent + γQnext. This is mirrored exactly by line 8.

Code 6.1 Actor-Critic implementation: calculate n-step Q̂π(s, a)

1 # slm_lab/lib/math_util.py

2

3 def calc_nstep_returns(rewards, dones, next_v_pred, gamma, n):

4 rets = torch.zeros_like(rewards)

5 future_ret = next_v_pred

6 not_dones = 1 - dones

7 for t in reversed(range(n)):

8 rets[t] = future_ret = rewards[t] + gamma * future_ret * not_dones[t]

9 return rets
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Now, the ActorCritic class needs a method to compute the advantage estimates and
the target V values for computing the policy and value losses, respectively. This is relatively
straightforward, as shown in Code 6.2.

One detail about advs and v_targets is important to highlight. They do not have a
gradient, as can be seen in the torch.no_grad() and .detach() operations in lines 9–11.
In policy loss (Equation 6.1), the advantage only acts as a scalar multiplier to the gradient
of the policy log probability. As for the value loss from Algorithm 6.1 (lines 13–14), we
assume the target V -value is fixed, and the goal is to train the critic to predict V -value that
closely matches it.

Code 6.2 Actor-Critic implementation: calculate n-step advantages and V -target values

1 # slm_lab/agent/algorithm/actor_critic.py

2

3 class ActorCritic(Reinforce):

4 ...

5

6 def calc_nstep_advs_v_targets(self, batch, v_preds):

7 next_states = batch['next_states'][-1]

8 ...

9 with torch.no_grad():

10 next_v_pred = self.calc_v(next_states, use_cache=False)

11 v_preds = v_preds.detach() # adv does not accumulate grad

12 ...

13 nstep_rets = math_util.calc_nstep_returns(batch['rewards'],

batch['dones'], next_v_pred, self.gamma, self.num_step_returns)↪→

14 advs = nstep_rets - v_preds

15 v_targets = nstep_rets

16 ...

17 return advs, v_targets

6.4.1.2 Advantage Estimation with GAE
The implementation of GAE shown in Code 6.3 has a very similar form to that of n-step.
It uses the same backward computation, except that we need an extra step to compute the
δ term at each time step (line 11).

Code 6.3 Actor-Critic implementation: calculate GAE

1 # slm_lab/lib/math_util.py

2

3 def calc_gaes(rewards, dones, v_preds, gamma, lam):

4 T = len(rewards)

http://torch.no_grad(
http://withtorch.no_grad(
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5 assert T + 1 == len(v_preds) # v_preds includes states and 1 last

next_state↪→

6 gaes = torch.zeros_like(rewards)

7 future_gae = torch.tensor(0.0, dtype=rewards.dtype)

8 # to multiply with not_dones to handle episode boundary (last state has no

V(s'))↪→

9 not_dones = 1 - dones

10 for t in reversed(range(T)):

11 delta = rewards[t] + gamma * v_preds[t + 1] * not_dones[t] -

v_preds[t]↪→

12 gaes[t] = future_gae = delta + gamma * lam * not_dones[t] * future_gae

13 return gaes

Likewise, in Code 6.4, the Actor-Critic class method to compute the advantages and
target V -values closely follows that of n-step with two important differences. First,
calc_gaes (line 14) returns the full advantage estimates, whereas calc_nstep_returns in
the n-step case returns Q value estimates. To recover the target V values, we therefore
need to add the predicted V -values (line 15). Second, it is good practice to standardize the
GAE advantage estimates (line 16).

Code 6.4 Actor-Critic implementation: calculate GAE advantages and V -target values

1 # slm_lab/agent/algorithm/actor_critic.py

2

3 class ActorCritic(Reinforce):

4 ...

5

6 def calc_gae_advs_v_targets(self, batch, v_preds):

7 next_states = batch['next_states'][-1]

8 ...

9 with torch.no_grad():

10 next_v_pred = self.calc_v(next_states, use_cache=False)

11 v_preds = v_preds.detach() # adv does not accumulate grad

12 ...

13 v_preds_all = torch.cat((v_preds, next_v_pred), dim=0)

14 advs = math_util.calc_gaes(batch['rewards'], batch['dones'],

v_preds_all, self.gamma, self.lam)↪→

15 v_targets = advs + v_preds

16 advs = math_util.standardize(advs) # standardize only for advs, not

v_targets↪→

17 ...

18 return advs, v_targets

http://withtorch.no_grad(
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6.4.2 Calculating Value Loss and Policy Loss
In Code 6.5, the policy loss has the same form as in the REINFORCE implementation.
The only difference is that it uses the advantages instead of returns as a reinforcing signal,
so we can inherit and reuse the method from REINFORCE (line 7).

The value loss is simply a measure of the error between V̂ π (v_preds) and V π
tar

(v_targets). We are free to choose any appropriate measure such as MSE by setting the
net.loss_spec param in the spec file. This will initialize a loss function self.net_loss_fn

used in line 11.

Code 6.5 Actor-Critic implementation: two loss functions

1 # slm_lab/agent/algorithm/actor_critic.py

2

3 class ActorCritic(Reinforce):

4 ...

5

6 def calc_policy_loss(self, batch, pdparams, advs):

7 return super().calc_policy_loss(batch, pdparams, advs)

8

9 def calc_val_loss(self, v_preds, v_targets):

10 assert v_preds.shape == v_targets.shape, f'{v_preds.shape} !=

{v_targets.shape}'↪→

11 val_loss = self.val_loss_coef * self.net.loss_fn(v_preds, v_targets)

12 return val_loss

6.4.3 Actor-Critic Training Loop
The actor and critic can be implemented with either separate networks or a single shared
network. This is reflected in the train method in Code 6.6. Lines 10–15 calculate the
policy and value losses for training. If the implementation uses a shared network (line 16),
the two losses are combined and used to train the network (lines 17–18). If the actor and
critic are separate networks, the two losses are used separately to train the relevant
networks (lines 20–21). Section 6.5 goes into more details on network architecture.

Code 6.6 Actor-Critic implementation: training method

1 # slm_lab/agent/algorithm/actor_critic.py

2

3 class ActorCritic(Reinforce):

4 ...

5

6 def train(self):

7 ...
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8 clock = self.body.env.clock

9 if self.to_train == 1:

10 batch = self.sample()

11 clock.set_batch_size(len(batch))

12 pdparams, v_preds = self.calc_pdparam_v(batch)

13 advs, v_targets = self.calc_advs_v_targets(batch, v_preds)

14 policy_loss = self.calc_policy_loss(batch, pdparams, advs) # from

actor↪→

15 val_loss = self.calc_val_loss(v_preds, v_targets) # from critic

16 if self.shared: # shared network

17 loss = policy_loss + val_loss

18 self.net.train_step(loss, self.optim, self.lr_scheduler,

clock=clock, global_net=self.global_net)↪→

19 else:

20 self.net.train_step(policy_loss, self.optim,

self.lr_scheduler, clock=clock,

global_net=self.global_net)

↪→

↪→

21 self.critic_net.train_step(val_loss, self.critic_optim,

self.critic_lr_scheduler, clock=clock,

global_net=self.global_critic_net)

↪→

↪→

22 loss = policy_loss + val_loss

23 # reset

24 self.to_train = 0

25 return loss.item()

26 else:

27 return np.nan

6.5 Network Architecture
In Actor-Critic algorithms, we learn two parametrized functions—π (actor) and V π(s)
(critic). This makes it different from all of the other algorithms we have seen so far which
only learned one function. Naturally, there are more factors to consider when designing
the neural networks. Should they share any parameters? And if so, how many?

Sharing some parameters has its pros and cons. Conceptually, it is more appealing
because learning π and learning V π(s) for the same task are related. Learning V π(s) is
concerned with evaluating states effectively, and learning π is concerned with
understanding how to take good actions in states. They share the same input. In both
cases, good function approximations will involve learning how to represent the state space
so that similar states are clustered together. It is therefore likely that both approximations
could benefit by sharing the lower-level learning about the state space. Additionally,
sharing parameters helps reduce the total number of learnable parameters, so may improve
the sample efficiency of the algorithm. This is particularly relevant for Actor-Critic
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algorithms since the policy is being reinforced by a learned critic. If the actor and critic
networks are separate, the actor may not learn anything useful until the critic has become
reasonable, and this may take many training steps. However, if they share parameters, the
actor can benefit from the state representation being learning by the critic.

The high-level shared network architecture, shown on the right-hand side of
Figure 6.1, demonstrates how parameter sharing typically works for Actor-Critic
algorithms. The Actor and the Critic share the lower layers of the network. This can be
interpreted as learning a common representation of the state space. They also have one or
more separate layers at the top of the network. This is because the output space for each
network is different—for the actor, it’s a probability distribution over actions, and for the
critic, it’s a single scalar value representing V π(s). However, since both networks also have
different tasks, we should also expect that they need a number of specialized parameters to
perform well. This could be a single layer on top of the shared body or a number of layers.
Furthermore, the actor-specific and critic-specific layers do not have to be the same in
number or type.

Figure 6.1 Actor-Critic network architectures: shared vs. separate networks

One serious downside of sharing parameters is that it can make learning more unstable.
That’s because now there are two components to the gradient being backpropagated
simultaneously through the network—the policy gradient from the actor and the value
function gradient from the critic. The two gradients may have different scales which need
to be balanced for the agent to learn well [75]. For example, the log probability
component of the policy loss has a range ∈ (−∞, 0], and the absolute value of the
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advantage function may be quite small, particularly if the action resolution7 is small. This
combination of these two factors can result in small absolute values for the policy loss. On
the other hand, the scale of the value loss is related to the value of being in a state, which
may be very large.

Balancing two potentially different gradient scales is typically implemented by adding a
scalar weight to one of the losses to scale it up or down. For example, the value loss in
Code 6.5 was scaled with a self.val_loss_coef (line 11). However, this becomes another
hyperparameter to tune during training.

6.6 Training an A2C Agent
In this section we show how to train an Actor-Critic agent to play Atari Pong using
different advantage estimates—first n-step returns, then GAE. Then, we apply A2C with
GAE to a continuous-control environment BipedalWalker.

6.6.1 A2C with n-Step Returns on Pong
A spec file which configures an Actor-Critic agent with n-step returns advantage estimate
is shown in Code 6.7. The file is available in SLM Lab at slm_lab/spec/benchmark/a2c
/a2c_nstep_pong.json.

Code 6.7 A2C with n-step returns: spec file

1 # slm_lab/spec/benchmark/a2c/a2c_nstep_pong.json

2

3 {

4 "a2c_nstep_pong": {

5 "agent": [{

6 "name": "A2C",

7 "algorithm": {

8 "name": "ActorCritic",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "explore_var_spec": null,

12 "gamma": 0.99,

13 "lam": null,

14 "num_step_returns": 11,

15 "entropy_coef_spec": {

16 "name": "no_decay",

17 "start_val": 0.01,

7. Resolution can be interpreted as simulated time elapsed between time steps. High-resolution environments
simulate time in a fine-grained manner. This means that the change from one state to the next is small because
only a small amount of “time” has passed. Low-resolution environments simulate time more coarsely, leading to
larger changes from one state to the next.
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18 "end_val": 0.01,

19 "start_step": 0,

20 "end_step": 0

21 },

22 "val_loss_coef": 0.5,

23 "training_frequency": 5

24 },

25 "memory": {

26 "name": "OnPolicyBatchReplay"

27 },

28 "net": {

29 "type": "ConvNet",

30 "shared": true,

31 "conv_hid_layers": [

32 [32, 8, 4, 0, 1],

33 [64, 4, 2, 0, 1],

34 [32, 3, 1, 0, 1]

35 ],

36 "fc_hid_layers": [512],

37 "hid_layers_activation": "relu",

38 "init_fn": "orthogonal_",

39 "normalize": true,

40 "batch_norm": false,

41 "clip_grad_val": 0.5,

42 "use_same_optim": false,

43 "loss_spec": {

44 "name": "MSELoss"

45 },

46 "actor_optim_spec": {

47 "name": "RMSprop",

48 "lr": 7e-4,

49 "alpha": 0.99,

50 "eps": 1e-5

51 },

52 "critic_optim_spec": {

53 "name": "RMSprop",

54 "lr": 7e-4,

55 "alpha": 0.99,

56 "eps": 1e-5

57 },

58 "lr_scheduler_spec": null,

59 "gpu": true

60 }

61 }],
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62 "env": [{

63 "name": "PongNoFrameskip-v4",

64 "frame_op": "concat",

65 "frame_op_len": 4,

66 "reward_scale": "sign",

67 "num_envs": 16,

68 "max_t": null,

69 "max_frame": 1e7

70 }],

71 "body": {

72 "product": "outer",

73 "num": 1,

74 },

75 "meta": {

76 "distributed": false,

77 "log_frequency": 10000,

78 "eval_frequency": 10000,

79 "max_session": 4,

80 "max_trial": 1

81 }

82 }

83 }

Let’s walk through the main components.

. Algorithm: The algorithm is Actor-Critic (line 8), the action policy is the default
policy (line 10) for discrete action space (categorical distribution). γ is set on line 12.
If lam is specified for λ (not null), then GAE is used to estimate the advantages. If
num_step_returns is specified instead, then n-step returns is used (lines 13–14). The
entropy coefficient and its decay during training is specified in lines 15–21. The
value loss coefficient is specified in line 22.

. Network architecture: Convolutional neural network with three convolutional
layers and one fully connected layer with ReLU activation function (lines 29–37).
The actor and critic use a shared network as specified in line 30. The network is
trained on a GPU if available (line 59).

. Optimizer: The optimizer is RMSprop [50] with a learning rate of 0.0007
(lines 46–51). If separate networks are used instead, it is possible to specify a different
optimizer setting for the critic network (lines 52–57) by setting use_same_optim to
false (line 42). Since the network is shared in this case, this is not used. There is no
learning rate decay (line 58).

. Training frequency: Training is batch-wise because we have selected
OnPolicyBatchReplay memory (line 26) and the batch size is 5× 16. This is
controlled by the training_frequency (line 23) and the number of parallel
environments (line 67). Parallel environments are discussed in Chapter 8.
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. Environment: The environment is Atari Pong [14, 18] (line 63).

. Training length: Training consists of 10 million time steps (line 69).

. Evaluation: The agent is evaluated every 10,000 time steps (line 78).

To train this Actor-Critic agent using SLM Lab, run the commands shown in Code 6.8
in a terminal. The agent should start with the score of -21 and achieve close to the
maximum score of 21 on average after 2 million frames.

Code 6.8 A2C with n-step returns: training an agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/a2c/a2c_nstep_pong.json

a2c_nstep_pong train↪→

This will run a training Trial with four Sessions to obtain an average result. The trial
should take about half a day to complete when running on a GPU. The graph and its
moving average are shown in Figure 6.2.

(a) Trial graph (b) Trial graph with moving average

Figure 6.2 Actor-Critic (with n-step returns) trial graphs from SLM Lab averaged over

four sessions. The vertical axis shows the total rewards averaged over eight episodes during

checkpoints, and the horizontal axis shows the total training frames. A moving average with a

window of 100 evaluation checkpoints is shown on the right.

6.6.2 A2C with GAE on Pong
Next, to switch from n-step returns to GAE, simply modify the spec from Code 6.7 to
specify a value for lam and set num_step_returns to null, as shown in Code 6.9. The file is
also available in SLM Lab at slm_lab/spec/benchmark/a2c/a2c_gae_pong.json.
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Code 6.9 A2C with GAE: spec file

1 # slm_lab/spec/benchmark/a2c/a2c_gae_pong.json

2

3 {

4 "a2c_gae_pong": {

5 "agent": [{

6 "name": "A2C",

7 "algorithm": {

8 ...

9 "lam": 0.95,

10 "num_step_returns": null,

11 ...

12 }

13 }

Then, run the commands shown in Code 6.10 in a terminal to train an agent.

Code 6.10 A2C with GAE: training an agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/a2c/a2c_gae_pong.json a2c_gae_pong

train↪→

Similarly, this will run a training Trial to produce the graphs shown in Figure 6.3.

(a) Trial graph (b) Trial graph with moving average

Figure 6.3 Actor-Critic (with GAE) trial graphs from SLM Lab averaged over four sessions.
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6.6.3 A2C with n-Step Returns on BipedalWalker
So far, we have been training on discrete environments. Recall that policy-based method
can also be applied directly to continuous-control problems. Now we will look at the
BipedalWalker environment that was introduced in Section 1.1.

Code 6.11 shows a spec file which configures an A2C with n-step returns agent for the
BipedalWalker environment. The file is available in SLM Lab at
slm_lab/spec/benchmark/a2c /a2c_nstep_cont.json. In particular, note the changes in
network architecture (lines 29–31) and environment (lines 54–57).

Code 6.11 A2C with n-step returns on BipedalWalker: spec file

1 # slm_lab/spec/benchmark/a2c/a2c_nstep_cont.json

2

3 {

4 "a2c_nstep_bipedalwalker": {

5 "agent": [{

6 "name": "A2C",

7 "algorithm": {

8 "name": "ActorCritic",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "explore_var_spec": null,

12 "gamma": 0.99,

13 "lam": null,

14 "num_step_returns": 5,

15 "entropy_coef_spec": {

16 "name": "no_decay",

17 "start_val": 0.01,

18 "end_val": 0.01,

19 "start_step": 0,

20 "end_step": 0

21 },

22 "val_loss_coef": 0.5,

23 "training_frequency": 256

24 },

25 "memory": {

26 "name": "OnPolicyBatchReplay",

27 },

28 "net": {

29 "type": "MLPNet",

30 "shared": false,

31 "hid_layers": [256, 128],

32 "hid_layers_activation": "relu",

33 "init_fn": "orthogonal_",
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34 "normalize": true,

35 "batch_norm": false,

36 "clip_grad_val": 0.5,

37 "use_same_optim": false,

38 "loss_spec": {

39 "name": "MSELoss"

40 },

41 "actor_optim_spec": {

42 "name": "Adam",

43 "lr": 3e-4,

44 },

45 "critic_optim_spec": {

46 "name": "Adam",

47 "lr": 3e-4,

48 },

49 "lr_scheduler_spec": null,

50 "gpu": false

51 }

52 }],

53 "env": [{

54 "name": "BipedalWalker-v2",

55 "num_envs": 32,

56 "max_t": null,

57 "max_frame": 4e6

58 }],

59 "body": {

60 "product": "outer",

61 "num": 1

62 },

63 "meta": {

64 "distributed": false,

65 "log_frequency": 10000,

66 "eval_frequency": 10000,

67 "max_session": 4,

68 "max_trial": 1

69 }

70 }

71 }

Run the commands shown in Code 6.12 in a terminal to train an agent.
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Code 6.12 A2C with n-step returns on BipedalWalker: training an agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/a2c/a2c_nstep_cont.json

a2c_nstep_bipedalwalker train↪→

This will run a training Trial to produce the graphs shown in Figure 6.4.

(a) Trial graph (b) Trial graph with moving average

Figure 6.4 Trial graphs of A2C with n-step returns on BipedalWalker from SLM Lab averaged

over four sessions.

BipedalWalker is a challenging continuous environment that is considered solved when
the total reward moving average is above 300. In Figure 6.4, our agent did not achieve this
within 4 million frames. We will return to this problem in Chapter 7 with a better attempt.

6.7 Experimental Results
In this section we will run two Actor-Critic experiments using SLM Lab. The first
experiment will study the effect of the step size when using the n-step returns advantage
estimate. The second experiment studies the effect of λ when using GAE. We will use the
Atari Breakout game as a more challenging environment.
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6.7.1 Experiment: The Effect of n-Step Returns
The step size n controls the bias-variance trade-off in the n-step returns advantage
estimate—the larger n, the larger the variance. The step size n is a tunable hyperparameter.

In this experiment, we study the effect of using different values of n for the n-step
returns in Actor-Critic by performing a grid search. The experiment spec file is extended
from Code 6.7 by adding a search spec for num_step_returns, as shown in Code 6.13.

Note that we now use a different environment, Breakout, which is slightly more
challenging than Pong. Lines 4 and 7 specify the change in the environment. Line 19
specifies a grid search over a list of n values num_step_returns. The full spec file is
available in SLM Lab at slm_lab/spec/experimental/a2c/a2c_nstep_n_search.json.

Code 6.13 A2C with n-step returns spec file with search spec for different values of n,
num_step_returns.

1 # slm_lab/spec/experimental/a2c/a2c_nstep_n_search.json

2

3 {

4 "a2c_nstep_breakout": {

5 ...

6 "env": [{

7 "name": "BreakoutNoFrameskip-v4",

8 "frame_op": "concat",

9 "frame_op_len": 4,

10 "reward_scale": "sign",

11 "num_envs": 16,

12 "max_t": null,

13 "max_frame": 1e7

14 }],

15 ...

16 "search": {

17 "agent": [{

18 "algorithm": {

19 "num_step_returns__grid_search": [1, 3, 5, 7, 9, 11]

20 }

21 }]

22 }

23 }

24 }

To run the experiment in SLM Lab, use the commands shown in Code 6.14.
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Code 6.14 Run an experiment to search over different step sizes n in n-step returns, as
defined in the spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/experimental/a2c/a2c_nstep_n_search.json

a2c_nstep_breakout search↪→

This will run an Experiment which spawns six Trials, each with a different value of
num_step_returns substituted in the original Actor-Critic spec. Each Trial runs four
Sessions to obtain an average. The multitrial graphs are shown in Figure 6.5.

(a) Multitrial graph (b) Multitrial with moving average

Figure 6.5 The effect of different n-step returns step sizes of Actor-Critic on the Breakout
environment. Larger step sizes n perform better.

Figure 6.5 shows the effect of different n-step returns step sizes on Actor-Critic in the
Breakout environment. Larger step sizes n perform better, and we can also see that n is not
a very sensitive hyperparameter. With n = 1, the n-step returns reduce to the Temporal
Difference estimate of returns, which yields the worst performance in this experiment.

6.7.2 Experiment: The Effect of λ of GAE
Recall that GAE is an exponentially weighted average of all the n-step returns advantages,
and the higher the decay factor λ, the higher the variance of the estimate. The optimal
value of λ is a hyperparameter that is tuned for a specific problem.

In this experiment, we look at the effect of using different λ values on GAE in
Actor-Critic by performing a grid search. The experiment spec file is extended from
Code 6.9 by adding a search spec for lam, as shown in Code 6.15.
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We will also use Breakout as the environment. Lines 4 and 7 specify the change in the
environment. Line 19 specifies a grid search over a list of λ values lam. The full spec file is
available in SLM Lab at slm_lab/spec/experimental/a2c/a2c_gae_lam_search.json.

Code 6.15 Actor-Critic spec file with search spec for different values of GAE λ, lam

1 # slm_lab/spec/experimental/a2c/a2c_gae_lam_search.json

2

3 {

4 "a2c_gae_breakout": {

5 ...

6 "env": [{

7 "name": "BreakoutNoFrameskip-v4",

8 "frame_op": "concat",

9 "frame_op_len": 4,

10 "reward_scale": "sign",

11 "num_envs": 16,

12 "max_t": null,

13 "max_frame": 1e7

14 }],

15 ...

16 "search": {

17 "agent": [{

18 "algorithm": {

19 "lam__grid_search": [0.50, 0.70, 0.90, 0.95, 0.97, 0.99]

20 }

21 }]

22 }

23 }

24 }

To run the experiment in SLM Lab, use the commands shown in Code 6.16.

Code 6.16 Run an experiment to search over different values of GAE λ as defined

in the spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/experimental/a2c/a2c_gae_lam_search.json

a2c_gae_breakout search↪→

This will run an Experiment which spawns six Trials, each with a different value of
lam substituted in the original Actor-Critic spec. Each Trial runs four Sessions to obtain
an average. The multitrial graphs are shown in Figure 6.6.
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(a) Multitrial graph (b) Multitrial with moving average

Figure 6.6 The effect of different values of GAE λ on Actor-Critic in the Breakout environment.

λ = 0.97 performs best, followed closely by 0.90 and 0.99.

As we can see in Figure 6.6, λ = 0.97 performs best with an episodic score of near 400,
followed closely by λ = 0.90 and 0.99. This experiment also demonstrates that λ is not a
very sensitive hyperparameter. Performance is impacted only slightly when λ is deviates
from the optimal value. For instance, λ = 0.70 still produces good result, but λ = 0.50
yields poor performance.

6.8 Summary
This chapter introduced Actor-Critic algorithms. We saw that these algorithms have two
components, an actor and a critic. The actor learns a policy π and the critic learns the
value function V π. The learned V̂ π is used in combination with actual rewards to generate
a reinforcing signal for the policy. The reinforcing signal is often the advantage function.

Actor-Critic algorithms combine ideas from policy-based and value-based methods that
were introduced in earlier chapters. Optimizing the actor is similar to REINFORCE but
with a learned reinforcing signal instead of a Monte-Carlo estimate generated from the
current trajectory of rewards. Optimizing the critic is similar to DQN in that it uses the
bootstrapped temporal difference learning technique.

This chapter discussed two ways to estimate the advantage function—n-step returns
and GAE. Each method allows users to control the amount of bias and variance in the
advantage by choosing how much to weight the actual trajectory of rewards compared to
the value function estimate V̂ π. The n-step advantage estimate has a hard cutoff controlled
by n, whereas GAE has a soft cutoff controlled by the parameter λ.
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The chapter ended with a discussion of two approaches to designing neural network
architectures for Actor-Critic algorithms—either by sharing parameters or by keeping the
Actor and Critic networks entirely separate.

6.9 Further Reading
. “Neuronlike Adaptive Elements That Can Solve Difficult Learning Control

Problems,” Barto et al., 1983 [11].

. “High Dimensional Continuous Control with Generalized Advantage Estimation,”
Schulman et al., 2015 [123].

. “Trust Region Policy Optimization,” Schulman et al., 2015 [122].

6.10 History
Most of the fundamental concepts underlying modern Actor-Critic algorithms were
outlined in 1983 in Sutton, Barto, and Anderson’s paper “Neuronlike Adaptive Elements
That Can Solve Difficult Learning Control Problems” [11]. This paper introduced the idea
of jointly learning two interacting modules: a policy unit or actor, referred to in this paper
as an “Associative Search Element” or ASE, and a critic, named an “Adaptive Critic
Element” or ACE. The algorithm was motivated by neuroscience which is a field that has
often inspired deep learning research. For example, CNNs were originally inspired by the
human visual cortex [43, 71]. Sutton et al. argue that modeling a structure as complex as a
neuron at the level of a logic-gate-like unit is inadequate. They proposed the ASE/ACE as
an initial exploration into systems that consist of a network of complex learned sub-units.
Their hope was that shifting from simple to complex primitive units would help solve
significantly more complex problems.

It is likely that the name ACE was inspired by Widrow et al. [146] who ten years
earlier, in 1973, used the phrase “learning with a critic” to distinguish RL from supervised
learning (SL) which can be thought of as “learning with a teacher” [11].8 However,
applying a learned critic to improve the reinforcing signal given to another part of the
system was novel. Sutton et al. explain the ACE’s purpose very clearly:

It [the ACE] adaptively develops an evaluation function that is more
informative than the one directly available from the learning system’s
environment. This reduces the uncertainty under which the ASE will
learn [11].9

8. In SL, a “teacher” gives you the correct answer for each datapoint, whereas in RL, an agent only gets
“critiqued” via the reward function. The “critique” is analogous to being told that what you just did was good,
bad, or OK. You are not told “what you should have done was X.”
9. If you wish to learn more about this, the original paper is really worth reading. It is clearly written and
contains a good explanation of the credit assignment problem in RL and the difference between reinforcement
learning and supervised learning.
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Credit assignment and sparse reward signals are two of the most important challenges in
RL. The ACE tackles the problem of credit assignment in RL by using the critic to
transform a potentially sparse reward into a more informative, dense reinforcing signal.
A significant amount of research since this paper has been focused on developing better
critics.

The advantage function was first mentioned in 1983 by Baird [9]. However, it was in
1999 that Sutton et al. [133] defined the advantage as Aπ(s, a) = Qπ(s, a)− V π(s).

There was a surge of interest in Actor-Critic algorithms after the publication of the
Asynchronous Advantage Actor-Critic (A3C) [87] algorithm by Mnih et al. in 2016. This
paper introduced a simple scalable method for parallelizing the training of reinforcement
learning algorithms using asynchronous gradient ascent. We will look at this in Chapter 8.

http://AsynchronousAdvantageActor-Critic(A3C)[87]algorithmbyMnihetal.in2016
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7

Proximal Policy Optimization
(PPO)

One challenge when training agents with policy gradient algorithms is that they are
susceptible to performance collapse in which an agent suddenly starts to perform badly. This
scenario can be hard to recover from because an agent will start to generate poor
trajectories which are then used to further train the policy. We have also seen that
on-policy algorithms are sample-inefficient because they cannot reuse data.

Proximal Policy Optimization (PPO) by Schulman et al. [124] is a class of optimization
algorithms that addresses these two issues. The main idea behind PPO is to introduce a
surrogate objective which avoids performance collapse by guaranteeing monotonic policy
improvement. This objective also has the benefit of reusing off-policy data in the training
process.

PPO can be used to extend REINFORCE or Actor-Critic by replacing the original
objective J(πθ) with the modified PPO objective. This modification leads to more stable
and more sample-efficient training.

In this chapter we first discuss the problem of performance collapse in Section 7.1.1.
Then, we see how this can be addressed with the Monotonic Improvement Theory in
Section 7.1.2. We apply the theory to modify the policy gradient objective into a surrogate
objective.

After introducing the theoretical foundations, we discuss the PPO algorithm in
Section 7.2. We then show how PPO is implemented in SLM Lab as an extension of the
Actor-Critic algorithm in Section 7.4.

7.1 Surrogate Objective
In this section, we introduce the surrogate objective for the PPO algorithm. First, we
motivate this by discussing the problem of performance collapse. Then we see how the
original policy gradient objective can be modified to avoid this problem.
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7.1.1 Performance Collapse
In our discussions of policy gradient algorithms, we have seen that a policy πθ is optimized
by changing the policy parameters θ using the policy gradient ∇θJ(πθ). This is an
indirect approach because we are searching for the optimal policy in a policy space which
we do not have direct control over. To understand why, we first need to look at the
distinction between a policy space and a parameter space.

During the optimization process, we search over a sequence of policies
π1, π2, π3, . . . , πn within the set of all policies. This is known as the policy space1 Π.

Π = {πi} (7.1)

With the policy parametrized as πθ, we can also conveniently express the parameter
space for θ. Each unique θ parametrizes an instance of the policy. The parameter space is Θ.

Θ = {θ ∈ Rm, where m is the number of parameters} (7.2)

Although the objective J(πθ) is computed using trajectories produced by a policy in
the policy space, πθ ∈ Π, the search for the optimal policy actually occurs in the parameter
space by finding the right parameters, θ ∈ Θ. That is, our control is in Θ, but the result is
in Π. In practice, we control the step size of parameter updates using a learning rate α, as
shown in Equation 7.3.

∆θ = α∇θJ(πθ) (7.3)

Unfortunately, the policy space and the parameter space do not always map
congruently, and the distances in both spaces don’t necessarily correspond. Take two pairs
of parameters, say (θ1, θ2) and (θ2, θ3), and suppose they have the same distance in the
parameter space, that is, dθ(θ1, θ2) = dθ(θ2, θ3). However, their mapped policies
(πθ1 , πθ2) and (πθ2 , πθ3) do not necessarily have the same distance. That is to say,

dθ(θ1, θ2) = dθ(θ2, θ3) 6⇔ dπ(πθ1 , πθ2) = dπ(πθ2 , πθ3) (7.4)

This presents a potential problem because the ideal step size α for a parameter update
becomes difficult to determine. It is not clear beforehand how small or large a step in the
policy space Π it is going to map to. If α is too small, it will require many iterations and
training will take a long time. Alternatively, the policy may also get stuck in some local
maxima. If α is too large, the corresponding step in policy space will overshoot the
neighborhood of good policies and cause a performance collapse. When this happens, the
new policy, which is much worse, will be used to generate bad trajectory data for the next

1. Note that there can be infinitely many policies in the policy space.
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update and ruin future policy iterations. Because of this, a performance collapse can be
very difficult to recover from. Figure 7.1 shows an example of a brief performance collapse.

Figure 7.1 Example graph from SLM Lab showing performance collapse in REINFORCE on

CartPole. Notice that the return (no-discount, i.e. total episodic reward) reaches its maximum

of 200 then collapses after 80k frames.

In general, a constant step size does not avoid these issues. In gradient ascent
θ ← θ + α∇θJ(πθ), the learning rate α is usually fixed or decayed, with only the
direction ∇θJ(πθ) varying. However, since the mapping is nonisometric, a constant step
size may still map to varying distances in Π.

The optimal choice for α will vary depending on where the current policy πθ is in the
policy space Π, and how the current parameter θ maps to the neighborhood of πθ in Π
from its own neighborhood in Θ. Ideally, an algorithm should adaptively vary the
parameter step size based on these factors.
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To derive an adaptive step size based on how a particular update in parameter space will
affect policy space, we first need way to measure the difference in performance between
two policies.

7.1.2 Modifying the Objective
In this section, we introduce the relative policy performance identity which measures the
difference in performance between two policies. We then show how this can be used to
modify the policy gradient objective so as to guarantee monotonic performance
improvement during optimization.

Intuitively, since the problem is with the step size, we can try to introduce a constraint
that bounds it to a safe size to prevent performance collapse. By imposing the right
constraint, we can derive what is known as the Monotonic Improvement Theory.2

First, let a policy π be given, and let its next iteration (after a parameter update) be π′.
We can define a relative policy performance identity as the difference in the objectives between
them, shown in Equation 7.5. Note that the advantage Aπ(st, at) is always computed
from the older policy π.

J(π′)− J(π) = Eτ∼π′

[ T∑
t=0

γtAπ(st, at)

]
(7.5)

Box 7.1 Relative Policy Performance Identity Derivation

Here we derive the relative policy performance identity shown in Equation 7.5.
First, we rewrite the advantage in the form suitable for our derivation. This is

shown in Equation 7.6. The Q-term is expanded into the expectation of the first
reward and the expected V -value over all possible next states. The expectation is
necessary to account for stochastic environment transitions which do not depend
on any particular policy.

Aπ(st, at) = Qπ(st, at)− V π(st)

= Est+1,rt∼p(st+1,rt | st,at)[rt + γV π(st+1)]− V π(st)
(7.6)

This will be used in the transformation on the right-hand side of Equation 7.5
as follows.

2. The derivations in this section are adapted and expanded from the wonderful Berkeley lecture CS 294: Deep
Reinforcement Learning, Fall 2017 taught by Sergey Levine. Some of the more advanced proofs will be omitted as they
are beyond the scope of this book, but curious readers may find them in original lecture notes by Joshua Achiam
from “Lecture 13: Advanced Policy Gradient Methods” [78]. This book and the notes use mostly similar notations,
so it will be easy to read and compare both. Additionally, a recorded lecture which covers the notes in greater
detail is also available on YouTube under the title CS294-112 10/11/17 at https://youtu.be/ycCtmp4hcUs.

https://youtu.be/ycCtmp4hcUs
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Eτ∼π′

[∑
t≥0

γtAπ(st, at)

]
(7.7)

= Eτ∼π′

[∑
t≥0

γt
(
Est+1,rt∼p(st+1,rt | st,at)

[
rt + γV π(st+1)

]
− V π(st)

)]
(7.8)

= Eτ∼π′

[∑
t≥0

γt
(
rt + γV π(st+1)− V π(st)

)]
(7.9)

= Eτ∼π′

[∑
t≥0

γtrt +
∑
t≥0

γt+1V π(st+1)−
∑
t≥0

γtV π(st)

]
(7.10)

= Eτ∼π′

[∑
t≥0

γtrt

]
+ Eτ∼π′

[∑
t≥0

γt+1V π(st+1)−
∑
t≥0

γtV π(st)

]
(7.11)

= J(π′) + Eτ∼π′

[∑
t≥1

γtV π(st)−
∑
t≥0

γtV π(st)

]
(7.12)

= J(π′)− Eτ∼π′ [V π(s0)] (7.13)

= J(π′)− Eτ∼π′ [J(π)] (7.14)

= J(π′)− J(π) (7.15)

First, let’s restate 7.5, then substitute the definition of the advantage from
Equation 7.6 to obtain 7.8. For the next step, notice that the outer expectation
Eτ∼π′ in fact contains expected actions from the policy (Eat∼π′ ) and expected
states and rewards from the transition function (Est+1,rt∼p(st+1,rt | st,at)).
Consequently, we can absorb the inner expectation into the outer expectation due
to overlapping terms to yield 7.9.

Next, distribute the summation sign in 7.10. By linearity of expectation, isolate
the first term in 7.11, which is simply the new objective J(π′). This gives us 7.12.
Now, make an index shift for the first summation inside the expectation by
replacing index t+ 1 with index t that starts at 1. Now, both summations look
identical except for the index, so they cancel out to leave only the term for t = 0,
which is V π(s0) in 7.13. The value function at the initial state is simply the
objective J(π), since V π(s0) = Eτ∼π[

∑
t≥0 γ

trt] = J(π). This gives us 7.14.
Finally, the objective of policy π is independent of the new policy π′, so we drop
the expectation to obtain J(π′)− J(π).

The relative policy performance identity J(π′)− J(π) serves as a metric to measure
policy improvements. If the difference is positive, the newer policy π′ is better than π.
During a policy iteration, we should ideally choose a new policy π′ such that this
difference is maximized. Therefore, maximizing objective J(π′) is equivalent to
maximizing this identity, and they can both be done by gradient ascent.
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max
π′

J(π′) ⇐⇒ max
π′

(
J(π′)− J(π)

)
(7.16)

Framing the objective this way also means that every policy iteration should ensure a
non-negative (monotonic) improvement—that is, J(π′)− J(π) ≥ 0—since in the worst
case we can simply let π′ = π to get no improvement. With this, there will be no
performance collapses throughout the training, which is the property we are looking for.

However, there is a limitation that won’t let us use this identity as an objective function.
Note that in the expression Eτ∼π′

[∑
t≥0 A

π(st, at)
]
, the expectation requires

trajectories to be sampled from the new policy π′ for an update, but π′ is not available
until after the update. To remedy this paradox, we need to find a way to alter it to use the
old policy π that is available.

To this end, we can assume that successive policies π, π′ are relatively close (this can be
measured by low KL divergence), so that the state distributions from them are similar.

Then, Equation 7.5 can be approximated by using trajectories from the old policy,
τ ∼ π, adjusted with importance sampling weights3 π′(at | st)

π(at | st) . This adjusts the returns
generated using π by the ratio of action probabilities between the two successive policies
π, π′. The rewards associated with actions that are more likely under the new policy π′

will be upweighted, and rewards associated with relatively less likely actions under π′ will
be downweighted. This approximation is shown in Equation 7.17.

J(π′)− J(π) = Eτ∼π′

[∑
t≥0

Aπ(st, at)

]

≈ Eτ∼π

[∑
t≥0

Aπ(st, at)
π′(at | st)
π(at | st)

]
= JCPI

π (π′)

(7.17)

The new objective on the right-hand side of Equation 7.17, JCPI
π (π′), is called a

surrogate objective because it contains a ratio of the new and old policies, π′ and π. The
superscript CPI stands for “conservative policy iteration.”

Now that we have a new objective, to use it for a policy gradient algorithm we need to
check if optimization under this objective is still performing policy gradient ascent. Fortunately, we
can show that the gradient of the surrogate objective is equal to the policy gradient, as
stated in Equation 7.18. The derivation is shown in Box 7.2.

∇θJ
CPI
θold

(θ)|θold = ∇θJ(πθ)|θold (7.18)

3. Importance sampling is a method used to estimate an unknown distribution while using only data sampled
from a known distribution. The full derivation of Equation 7.5 is beyond the scope of this book, but can be
found in “Lecture 13: Advanced Policy Gradient Methods” [78].
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Box 7.2 Surrogate Policy Gradient Derivation

Here, we will show that gradient of the surrogate objective is equal to the policy
gradient, as stated in Equation 7.18.

We start by taking the gradient of JCPI
π (π′). To do so, write the variable θ

explicitly. In particular, write the new policy π′ as a variable πθ, and the old policy
π as a constant πθold at which we evaluate the gradient notated |θold (this is necessary
because of the explicit dependence of JCPI

π (π′) on π, which cannot be dropped).

∇θJ
CPI
θold

(θ)|θold = ∇θEτ∼πθold

[∑
t≥0

Aπθold (st, at)
πθ(at | st)
πθold(at | st)

]
|θold (7.19)

= Eτ∼πθold

[∑
t≥0

Aπθold (st, at)
∇θπθ(at | st)|θold

πθold(at | st)

]
(7.20)

= Eτ∼πθold

[∑
t≥0

Aπθold (st, at)
∇θπθ(at | st)|θold

πθ(at | st)|θold

]
(7.21)

= Eτ∼πθold

[∑
t≥0

Aπθold (st, at)∇θ logπθ(at | st)|θold

]
(7.22)

= ∇θJ(πθ)|θold (7.23)

First, evaluate the gradient at the old policy on the surrogate objective from
Equation 7.17. Since only the upper fraction term contains variable θ, we can
bring in the gradient and evaluation term to give 7.20. Now, note that the lower
fraction term πθold(at | st) is the same as writing πθ evaluated at θ = θold, we can
do so and get 7.21. Finally, recall the log-derivative trick ∇θ log p(x|θ) = ∇θp(x|θ)

p(x|θ)
from Equation 2.14 that we used to derive the policy gradient. With this, we can
rewrite the fraction and obtain 7.22. This is just the policy gradient ∇θJ(πθ).
Hence, we have Equation 7.24.

∇θJ
CPI
θold

(θ)|θold = ∇θJ(πθ)|θold (7.24)

Equation 7.24 says that the gradient of surrogate objective is equal to the policy
gradient. This gives the assurance that optimization under surrogate objective is
still performing policy gradient ascent. It is also useful because policy improvement
can now be measured directly, and maximizing it means maximizing policy
improvement. Additionally, now we know that in Equation 7.17 JCPI

π (π′) is a
linear approximation to J(π′)− J(π), since their first-order derivatives (gradients)
are equal.

Before JCPI
π (π′) can stand in as the new objective for a policy gradient algorithm, there

is one final requirement to satisfy. JCPI
π (π′) is only an approximation for J(π′)− J(π), so

it will contain some error. However, we want to guarantee when we use
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JCPI
π (π′) ≈ J(π′)− J(π) that J(π′)− J(π) ≥ 0. We therefore need to understand the

error introduced by the approximation.
If successive policies π, π′ are sufficiently close as measured by their KL divergence,

then one can write a relative policy performance bound.4 To do so, express the absolute error
by taking the difference between the new objective J(π′) and its estimated improvement
J(π) + JCPI

π (π′). Then, the error can be bounded in terms of the KL divergence between
π and π′.∣∣(J(π′)− J(π)

)
− JCPI

π (π′)
∣∣ ≤ C

√
Et

[
KL

(
π′(at | st) ||π(at | st)

)]
(7.25)

C is a constant that needs to be chosen, and KL is the KL divergence.5 Equation 7.25
shows that if successive policies π, π′ are close in their distributions, so that KL divergence
on the right-hand side is low, then the error term on the left-hand side is low.6 With low
error, JCPI

π (π′) is a good approximation for J(π′)− J(π).
Using this, it is quite straightforward to derive the result we are after, namely

J(π′)−J(π) ≥ 0. This is called the monotonic improvement theory [78], because it guarantees
at least a positive or zero improvement at every policy iteration, but never deterioration.
To obtain this, first expand Equation 7.25 and consider its lower bound in Equation 7.26.

J(π′)− J(π) ≥ JCPI
π (π′)− C

√
Et

[
KL

(
π′(at | st) ||π(at | st)

)]
(7.26)

Now, let’s look at the worst-case scenario during a step in policy iteration. Consider all
the choices for the new policy π′, which also includes the old policy π (parameter update
size is 0). If there is no candidate which performs better, simply set π′ = π and do not
perform an update during this iteration. When that is the case, Equation 7.17 tells us that
JCPI
π (π) = Eτ∼π[

∑
t≥0 A

π(st, at)
π(at|st)
π(at|st) ] = 0, since a policy has no expected advantage

over itself. KL divergence KL(π ||π) = 0 by identity.
In order to accept a change in a policy, Equation 7.26 says that the estimated

policy improvement JCPI
π (π′) has to be greater than the maximum error

C
√
Et[KL(π′(at | st) ||π(at | st))].

If we add the error bound as a penalty in our optimization problem, we can guarantee
monotonic policy improvement. Our optimization problem now becomes the following:

argmax
π′

(
JCPI
π (π′)− C

√
Et

[
KL

(
π′(at | st) ||π(at | st)

)])
⇒ J(π′)− J(π) ≥ 0

(7.27)

4. This was introduced in the paper “Constrained Policy Optimization” by Achiam et al. in 2017 [2].
5. The KL divergence between two distributions p(x), q(x) with random variable x ∈ X is defined as
KL(p(x) || q(x)) =

∑
x∈X p(x) log p(x)

q(x)
for discrete distributions, or KL(p(x) || q(x)) =∫∞

−∞ p(x) log p(x)
q(x)

dx for continuous distributions.

6. The full derivation can be found in “Lecture 13: Advanced Policy Gradient Methods” [78].

http://Thiswasintroducedinthepaper$$$�ConstrainedPolicyOptimization�byAchiametal.in2017[2
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This result satisfies our final requirement. It allows us to avoid performance collapse that
may occur when using the original objective J(π). One key distinction to note is that a
monotonic improvement does not guarantee convergence to an optimal policy π∗. For
instance, policy optimization can still get stuck at a local maximum in which every policy
iteration produces no improvement—that is, J(π′)− J(π) = 0. Guaranteeing
convergence remains a difficult open problem.

The final step is to consider how to implement the optimization problem from
Equation 7.27 in practice. One idea is to directly constrain the expectation of KL as shown
in Equation 7.28.

Et

[
KL

(
π′(at | st) ||π(at | st)

)]
≤ δ (7.28)

δ limits how large KL divergence can be, so it effectively restricts how far a new policy
π′ can diverge away from the old policy π. Only candidates in a close neighborhood
around π in the policy space will be considered. This neighborhood is called a trust region,
and Equation 7.28 is called a trust region constraint. Note that δ is a hyperparameter that
needs to be tuned.

The constraint term Et[KL(π′(at | st) ||π(at | st))] is written as an expectation over a
single time step t, so it is helpful to write the objective JCPI

π (π′) in this way as well, as
shown in Equation 7.29. Additionally, since we will be maximizing the objective with
respect to θ, let’s also express the policies in terms of θ as shown in Equation 7.30. The
new policy is written as π′ = πθ, whereas the older policy with fixed parameters is written
as π = πθold . The advantage computed from the old policy is also written concisely as
Aπ(st, at) = A

πθold
t .

JCPI
π (π′) = Et

[
π′(at | st)
π(at | st)

Aπ(st, at)

]
(7.29)

JCPI(θ) = Et

[
πθ(at | st)
πθold(at | st)

A
πθold
t

]
(7.30)

Putting the constraint and surrogate objective together, the trust region policy
optimization problem is shown in Equation 7.31.

max
θ

Et

[
πθ(at | st)
πθold(at | st)

A
πθold
t

]
subject to Et

[
KL

(
πθ(at | st) ||πθold(at | st)

)]
≤ δ

(7.31)

To sum up, JCPI
π (π′) is a linear approximation to J(π′)− J(π) since its gradient is

equal to the policy gradient. It also guarantees monotonic improvement to within an error
bound. To ensure improvement while accounting for this potential error, we impose a trust
region constraint to limit the difference between the new and the old policies. Provided
changes in the policy stay within the trust region, we can avoid performance collapse.

A number of algorithms have been proposed to solve this trust region optimization
problem. Some of these include Natural Policy Gradient (NPG) [63, 112, 113], Trust Region
Policy Optimization (TRPO) [122], and Constrained Policy Optimization (CPO) [2]. The
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theories behind them are fairly complex, and the algorithms are difficult to implement.
Their gradients can be expensive to compute, and it is difficult to choose a good value for
δ. These algorithms are beyond the scope of this book, but their drawbacks serve to
motivate our next algorithm: Proximal Policy Optimization.

7.2 Proximal Policy Optimization (PPO)
The “Proximal Policy Optimization Algorithms” (PPO) paper [124] was published by
Schulman et al. in 2017. PPO is easy to implement, computationally inexpensive, and we
do not have to choose δ. For these reasons, it has become one of the most popular policy
gradient algorithms.

PPO is a family of algorithms that solve the trust-region constrained policy
optimization problem with simple and effective heuristics. Two variants exist. The first is
based on an adaptive KL penalty, and the second is based on a clipped objective. This
section will present both of these variants.

Before we do that, let’s simplify the surrogate objective JCPI(θ) by writing
rt(θ) =

πθ(at|st)
πθold (at|st) as shown in Equation 7.32. The advantage A

πθold
t is also written as At

for brevity, since we know advantages are always calculated using the older policy πθold .

JCPI(θ) = Et

[
πθ(at | st)
πθold(at | st)

A
πθold
t

]
= Et[rt(θ)At] (7.32)

The first variant of PPO is called PPO with adaptive KL penalty, with the objective
shown in Equation 7.33. It turns the KL constraint Et[KL(πθ(at | st) ||πθold(at | st))] ≤ δ
into an adaptive KL penalty which is subtracted from the importance-weighted advantage.
The expectation of the result is the new objective to be maximized.

JKLPEN(θ) = max
θ

Et

[
rt(θ)At − βKL

(
πθ(at | st) ||πθold(at | st)

)]
(7.33)

Equation 7.33 is known as a KL-penalized surrogate objective. β is an adaptive coefficient
which controls the size of the KL penalty. It serves the same purpose as Equation 7.31 in
controlling the trust region of optimization. The larger β, the more the difference
between πθ and πθold . The smaller β, the higher the tolerance between the two policies.

One challenge of using a constant coefficient is that different problems have different
characteristics, so it is hard to find one value which will work everywhere. Even on a
single problem, the loss landscape changes as policy iterates, so a β that worked earlier may
not work later—it needs to adapt to these changes.

To tackle this problem, the PPO paper proposes a heuristic-based update rule for β that
allows it to adapt over time. β is updated after every policy update and the new value is
used in the next iteration. The update rule for β is shown in Algorithm 7.1. It can be used
as a subroutine in the PPO algorithm which will be presented later in this section.
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Algorithm 7.1 Adaptive KL penalty coefficient

1: Set a target value δtar for the expectation of KL
2: Initialize β to a random value
3: Use multiple epochs of minibatch SGD, optimize (maximize) the KL-penalized

↪→ surrogate objective: JKLPEN(θ) = Et[rt(θ)At − βKL(πθ(at | st) ||πθold(at | st))]
4: Compute δ = Et[KL(πθ(at | st) ||πθold(at | st))]:
5: if δ < δtar/1.5 then
6: β ← β/2
7: else if δ > δtar × 1.5 then
8: β ← β × 2
9: else

10: pass
11: end if

At the end of each iteration, we estimate δ and compare it to the desired target δtar. If δ
is less than δtar by some margin, we decrease the KL penalty by reducing β. However, if
δ is greater than δtar by some margin, we increase the KL penalty by increasing β. The
specific values used to determine the margins and the update rules for β are chosen
empirically. The authors selected 1.5 and 2 respectively, but also found that the algorithm
is not very sensitive to these values.

It was also observed that KL divergence occasionally departs far away from its target
value δtar, but β adjusts quickly. Good values for δtar also need to be determined
empirically.

This approach has the benefit of being simple to implement. However, it doesn’t solve
the problem of choosing a target δ. Furthermore, it can be computationally expensive
because of the need to calculate the KL.
PPO with clipped surrogate objective remedies this by doing away with the KL constraint

and using a simpler modification to the surrogate objective from Equation 7.30, shown in
Equation 7.34.

JCLIP(θ) = Et

[
min

(
rt(θ)At, clip

(
rt(θ), 1− ε, 1 + ε

)
At

)]
(7.34)

Equation 7.34 is known as clipped surrogate objective. ε is a value which defines the
clipping neighborhood |rt(θ)− 1| ≤ ε. It is a hyperparameter to be tuned, and can be
decayed during training. The first term within min(·) is simply the surrogate objective
JCPI. The second term clip(rt(θ), 1− ε, 1 + ε)At bounds the value of JCPI to be
between (1− ε)At and (1 + ε)At. When rt(θ) is within the interval [1− ε, 1 + ε], both
terms inside min(·) are equal.

This objective prevents parameter updates which could cause large and risky changes to
the policy πθ. To quantify large policy changes, we use the probability ratio rt(θ). When a

new policy is equal to the old policy, rt(θ) = rt(θold) =
πθold (at|st)
πθold (at|st) = 1. If a new policy

deviates from the old policy, rt(θ) deviates away from 1.
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The idea is to limit rt(θ) to an ε-neighborhood [1− ε, 1 + ε]. Normally, maximizing
the surrogate objective JCPI without a constraint could encourage large policy updates.
This is because one mechanism by which performance on the objective can be improved is
through large changes to rt(θ). By clipping the objective, we remove the incentive for
large policy updates that would cause rt(θ) to deviate outside of the neighborhood. To see
why this is the case, consider when rt(θ)At would assume large positive values, which is
either At > 0, rt(θ) > 0 or At < 0, rt(θ) < 0.

When At > 0, rt(θ) > 0, if rt(θ) becomes much larger than 1, the upper clip term
1− ε applies to upper-bound rt(θ) ≤ 1 + ε, hence JCLIP ≤ (1 + ε)At. On the other
hand, when At < 0, rt(θ) < 0, if rt(θ) becomes much smaller than 1, the lower clip term
1− ε applies to again upper-bound JCLIP ≤ (1− ε)At. When taking the minimum in
Equation 7.34, JCLIP is always upper-bounded in either of the two ways. Additionally,
taking the minimum also implies that JCLIP is a pessimistic lower bound of the original
surrogate objective JCPI. This way, the effect of rt(θ) is ignored when it tries to make the
objective better by more than εAt, but is always considered when it makes the objective
worse.

Since objective JCLIP is upper-bounded, there is no incentive for large policy updates
that deviate rt(θ) outside of the neighborhood [1− ε, 1 + ε]. Hence, policy updates
are safe.

Additionally, since this objective assumes samples are generated from πθold —that is, the
objective does not depend on the current policy πθ except through the importance
weights—we are also justified to reuse a sampled trajectory multiple times to perform
parameter updates. This increases the sample efficiency of the algorithm. Notice that the
objective depends on πθold which is updated after each training step. This means that PPO
is an on-policy algorithm, so the old trajectory must be discarded after a training step.

The clipped objective JCLIP is cheap to compute, very easy to understand, and its
implementation requires only a few trivial modifications to the original surrogate
objective JCPI.

The most costly computations are the probability ratio rt(θ) and advantage At.
However, these are the minimal calculations needed by any algorithms optimizing the
surrogate objective. The other calculations are clipping and minimizing, which are
essentially constant-time.

In the PPO paper, the clipped surrogate objective variant outperformed the
KL-penalized objective variant. Since it is both simpler and performs better, the clipped
variant of PPO is preferred.

This concludes this chapter’s discussions on constraints to the policy gradient. We
started with the policy gradient objective J(θ) = Et[At logπθ(at | st)] used in
REINFORCE and Actor-Critic. We then introduced a surrogate objective JCPI(θ) with
the promise of monotonic improvements, which holds if we constrain the difference
between successive policies. PPO presented two ways to constrain the surrogate
objective—using a KL penalty or a clipping heuristic, giving us JKLPEN and JCLIP,
respectively. Let’s gather all these policy gradient objectives together and compare them.
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J(θ) = Et[A
πθ
t logπθ(at | st)] original objective (7.35)

JCPI(θ) = Et[rt(θ)A
πθold
t ] surrogate objective (7.36)

JCPI(θ) subject to Et[KL(πθ ||πθold)] ≤ δ constrained surrogate objective (7.37)

JKLPEN(θ) = Et[rt(θ)A
πθold
t − βKL(πθ ||πθold)] PPO with KL penalty (7.38)

JCLIP(θ)

= Et

[
min

(
rt(θ)A

πθold
t , clip

(
rt(θ), 1− ε, 1 + ε

)
A

πθold
t

)]
PPO with clipping (7.39)

For clarity, we fully express the equations in terms of θ to show which policies are
variable and which of them are used to compute the advantages. Notice that only the
original objective uses the current policy πθ to compute the advantage Aπθ

t , while the rest
of them use the older policy to compute the advantage A

πθold
t .

7.3 PPO Algorithm
Since PPO is a policy gradient method with a modified objective, it is compatible with
both of the policy gradient algorithms we have learned, REINFORCE and Actor-Critic.
Algorithm 7.2 shows PPO with a clipped objective implemented as an extension of the
Actor-Critic from Chapter 6.

Algorithm 7.2 PPO with clipping, extending Actor-Critic

1: Set β ≥ 0, entropy regularization weight
2: Set ε ≥ 0, the clipping variable
3: Set K, the number of epochs
4: Set N , the number of actors
5: Set T , the time horizon
6: Set M ≤ NT , the minibatch size
7: Set αA ≥ 0, actor learning rate
8: Set αC ≥ 0, critic learning rate
9: Randomly initialize the actor and critic parameters θA, θC

10: Initialize the “old” actor network θAold

11: for i = 1, 2, . . . do
12: Set θAold = θA
13: for actor = 1, 2, . . . , N do
14: Run policy θAold in environment for T time steps and collect the trajectories
15: Compute advantages A1, . . . , AT using θAold

16: Calculate V π
tar,1, . . . , V

π
tar,T using the critic network θC and/or trajectory data

17: end for
18: Let batch with size NT consist of the collected trajectories, advantages,

↪→ and target V -values
19: for epoch = 1, 2, . . . ,K do
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20: for minibatch m in batch do
21: The following are computed over the whole minibatch m
22: Calculate rm(θA)
23: Calculate JCLIP

m (θA) using the advantages Am from the minibatch
↪→ and rm(θA)

24: Calculate entropies Hm using using the actor network θA
25: Calculate policy loss:
26: Lpol(θA) = JCLIP

m (θA)− βHm

27:

28: Calculate predicted V -value V̂ π(sm) using the critic network θC
29: Calculate value loss using the V -targets from the minibatch:
30: Lval(θC) = MSE(V̂ π(sm), V π

tar(sm))
31:

32: Update actor parameters, for example using SGD:
33: θA = θA + αA∇θALpol(θA)
34: Update critic parameters, for example using SGD:
35: θC = θC + αC∇θCLval(θC)
36: end for
37: end for
38: end for

Let’s walk through the algorithm.

. Lines 1–8: Set all the hyperparameter values.

. Line 9: Initialize the actor and critic networks.

. Line 10: Initialize an old actor network to act as πθold for calculating the probability
ratio rt(θ).

. Lines 12–18: Update the old actor network to the main actor network. Gather
trajectory data using the old actor network, and compute the advantages and
V -targets. Then store the trajectories along with the advantages and V -targets in a
batch to be sampled later. Note that this version of Actor-Critic uses multiple
parallel actors. This will be discussed as a parallelization method in Chapter 8.

. Line 19: Loop over the entire batch for K epochs.

. Lines 20–21: Sample minibatches of size M from the batch. The calculations in this
block utilize every element in the minibatch.

. Lines 22–23: Calculate the clipped surrogate objective.

. Line 24: Calculate the policy entropy for the actions in the minibatch.

. Lines 25–26: Calculate the policy loss.

. Lines 28–30: Calculate the value loss. Note that the V -target values are computed
once in the batch and reused.
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. Lines 32–33: Update the actor parameters using the gradient of the policy loss.

. Lines 34–35: Update the critic parameters using the gradient of the value loss.

7.4 Implementing PPO
We have seen how PPO can be used to extend the Actor-Critic algorithm. In this section,
we will see how this is implemented in SLM Lab.

Naturally, PPO can extend the ActorCritic class and reuse most of its methods. The
PPO modification involves only changing the objective function and the training
loop—these are the two methods we need to override. Furthermore, the objective
modification concerns just the policy loss; the method for calculating the value loss
remains the same.

7.4.1 Calculating the PPO Policy Loss
In Code 7.1, the policy loss overrides its parent method from ActorCritic to calculate the
PPO policy loss using the clipped surrogate objective.

The action log probabilities are calculated from both the current and old actor networks
(lines 14–18). These are used to calculate the probability ratio rt(θ) (line 20). Note that
we use the exponent of their differences to convert log probabilities to probability ratio.

The clipped surrogate objective is calculated piece-wise and combined in lines 21 to
24. The remainder of the policy loss calculation has the same form as the parent method.

Code 7.1 PPO implementation: calculating the PPO policy loss

1 # slm_lab/agent/algorithm/ppo.py

2

3 class PPO(ActorCritic):

4 ...

5

6 def calc_policy_loss(self, batch, pdparams, advs):

7 clip_eps = self.body.clip_eps

8 action_pd = policy_util.init_action_pd(self.body.ActionPD, pdparams)

9 states = batch['states']

10 actions = batch['actions']

11 ...

12

13 # L^CLIP

14 log_probs = action_pd.log_prob(actions)

15 with torch.no_grad():

16 old_pdparams = self.calc_pdparam(states, net=self.old_net)

17 old_action_pd = policy_util.init_action_pd(self.body.ActionPD,

old_pdparams)↪→

http://withtorch.no_grad(
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18 old_log_probs = old_action_pd.log_prob(actions)

19 assert log_probs.shape == old_log_probs.shape

20 ratios = torch.exp(log_probs - old_log_probs)

21 sur_1 = ratios * advs

22 sur_2 = torch.clamp(ratios, 1.0 - clip_eps, 1.0 + clip_eps) * advs

23 # flip sign because need to maximize

24 clip_loss = -torch.min(sur_1, sur_2).mean()

25

26 # H entropy regularization

27 entropy = action_pd.entropy().mean()

28 self.body.mean_entropy = entropy # update logging variable

29 ent_penalty = -self.body.entropy_coef * entropy

30

31 policy_loss = clip_loss + ent_penalty

32 return policy_loss

7.4.2 PPO Training Loop
Code 7.2 shows the PPO training loop. First, the old actor network is updated from the
main actor network (line 10). A batch of collected trajectories is sampled from the
memory (line 11). The advantages and target V -values are calculated and cached to be
used in the minibatches for efficiency (lines 12–15). The version here is an optimization to
compute the advantages and target V -values in batch, as opposed to computing them at
every time step as per Algorithm 7.2.

To reuse data for training, we iterate through the all of the data multiple times (line 18).
For each epoch, we split the data into minibatches for training (lines 19–20). The rest of
the training logic is the same as the ActorCritic class. This involves calculating the policy
and value losses and using them to train the actor and critic networks.

Code 7.2 PPO implementation: training method

1 # slm_lab/agent/algorithm/ppo.py

2

3 class PPO(ActorCritic):

4 ...

5

6 def train(self):

7 ...

8 clock = self.body.env.clock

9 if self.to_train == 1:

10 net_util.copy(self.net, self.old_net) # update old net

11 batch = self.sample()

12 clock.set_batch_size(len(batch))
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13 _pdparams, v_preds = self.calc_pdparam_v(batch)

14 advs, v_targets = self.calc_advs_v_targets(batch, v_preds)

15 batch['advs'], batch['v_targets'] = advs, v_targets

16 ...

17 total_loss = torch.tensor(0.0)

18 for _ in range(self.training_epoch):

19 minibatches = util.split_minibatch(batch, self.minibatch_size)

20 for minibatch in minibatches:

21 ...

22 advs, v_targets = minibatch['advs'],

minibatch['v_targets']↪→

23 pdparams, v_preds = self.calc_pdparam_v(minibatch)

24 policy_loss = self.calc_policy_loss(minibatch, pdparams,

advs) # from actor↪→

25 val_loss = self.calc_val_loss(v_preds, v_targets) # from

critic↪→

26 if self.shared: # shared network

27 loss = policy_loss + val_loss

28 self.net.train_step(loss, self.optim,

self.lr_scheduler, clock=clock,

global_net=self.global_net)

↪→

↪→

29 else:

30 self.net.train_step(policy_loss, self.optim,

self.lr_scheduler, clock=clock,

global_net=self.global_net)

↪→

↪→

31 self.critic_net.train_step(val_loss,

self.critic_optim, self.critic_lr_scheduler,

clock=clock, global_net=self.global_critic_net)

↪→

↪→

32 loss = policy_loss + val_loss

33 total_loss += loss

34 loss = total_loss / self.training_epoch / len(minibatches)

35 # reset

36 self.to_train = 0

37 return loss.item()

38 else:

39 return np.nan
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7.5 Training a PPO Agent
In this section we will train PPO to play Atari Pong and BipedalWalker.

7.5.1 PPO on Pong
Code 7.3 shows a spec file which configures a PPO agent to play Atari Pong. The file is
also available in SLM Lab at slm_lab/spec/benchmark/ppo/ppo_pong.json.

Code 7.3 PPO: spec file

1 # slm_lab/spec/benchmark/ppo/ppo_pong.json

2

3 {

4 "ppo_pong": {

5 "agent": [{

6 "name": "PPO",

7 "algorithm": {

8 "name": "PPO",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "explore_var_spec": null,

12 "gamma": 0.99,

13 "lam": 0.70,

14 "clip_eps_spec": {

15 "name": "no_decay",

16 "start_val": 0.10,

17 "end_val": 0.10,

18 "start_step": 0,

19 "end_step": 0

20 },

21 "entropy_coef_spec": {

22 "name": "no_decay",

23 "start_val": 0.01,

24 "end_val": 0.01,

25 "start_step": 0,

26 "end_step": 0

27 },

28 "val_loss_coef": 0.5,

29 "time_horizon": 128,

30 "minibatch_size": 256,

31 "training_epoch": 4

32 },

33 "memory": {

34 "name": "OnPolicyBatchReplay",
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35 },

36 "net": {

37 "type": "ConvNet",

38 "shared": true,

39 "conv_hid_layers": [

40 [32, 8, 4, 0, 1],

41 [64, 4, 2, 0, 1],

42 [32, 3, 1, 0, 1]

43 ],

44 "fc_hid_layers": [512],

45 "hid_layers_activation": "relu",

46 "init_fn": "orthogonal_",

47 "normalize": true,

48 "batch_norm": false,

49 "clip_grad_val": 0.5,

50 "use_same_optim": false,

51 "loss_spec": {

52 "name": "MSELoss"

53 },

54 "actor_optim_spec": {

55 "name": "Adam",

56 "lr": 2.5e-4,

57 },

58 "critic_optim_spec": {

59 "name": "Adam",

60 "lr": 2.5e-4,

61 },

62 "lr_scheduler_spec": {

63 "name": "LinearToZero",

64 "frame": 1e7

65 },

66 "gpu": true

67 }

68 }],

69 "env": [{

70 "name": "PongNoFrameskip-v4",

71 "frame_op": "concat",

72 "frame_op_len": 4,

73 "reward_scale": "sign",

74 "num_envs": 16,

75 "max_t": null,

76 "max_frame": 1e7

77 }],

78 "body": {
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79 "product": "outer",

80 "num": 1

81 },

82 "meta": {

83 "distributed": false,

84 "log_frequency": 10000,

85 "eval_frequency": 10000,

86 "max_session": 4,

87 "max_trial": 1,

88 }

89 }

90 }

Let’s walk through the main components.

. Algorithm: The algorithm is PPO (line 8), the action policy is the default policy
(line 10) for discrete action space (categorical distribution). γ is set on line 12. We
use GAE to estimate advantages, with lam for λ set in line 13. The clipping
hyperparameter ε and its decay are specified in lines 14–20, and the entropy
coefficient is specified in lines 21–27. The value loss coefficient is set in line 28.

. Network architecture: Convolutional neural network with three convolutional
layers and one fully connected layer with ReLU activation function (lines 37–45).
The actor and critic use a shared network as specified in line 38. The network is
trained on a GPU if available (line 66).

. Optimizer: The optimizer is Adam [68] with a learning rate of 0.00025
(lines 54–57). The learning rate is decayed to 0 over 10 million frames (lines 62–65).

. Training frequency: Training is batch-wise as required by the algorithm, so we use
OnPolicyBatchReplay memory (line 34). The number of epochs is 4 (line 31), and
the minibatch size is 256 (line 30). The time horizon T is set in line 29, and the
number of actors is set in line 74 as num_envs.

. Environment: The environment is Atari Pong [14, 18] (line 70).

. Training length: Training consists of 10 million time steps (line 76).

. Evaluation: The agent is evaluated every 10,000 time steps (line 85).

To train this PPO agent using SLM Lab, run the commands shown in Code 7.4 in a
terminal. The agent should start with the score of −21 and achieve close to the maximum
score of 21 on average.

Code 7.4 PPO: spec file

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/ppo/ppo_pong.json ppo_pong train
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This will run a training Trial with four Sessions to obtain an average result. The trial
should take about half a day to complete when running on a GPU. The graph and its
moving average are shown in Figure 7.2.

(a) Trial graph (b) Trial graph with moving average

Figure 7.2 PPO trial graphs from SLM Lab averaged over four sessions. The vertical axis shows

the total rewards averaged over eight episodes during checkpoints, and the horizontal axis shows

the total training frames. Compared to Actor-Critic from Chapter 6, PPO learns and obtains

the top score much faster.

7.5.2 PPO on BipedalWalker
As a policy-based method, PPO can also be applied to continuous-control problems.
Code 7.5 shows a spec file which configures a PPO agent for the BipedalWalker
environment. The file is available in SLM Lab at slm_lab/spec/benchmark/ppo
/ppo_cont.json. In particular, note the different network architecture (lines 37–39) and
environment (lines 62–65).

Code 7.5 PPO on BipedalWalker: spec file

1 # slm_lab/spec/benchmark/ppo/ppo_cont.json

2

3 {

4 "ppo_bipedalwalker": {

5 "agent": [{

6 "name": "PPO",

7 "algorithm": {
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8 "name": "PPO",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "explore_var_spec": null,

12 "gamma": 0.99,

13 "lam": 0.95,

14 "clip_eps_spec": {

15 "name": "no_decay",

16 "start_val": 0.20,

17 "end_val": 0.0,

18 "start_step": 10000,

19 "end_step": 1000000

20 },

21 "entropy_coef_spec": {

22 "name": "no_decay",

23 "start_val": 0.01,

24 "end_val": 0.01,

25 "start_step": 0,

26 "end_step": 0

27 },

28 "val_loss_coef": 0.5,

29 "time_horizon": 512,

30 "minibatch_size": 4096,

31 "training_epoch": 15

32 },

33 "memory": {

34 "name": "OnPolicyBatchReplay",

35 },

36 "net": {

37 "type": "MLPNet",

38 "shared": false,

39 "hid_layers": [256, 128],

40 "hid_layers_activation": "relu",

41 "init_fn": "orthogonal_",

42 "normalize": true,

43 "batch_norm": false,

44 "clip_grad_val": 0.5,

45 "use_same_optim": true,

46 "loss_spec": {

47 "name": "MSELoss"

48 },

49 "actor_optim_spec": {

50 "name": "Adam",

51 "lr": 3e-4,
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52 },

53 "critic_optim_spec": {

54 "name": "Adam",

55 "lr": 3e-4,

56 },

57 "lr_scheduler_spec": null,

58 "gpu": false

59 }

60 }],

61 "env": [{

62 "name": "BipedalWalker-v2",

63 "num_envs": 32,

64 "max_t": null,

65 "max_frame": 4e6

66 }],

67 "body": {

68 "product": "outer",

69 "num": 1

70 },

71 "meta": {

72 "distributed": false,

73 "log_frequency": 10000,

74 "eval_frequency": 10000,

75 "max_session": 4,

76 "max_trial": 1

77 }

78 }

79 }

Run the commands in Code 7.6 in a terminal to train an agent.

Code 7.6 PPO on BipedalWalker: training an agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/ppo/ppo_cont.json ppo_bipedalwalker

train↪→

This will run a training Trial to produce the graphs in Figure 7.3.
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(a) Trial graph (b) Trial graph with moving average

Figure 7.3 PPO on BipedalWalker from SLM Lab averaged over four sessions. This trial yields

performance closer to the solution score of 300.

7.6 Experimental Results
In this section we will run an experiment using SLM Lab to study the effect of GAE’s λ
variable in PPO. We will use the Atari Breakout game as a more challenging environment.

7.6.1 Experiment: The Effect of λ of GAE
Since PPO is implemented as an extension of Actor-Critic which uses GAE, we will run
the same experiment from Section 6.7.2 to study the effect of different λ values in PPO by
performing a grid search. The experiment spec file is extended from Code 7.3 by adding a
search spec for lam shown in Code 7.7. Lines 4 and 7 specify the change in environment,
and line 19 specifies a grid search over a list of λ values lam. The full spec file is available in
SLM Lab at slm_lab/spec/experimental/ppo/ppo_lam_search.json.

Code 7.7 PPO spec file with search spec for different values of GAE λ lam

1 # slm_lab/spec/experimental/ppo/ppo_lam_search.json

2

3 {

4 "ppo_breakout": {

5 ...

6 "env": [{
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7 "name": "BreakoutNoFrameskip-v4",

8 "frame_op": "concat",

9 "frame_op_len": 4,

10 "reward_scale": "sign",

11 "num_envs": 16,

12 "max_t": null,

13 "max_frame": 1e7

14 }],

15 ...

16 "search": {

17 "agent": [{

18 "algorithm": {

19 "lam__grid_search": [0.50, 0.70, 0.90, 0.95, 0.97, 0.99]

20 }

21 }]

22 }

23 }

24 }

To run the experiment in SLM Lab, use the commands shown in Code 7.8.

Code 7.8 Run an experiment to search over different values of GAE λ as defined in the

spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/experimental/ppo/ppo_lam_search.json

ppo_breakout search↪→

This will run an Experiment which spawns six Trials, each with a different value of
lam substituted in the original PPO spec. Each Trial runs four Sessions. The multitrial
graphs are shown in Figure 7.4.

Figure 7.4 shows the effect of different values of GAE λ in PPO on the Breakout
environment. λ = 0.70 performs the best with an episodic score of above 400, followed
closely by λ = 0.50. Higher λ values close to 0.90 do not perform as well. Compared to
the same experiment on the same problem for Actor-Critic in Section 6.7.2, the optimal λ
value for PPO (0.70) is significantly different from that of Actor-Critic (0.90), while PPO
obtains a better performance than Actor-Critic as expected. Again, this experiment also
demonstrates that λ is not a very sensitive hyperparameter in PPO.
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(a) Multitrial graph (b) Multitrial with moving average

Figure 7.4 The effect of different values of GAE λ in PPO on the Breakout environment.

λ = 0.70 performs the best, while λ values closer to 0.90 do not perform as well.

7.6.2 Experiment: The Effect of Clipping Variable ε
The clipping variable ε defines the clipping neighborhood |rt(θ)− 1| ≤ ε for the clipped
surrogate objective in Equation 7.34.

In this experiment, we look at the effect of ε values by performing a grid search. The
experiment spec file is extended from Code 7.3 by adding a search spec for clip_eps
shown in Code 7.9. We also use a more challenging environment, Atari Qbert. Lines 4
and 7 specify the change in environment, and line 19 specifies a grid search over a list of ε
values clip_eps. The full spec file is available in SLM Lab at slm_lab/spec/experimental
/ppo/ppo_eps_search.json.

Code 7.9 PPO spec file with search spec for different clipping ε values clip_eps

1 # slm_lab/spec/experimental/ppo/ppo_eps_search.json

2

3 {

4 "ppo_qbert": {

5 ...

6 "env": [{

7 "name": "QbertNoFrameskip-v4",

8 "frame_op": "concat",

9 "frame_op_len": 4,

10 "reward_scale": "sign",

11 "num_envs": 16,

12 "max_t": null,
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13 "max_frame": 1e7

14 }],

15 ...

16 "search": {

17 "agent": [{

18 "clip_eps_spec": {

19 "start_val__grid_search": [0.1, 0.2, 0.3, 0.4]

20 }

21 }]

22 }

23 }

24 }

To run the experiment in SLM Lab, use the commands shown in Code 7.10.

Code 7.10 Run an experiment to search over different clipping ε values as defined in the
spec file.

1 conda activate lab

2 python run_lab.py slm_lab/spec/experimental/ppo/ppo_eps_search.json ppo_qbert

search↪→

This will run an Experiment consisting of four Trials each with four Sessions. The
multitrial graphs are shown in Figure 7.5.

(a) Multitrial graph (b) Multitrial with moving average

Figure 7.5 The effect of different clipping ε values of PPO on the Qbert environment. Overall,

the algorithm is not very sensitive to this hyperparameter.
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Figure 7.5 shows the effect of different clipping ε values of PPO on the Qbert
environment. ε = 0.20 performs the best. Overall, the algorithm is not very sensitive to
this hyperparameter as shown by the close performance of different ε values.

7.7 Summary
In this chapter, we looked at the problem of performance collapse in policy gradient
methods caused by the fact that we are searching for policies by indirectly controlling
parameters in the parameter space. This can lead to unstable changes in the policy during
training.

To remedy this problem, we modify the policy gradient objective to yield a surrogate
objective so that changes in the parameter space will guarantee monotonic policy
improvement. This is known as the Monotonic Improvement Theory. In practice, the
surrogate objective can only be approximated, thereby introducing some error. The error
can be bounded, and we turn this error bound into a constraint for the objective so that
we can guarantee policy improvements in practice as well as in theory.

We saw that the PPO algorithm is a simple and effective approach to solving this
constrained optimization problem. There are two variants—PPO with KL penalty and
PPO with clipping. Of these, clipping is the simplest, cheapest to compute, and the most
performant.

The three policy gradient algorithms we looked at in this book are natural extensions of
each other. Starting with the simplest algorithm, REINFORCE, we extended this into
the Actor-Critic, which improves the reinforcing signal given to the policy. Finally, we
showed that PPO can be used to extend the Actor-Critic by modifying its policy loss,
which improves the stability and sample efficiency of training.
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8

Parallelization Methods

One common theme in our discussions of the deep RL algorithms introduced in this book
is that they are sample-inefficient. For nontrivial problems, millions of experiences are
typically required before an agent learns to perform well. It may take days or weeks to
generate sufficiently many experiences if data gathering is done sequentially by a single
agent running in a single process.

Another theme arising from our discussion of the DQN algorithm is the importance of
diverse and decorrelated training data to stabilize and accelerate learning. The use of
experience replay helps achieve this, but it depends on DQN being an off-policy
algorithm. Consequently, this approach is not available to policy gradient algorithms, at
least not in a straightforward way.1 However, these algorithms also benefit substantially
from training with diverse data.

In this chapter, we discuss parallelization methods that can be applied to all deep RL
algorithms. These can both substantially reduce the wall-clock training time and help
generate more diverse training data for on-policy algorithms.

The key idea is to parallelize the agent and environment by creating multiple identical
instances to gather trajectories independently of each other. Since an agent is parametrized
by a network, we create multiple identical worker networks and a global network. The
workers gather trajectories continuously, and the global network is periodically updated
using worker data before pushing changes back to the workers.

There are two main categories of parallelization—synchronous and asynchronous. We
first discuss synchronous parallelization in Section 8.1 and then asynchronous in
Section 8.2.

1. It is possible to train on-policy algorithms with off-policy data using importance sampling which corrects for
the difference in action probabilities between policies. However, the importance weight can vary wildly, either
exploding or shrinking towards zero. For this reason, it is difficult to make off-policy correction work well in
practice.
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8.1 Synchronous Parallelization
When parallelization is synchronous (blocking), the global network waits to receive a set of
updates from all the workers before updating its parameters. Correspondingly, after sending
updates, the workers wait for the global network to update and push the new parameters,
so that all workers have the same updated parameters. This is shown in Algorithm 8.1.

Algorithm 8.1 Synchronous parallelization, global gradient calculation

1: Set learning rate α
2: Initialize the global network θG
3: Initialize N worker networks θW,1, θW,2, . . . , θW,N

4: for each worker do synchronously
5: Pull parameters from the global network and set θW,i ← θG
6: Collect trajectories
7: Push trajectories for the global network to use
8: Wait until the global network has updated
9: end for

10: Wait for all worker trajectories
11: Compute gradient ∇θG using all trajectories
12: Update the global network θG ← θG + α∇θG

In this variant of parallelism, the workers are used to collect trajectories which are sent
to the global network. The global network is responsible for using the trajectories to
calculate gradients and perform parameter updates. Importantly, all these happen with a
synchronization barrier—that’s what makes it synchronous.

With parallelism, every worker gets to experience a different instance of an
environment, which will unfold and branch out to different scenarios due to randomness
in the policy and the environment. To ensure this, the workers and environment instances
need to be initialized with different random seeds. As parallelization trajectories unfold,
workers may end up in different phases of the environment—some near the beginning
time steps, some near the end. Parallelization adds diversity to the training data for the
global network because it is trained on multiple scenarios and phases of the environment.
Overall, this helps stabilize the policy (represented by the global network) and makes it
more robust to noise and variations.

The interleaving of experiences from multiple workers also helps decorrelate the data
because at any time step, the global network receives a collection of experiences from
different phases of the environment. For example, if an environment consists of multiple
game levels, the global network will likely train on a few of them simultaneously. Workers
will end up exploring different scenarios already due to randomness, but additionally we
may let them use different exploration policies to further increase data diversity. One way
to do this is to use different annealing schedules for the ε-greedy policy in Q-learning
from Chapter 4.
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In SLM Lab, synchronous parallelization is implemented using OpenAI’s vector
environment wrapper [99]. This creates multiple instances of an environment on different
CPU processes, which communicate with the main process where the agent is located.
The agent then acts on these environments in batch, effectively acting as multiple workers.
This takes advantage of the fact that in synchronous parallelization, all the workers are
guaranteed to have the same copy of the global network. The vector environment wrapper
is quite extensive and its details are beyond the scope of this book; the source code can be
found at slm_lab/env/vec_env.py in SLM Lab.

It is simple to use synchronous parallelization in SLM Lab by specifying the num_envs

desired in a spec file. This applies to any algorithm; we have been using it for trials and
experiments in this book. An example is shown in line 74 of Code 7.3 in the PPO
spec file.

8.2 Asynchronous Parallelization
If parallelization is asynchronous (nonblocking), the global network updates its parameters
whenever it receives data from any worker. Likewise, each worker periodically updates
itself from the global network. This means that workers may have slightly different sets of
parameters. This is shown in Algorithm 8.2.

Asynchronous parallelization was first applied to deep RL in the paper “Asynchronous
Methods for Deep Reinforcement Learning” by Mnih et al. [87], also known as the “A3C
paper.” It played a critical role in popularizing Actor-Critic methods by making them
competitive with value-based methods such as DQN. Not only did they achieve
state-of-the-art performance on the Atari games, using an Asynchronous Advantage
Actor-Critic (A3C) algorithm, but also demonstrated how deep RL algorithms could be
trained faster and on CPUs, which are significantly cheaper than GPUs. A3C is simply an
asynchronous version of the Advantage Actor-Critic algorithms from Chapter 6.

Algorithm 8.2 Asynchronous parallelization, worker gradient calculation

1: Set learning rate α
2: Initialize the global network θG
3: Initialize N worker networks θW,1, θW,2, . . . , θW,N

4: for each worker do asynchronously
5: Pull parameters from the global network and set θW,i ← θG
6: Collect trajectories
7: Compute gradient ∇θW,i

8: Push ∇θW,i
to the global network

9: end for
10: On receiving a worker gradient, update the global network θG ← θG + α∇θW,i

In this example, in addition to collecting trajectories, workers also calculate their own
gradients using their own data. The gradients are sent asynchronously to the global
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network whenever they become available. Similarly, the global network updates its own
parameters immediately on receiving a gradient. Unlike the synchronous case, this variant
does not have a synchronization barrier.

There are many ways to implement asynchronous training. The main design choices
include:

1. Lagged vs. not lagged: Workers have to periodically update their networks to the
global network parameters. This can be done at different frequencies. If the update is
instantaneous, then the worker parameters are always equal to the global parameters.
One way to do this is by sharing the network in the computer memory. However,
this means that all the workers need access to the same shared memory, so they need
to be running on the same machine. If the update occurs infrequently, the worker
ends up with, on average, a lagged copy of the global parameters. A lagged network
helps ensure each worker stays on-policy because it guarantees that the policy does
not change when generating trajectories and computing gradients.

2. Local vs. global gradient calculation: The gradient calculation can either be
done locally by the workers or globally using the global network. On-policy training
requires local gradient calculation to stay on-policy, since the global network is
constantly changing; off-policy algorithms do not have this restriction. A further
practical consideration is the cost of data transfer between workers and the global
network. Sending trajectory data between processes is typically more costly than
sending gradients.

3. Locked vs. lock-free: A global network can be locked during a parameter update
to ensure that the parameters are updated sequentially. Simultaneous updates may
overwrite parts of one another. This is usually considered problematic, so in most
cases the global network is locked. This adds to the training time as simultaneous
updates need to be resolved sequentially. However, for certain problems, lock-free
global network can be used to save time. This is the inspiration behind the Hogwild!
algorithm discussed in Section 8.2.1.

8.2.1 Hogwild!
In SLM Lab, asynchronous parallelization is implemented using the Hogwild! algorithm,2

which is a lock-free stochastic gradient descent parallelization method [93]. In Hogwild!,
the global network is not locked during parameter updates. The implementation also uses
a shared global network without lag and local gradient calculation.

Before going through the code, it is worth spending some time understanding why the
Hogwild! algorithm works.

The problem with lock-free parallel parameter updates is overwriting, which leads to
destructive conflicts. However, this effect is minimized if we assume that the optimization
problem is sparse—that is, for a given function parametrized by a neural network,

2. Hogwild is an aptly chosen name for the algorithm, as it implies wildness and lack of restraint.
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parameter updates will typically modify only a small subset of them. When this is the case,
they rarely interfere with each other and overwriting is uncommon. With this sparsity
assumption, the parameters modified in multiple simultaneous updates are probabilistically
nonoverlapping. Consequently, lock-free parallelism becomes a viable strategy. It trades a
small number of conflicts for a gain in training speed.

To see how sparsity is exploited to parallelize an otherwise sequential set of parameter
updates, we can compare both schemes. Let θi be the network parameter at iteration i. A
sequential update can be written as follows.

θ1
u1→2−−−→ θ2

u2→3−−−→ θ3 · · ·
un−1→n−−−−−→ θn (8.1)

ui→i+1 is an update such that θi+1 = θi + ui→i+1. Now, the sparsity assumption
implies that a small collection of w updates uj→j+1, . . . , uj+w−1→j+w have so few
overlapping components that the sequential updates can be compressed into a parallel
update generated by w workers independently to yield uj→j+1, . . . , uj→j+w. Given
w updates in sequence and in parallel, shown below,

θj
uj→j+1−−−−−→ θj+1

uj+1→j+2−−−−−−→ θj+2 · · ·
uj+w−1→j+w−−−−−−−−→ θj+w (sequential)

θj
uj→j+1−−−−−→ θ‖j+1

uj→j+2−−−−−→ θ‖j+2 · · ·
uj→j+w−−−−−→ θ‖j+w (parallel)

the w-th iterations obtained from both are precisely or approximately equal,
θj+w ' θ‖j+w. Hence, parallelization with w workers can provide a fast and close
approximation to the sequential case. Since we are solving the same optimization problem
in either case, they should produce almost or precisely the same results.

When applying Hogwild!, beware that the more workers you have, the higher the
chance of parameter update conflicts. Sparsity only holds true relative to the number of
parallel operations. If conflicts become too frequent, the assumption breaks down.

How reasonable is the sparsity assumption when applied to deep RL? Unfortunately,
this is not well understood. Still, this was the approach taken by Mnih et al. in the A3C
paper. The success of this approach suggests a few possible explanations. First, it may be
that the parameter updates were often sparse for the problems it was applied to. Second,
there may be some additional training benefit to the noise introduced by the conflicting
updates. Third, simultaneous parameter updates may be occurring rarely, for example
because there were few workers with staggered update schedules. Or, fourth, research into
neural network pruning [30, 41, 90] suggests that there are many unimportant or
redundant neural network parameters during training. If conflicts occur on these
parameters, the overall performance is unlikely to be affected. The results may also be
explained by a combination of these factors. The effectiveness of Hogwild! in deep RL
remains an interesting open problem.

Code 8.1 shows a minimal implementation of Hogwild! applied to a typical neural
network training workflow. The crucial logic is when the network is created and put into
a shared memory before being passed to workers for updates. Such a simple
implementation is possible thanks to PyTorch’s first-class integration with multiprocessing.
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Code 8.1 A minimal Hogwild! example

1 # Minimal hogwild example

2 import torch

3 import torch.multiprocessing as mp

4

5 # example pytorch net, optimizer, and loss function

6 net = Net()

7 optimizer = torch.optim.SGD(net.parameters(), lr=0.001)

8 loss_fn = torch.nn.F.smooth_l1_loss

9

10 def train(net):

11 # construct data_loader, optimizer, loss_fn

12 net.train()

13 for x, y_target in data_loader:

14 optimizer.zero_grad() # flush any old accumulated gradient

15 # autograd begins accumulating gradients below

16 y_pred = net(x) # forward pass

17 loss = loss_fn(y_pred, y_target) # compute loss

18 loss.backward() # backpropagate

19 optimizer.step() # update network weights

20

21 def hogwild(net, num_cpus):

22 net.share_memory() # this makes all workers share the same memory

23 workers = []

24 for _rank in range(num_cpus):

25 w = mp.Process(target=train, args=(net, ))

26 w.start()

27 workers.append(w)

28 for w in workers:

29 w.join()

30

31 if __name__ == '__main__':

32 net = Net()

33 hogwild(net, num_cpus=4)

8.3 Training an A3C Agent
When the Actor-Critic algorithm using any advantage function is parallelized using an
asynchronous method, it is known as A3C [87]. In SLM Lab, any implemented algorithms
can be parallelized simply by adding a flag in the spec file. An example is shown in
Code 8.2, which is modified from the Actor-Critic spec from Chapter 6. The full file is
available in SLM Lab at slm_lab/spec/benchmark/a3c/a3c_nstep_pong.json.
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Code 8.2 A3C spec file to play Atari Pong

1 # slm_lab/spec/benchmark/a3c/a3c_nstep_pong.json

2

3 {

4 "a3c_nstep_pong": {

5 "agent": [{

6 "name": "A3C",

7 "algorithm": {

8 "name": "ActorCritic",

9 "action_pdtype": "default",

10 "action_policy": "default",

11 "explore_var_spec": null,

12 "gamma": 0.99,

13 "lam": null,

14 "num_step_returns": 5,

15 "entropy_coef_spec": {

16 "name": "no_decay",

17 "start_val": 0.01,

18 "end_val": 0.01,

19 "start_step": 0,

20 "end_step": 0

21 },

22 "val_loss_coef": 0.5,

23 "training_frequency": 5

24 },

25 "memory": {

26 "name": "OnPolicyBatchReplay",

27 },

28 "net": {

29 "type": "ConvNet",

30 "shared": true,

31 "conv_hid_layers": [

32 [32, 8, 4, 0, 1],

33 [64, 4, 2, 0, 1],

34 [32, 3, 1, 0, 1]

35 ],

36 "fc_hid_layers": [512],

37 "hid_layers_activation": "relu",

38 "init_fn": "orthogonal_",

39 "normalize": true,

40 "batch_norm": false,

41 "clip_grad_val": 0.5,

42 "use_same_optim": false,
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43 "loss_spec": {

44 "name": "MSELoss"

45 },

46 "actor_optim_spec": {

47 "name": "GlobalAdam",

48 "lr": 1e-4

49 },

50 "critic_optim_spec": {

51 "name": "GlobalAdam",

52 "lr": 1e-4

53 },

54 "lr_scheduler_spec": null,

55 "gpu": false

56 }

57 }],

58 "env": [{

59 "name": "PongNoFrameskip-v4",

60 "frame_op": "concat",

61 "frame_op_len": 4,

62 "reward_scale": "sign",

63 "num_envs": 8,

64 "max_t": null,

65 "max_frame": 1e7

66 }],

67 "body": {

68 "product": "outer",

69 "num": 1

70 },

71 "meta": {

72 "distributed": "synced",

73 "log_frequency": 10000,

74 "eval_frequency": 10000,

75 "max_session": 16,

76 "max_trial": 1,

77 }

78 }

79 }

Code 8.2 sets the meta spec "distributed": "synced" (line 72) and sets the number of
workers, max_session, to 16 (line 75). The optimizer is changed to variant GlobalAdam
(line 47) that is more suitable for Hogwild!. We also change the number of environments
num_envs to 8 (line 63). Note that if the number of environments is greater than 1, the
algorithm becomes a hybrid of synchronous (vector environments) and asynchronous
(Hogwild!) methods, and there will be num_envs × max_session workers. Conceptually,
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this can be thought of as a hierarchy of Hogwild! workers, each spawning a number of
synchronous workers.

To train this A3C agent with n-step returns using SLM Lab, run the commands shown
in Code 8.3 in a terminal.

Code 8.3 A3C: training an agent

1 conda activate lab

2 python run_lab.py slm_lab/spec/benchmark/a3c/a3c_nstep_pong.json

a3c_nstep_pong train↪→

As usual, this will run a training Trial to produce the graphs shown in Figure 8.1.
However, note that now the sessions take on the role of asynchronous workers. The trial
should take only a few hours to complete when running on CPUs, although it will require
a machine with at least 16 CPUs.

(a) Trial graph (b) Trial graph with moving average

Figure 8.1 The trial graphs of A3C (n-step returns) with 16 workers. Since sessions take on
the role of workers, the horizontal axis measures the number of frames experienced by individual

worker. Therefore, the total number of frames experienced collectively is equal to the sum of the

individual frames which will add to 10 million total frames.

8.4 Summary
In this chapter, we discussed two widely applicable parallelization methods—synchronous
and asynchronous. We showed that they can be implemented using, respectively, vector
environments or the Hogwild! algorithm.
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The two benefits of parallelization are faster training and more diverse data. The second
benefit plays a crucial role in stabilizing and improving the training of policy gradient
algorithms. In fact, it often makes the difference between success and failure.

When determining which of the parallelization methods to apply, it helps to consider
the factors of the ease of implementation, compute cost, and scale.

Synchronous methods (e.g., vector environments) are often straightforward and easier to
implement than asynchronous methods, particularly if only data gathering is parallelized.
Data generation is usually cheaper, so they require fewer resources for the same number of
frames and so better scale up to a moderate number of workers—for example, less than
100. However, the synchronization barrier becomes a bottleneck when applied at a larger
scale. In this case, asynchronous methods will likely be significantly faster.

It is not always necessary to parallelize. As a general rule, try to understand if a problem
is simple enough to be solved without parallelization before investing time and resources
into implementing it. Also, the need to parallelize depends on the algorithm used.
Off-policy algorithms, such as DQN, can often achieve strong performance without
parallelization since the experience replay already provides diverse training data. Even if
training takes a very long time, agents can still learn. This is often not the case for
on-policy algorithms such as Actor-Critic, which need to be parallelized so they can learn
from diverse data.

8.5 Further Reading
. “Asynchronous Methods for Deep Reinforcement Learning,”Mnih et al., 2016 [87].

. “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent,” Niu et al., 2011 [93].
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Algorithm Summary

There are three defining characteristics of the algorithms we have introduced in this book.
First, is an algorithm on-policy or off-policy? Second, what types of action spaces can it be
applied to? And third, what functions does it learn?

REINFORCE, SARSA, A2C, and PPO are all on-policy algorithms, whereas DQN
and Double DQN + PER are off-policy. SARSA, DQN, and Double DQN + PER are
value-based algorithms that learn to approximate the Qπ function. Consequently, they are
only applicable to environments with discrete action spaces.

REINFORCE is a pure policy-based algorithm and so only learns a policy π. A2C and
PPO are hybrid methods which learn a policy π and the V π function. REINFORCE,
A2C, and PPO can all be applied to environments with either discrete or continuous
action spaces. The characteristics of the algorithms are summarized in Table 9.1.

Table 9.1 Summary of algorithms in this book and their characteristics

environment functions learned

Algorithm on/off-policy discrete continuous V π Qπ policy π

REINFORCE on-policy X X X

SARSA on-policy X X

DQN off-policy X X

Double DQN + PER off-policy X X

A2C on-policy X X X X

PPO on-policy X X X X

The algorithms we have discussed form two families, as depicted in Figure 9.1. Each
family has an ancestor algorithm from which the others extend. The first family is the
value-based algorithms—SARSA, DQN, and Double DQN + PER. SARSA is the
ancestor of this family. DQN can be thought of as an extension of SARSA with better
sample efficiency because it is off-policy. PER and Double DQN are extensions of DQN
which improve on the sample efficiency and stability of the original DQN algorithm.
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The second family consists of the policy-based and combined algorithms—
REINFORCE, A2C, and PPO. REINFORCE is the ancestor of this family. A2C extends
REINFORCE by replacing the Monte Carlo estimate of the return with a learned value
function. PPO extends A2C by modifying the objective to avoid performance collapse and
improve sample efficiency.

Figure 9.1 All the algorithms in this book are extensions of SARSA and REINFORCE.

Of all the algorithms we have discussed, the best-performing ones are Double DQN +
PER and PPO. They are typically the most stable and sample-efficient algorithms in their
respective families. They are therefore good first algorithms to try when working on a new
problem.

There are two important factors to consider when deciding whether to use Double
DQN + PER or PPO—the environment action space and the cost of generating
trajectories. A PPO agent can be trained on environments with any type of action space,
whereas Double DQN + PER is limited to discrete actions. However, Double DQN +
PER can be trained by reusing off-policy data generated by any means. This is
advantageous when data is expensive or time-consuming to gather—for example if the
data must be gathered from the real world. In contrast, PPO is on-policy, so it can only
train on data generated from its own policy.
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Getting Deep RL to Work

A deep RL system consists of an agent interacting with an environment. Agents further
consist of components which include a memory, policy, neural networks, and algorithmic
functions. Individually, each of these components can be quite complex, and they also
have to integrate and operate together to produce a working deep RL algorithm. As a
result, a code base that implements multiple deep RL algorithms starts to enter the
realm of large software systems with substantial amounts of code. This complexity leads
to interdependencies and constraints and leaves more room for bugs to creep in.
Consequently, the software can be fragile and difficult to get working.

This chapter is filled with some practical tips for debugging implementations of deep
RL algorithms. In Section 10.1, we introduce some useful engineering practices to help
manage code complexity. Then, we discuss a number of general debugging practices in
Section 10.2, as well as some specific tricks that help when training agents on the Atari
environments (Section 10.3). The chapter ends with a Deep RL Almanac (Section 10.4)
that lists good hyperparameter values for the main algorithms and environments that we
have discussed in this book and provides some information on approximate run time and
computational resource requirements.

10.1 Software Engineering Practices
At the highest level, there is the matter of theoretical correctness vs. implementation
correctness. When designing a new RL algorithm or component, it needs to be proven
theoretically correct before implementation. This is especially relevant when conducting
research. Similarly, when trying to solve a new environment, one needs to first ensure that
the problem is indeed solvable by RL before applying any algorithms. This is especially
relevant for applications. If everything is theoretically correct and the problem at hand is
solvable, then the failure of a RL algorithm can be attributed to implementation errors.
We then need to debug the code.

Debugging involves identifying the errors in a piece of code and fixing them. Often,
the most time-consuming process is searching for the errors and understanding why they
are there in the first place. Once an error is understood, implementing a fix can be
straightforward and fast.
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Deep RL algorithms can fail for many different reasons. Also, RL development cycles
are resource- and time-intensive, which makes the debugging process harder. To efficiently
debug RL code, one must use a systematic approach to identify errors in order to narrow
down the potential candidates quickly. Fortunately, the field of software engineering is
used to such problems, with many established best practices we can borrow from—in
particular, unit tests, code quality, and git workflow.

10.1.1 Unit Tests
Unit testing is a universal requirement for good software engineering, and the reason is
simple—any untested code is risky code. A reliable software system must be built on top of a
rigorous foundation: the core components which serve as the basis for other code must be
thoroughly tested and verified to be correct. If the foundation is unreliable, the unresolved
errors will propagate and affect even more components as the software system grows.
Progress will become slower because we will have to spend more time debugging and less
time developing.

Unit tests provide a guarantee that the tested components work as intended. Once a
piece of code is properly tested, we can trust it and develop using it with more confidence.
When unit tests are applied systematically to a code base, they help eliminate many of the
things that can go wrong, thereby narrowing down the list of error candidates when
debugging.
Test coverage is a useful metric used by software engineers to measure what percentage of

a code base is covered by unit tests. This is calculated by a static analysis tool which
measures the total number of lines of code or logical paths, and checks how many lines
are covered when all the unit tests are run. This ratio is converted into the percentage test
coverage. Any modern unit testing tools automatically calculate and report this metric. In
SLM Lab, it is done by PyTest whenever unit tests are run.

It may be tempting to achieve 100% test coverage, but doing so can be
counterproductive. Perfect test coverage may be desirable for industrial software running in
a production environment, but makes little sense for research that needs to move at a rapid
pace. Writing unit tests takes time and effort, and overdoing it may compete with the main
priority of development and research. To achieve a balanced middle ground, it should be
reserved for the most important code. The author of the code should be able to judge
what is important enough to test—but, as a rule-of-thumb, code that is widely used,
complicated, error-prone, or crucial should be tested.

Unit tests essentially assert facts about how a piece of code runs. However, we have to
define the domain of behavior to test. For example, when testing a function, a test defines
the input along with the expected result which is compared to the computed output. A
few aspects of a function are commonly tested: the function needs to run correctly and
without crashing for a range of inputs, common and edge cases should be tested, and data
shapes and types should be checked. If the function implements a formula, test it
empirically—calculate some example numerical results by hand and compare them with
the function outputs to verify the correctness of an implementation. When a new bug is
fixed, a test should be added to prevent reoccurrence of the bug.
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To illustrate these points, Code 10.1 shows an example test which runs a DQN
algorithm on the Atari Pong environment end-to-end. The test initializes the agent and
environment and runs the full training loop for a small number of steps. Despite its
simplicity, this serves as a broad and complete check to ensure everything can run without
crashing. It also ensures that important assertions throughout the algorithm pass, such as
the loss computation and network update. Broad, basic tests such as test_atari are
particularly useful as a code base grows because they help check that new features do not
break the core functionality of old ones.

Code 10.1 End-to-end test of the DQN algorithm in the Atari Pong environment

1 # slm_lab/test/spec/test_spec.py

2

3 from flaky import flaky

4 from slm_lab.experiment.control import Trial

5 from slm_lab.spec import spec_util

6 import pytest

7

8 # helper method to run all tests in test_spec

9 def run_trial_test(spec_file, spec_name=False):

10 spec = spec_util.get(spec_file, spec_name)

11 spec = spec_util.override_test_spec(spec)

12 spec_util.tick(spec, 'trial')

13 trial = Trial(spec)

14 trial_metrics = trial.run()

15 assert isinstance(trial_metrics, dict)

16

17 ...

18

19 @flaky

20 @pytest.mark.parametrize('spec_file,spec_name', [

21 ('benchmark/dqn/dqn_pong.json', 'dqn_pong'),

22 ('benchmark/a2c/a2c_gae_pong.json', 'a2c_gae_pong'),

23 ])

24 def test_atari(spec_file, spec_name):

25 run_trial_test(spec_file, spec_name)

Code 10.2 shows two empirical tests. test_calc_gaes tests the Generalized Advantage
Estimation (GAE) implementation from Chapter 6, and test_linear_decay tests a
function which linearly decays a variable. This is used frequently in SLM Lab, for example
to decay the exploration variables ε or τ . Empirical tests such as these are particularly
important for functions that are complex or tricky to implement—they bring us peace of
mind that the function is producing the expected outputs.
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Code 10.2 Example empirical tests. Results for some mathematical formulas are manually

calculated and compared with function outputs.

1 # slm_lab/test/lib/test_math_util.py

2

3 from slm_lab.lib import math_util

4 import numpy as np

5 import pytest

6 import torch

7

8 def test_calc_gaes():

9 rewards = torch.tensor([1., 0., 1., 1., 0., 1., 1., 1.])

10 dones = torch.tensor([0., 0., 1., 1., 0., 0., 0., 0.])

11 v_preds = torch.tensor([1.1, 0.1, 1.1, 1.1, 0.1, 1.1, 1.1, 1.1, 1.1])

12 assert len(v_preds) == len(rewards) + 1 # includes last state

13 gamma = 0.99

14 lam = 0.95

15 gaes = math_util.calc_gaes(rewards, dones, v_preds, gamma, lam)

16 res = torch.tensor([0.84070045, 0.89495, -0.1, -0.1, 3.616724, 2.7939649,

1.9191545, 0.989])↪→

17 # use allclose instead of equal to account for atol

18 assert torch.allclose(gaes, res)

19

20 @pytest.mark.parametrize('start_val, end_val, start_step, end_step, step,

correct', [↪→

21 (0.1, 0.0, 0, 100, 0, 0.1),

22 (0.1, 0.0, 0, 100, 50, 0.05),

23 (0.1, 0.0, 0, 100, 100, 0.0),

24 (0.1, 0.0, 0, 100, 150, 0.0),

25 (0.1, 0.0, 100, 200, 50, 0.1),

26 (0.1, 0.0, 100, 200, 100, 0.1),

27 (0.1, 0.0, 100, 200, 150, 0.05),

28 (0.1, 0.0, 100, 200, 200, 0.0),

29 (0.1, 0.0, 100, 200, 250, 0.0),

30 ])

31 def test_linear_decay(start_val, end_val, start_step, end_step, step,

correct):↪→

32 assert math_util.linear_decay(start_val, end_val, start_step, end_step,

step) == correct↪→

To decide what tests to write, it helps to organize them according to the structure and
components of the software. This is one reason to invest some time in better software
design. For instance, organizing all the methods into a single structureless script may get
things done in a hackish-and-fast way, but is bad practice if our code is meant to be used
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more than once, let alone in a long-term production system. Good software should
be modularized into sensible components that can be developed, used, and tested
independently. Throughout this book we have discussed how an agent can be organized
into components such as a memory class, algorithm, and neural network. SLM Lab follows
this component design, and unit tests are written for each component. When tests are
organized to match the design of a piece of software, we can easily keep track of what has
been tested and, correspondingly, of what works. This significantly improves the efficiency
of debugging because it provides a mental map of untested weak spots that are potential
error candidates.

Code 10.3 shows an example component test for a convolutional network that is
developed and tested as an independent module. It checks for network-specific elements
such as architecture, data shapes, and model update to ensure the implementation is
working as intended.

Code 10.3 Example component test for a convolutional network. Features specific to the

network are developed and tested in an independent module.

1 # slm_lab/test/net/test_conv.py

2

3 from copy import deepcopy

4 from slm_lab.env.base import Clock

5 from slm_lab.agent.net import net_util

6 from slm_lab.agent.net.conv import ConvNet

7 import torch

8 import torch.nn as nn

9

10 net_spec = {

11 "type": "ConvNet",

12 "shared": True,

13 "conv_hid_layers": [

14 [32, 8, 4, 0, 1],

15 [64, 4, 2, 0, 1],

16 [64, 3, 1, 0, 1]

17 ],

18 "fc_hid_layers": [512],

19 "hid_layers_activation": "relu",

20 "init_fn": "xavier_uniform_",

21 "batch_norm": False,

22 "clip_grad_val": 1.0,

23 "loss_spec": {

24 "name": "SmoothL1Loss"

25 },

26 "optim_spec": {

27 "name": "Adam",

28 "lr": 0.02
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29 },

30 "lr_scheduler_spec": {

31 "name": "StepLR",

32 "step_size": 30,

33 "gamma": 0.1

34 },

35 "gpu": True

36 }

37 in_dim = (4, 84, 84)

38 out_dim = 3

39 batch_size = 16

40 net = ConvNet(net_spec, in_dim, out_dim)

41 # init net optimizer and its lr scheduler

42 optim = net_util.get_optim(net, net.optim_spec)

43 lr_scheduler = net_util.get_lr_scheduler(optim, net.lr_scheduler_spec)

44 x = torch.rand((batch_size,) + in_dim)

45

46 def test_init():

47 net = ConvNet(net_spec, in_dim, out_dim)

48 assert isinstance(net, nn.Module)

49 assert hasattr(net, 'conv_model')

50 assert hasattr(net, 'fc_model')

51 assert hasattr(net, 'model_tail')

52 assert not hasattr(net, 'model_tails')

53

54 def test_forward():

55 y = net.forward(x)

56 assert y.shape == (batch_size, out_dim)

57

58 def test_train_step():

59 y = torch.rand((batch_size, out_dim))

60 clock = Clock(100, 1)

61 loss = net.loss_fn(net.forward(x), y)

62 net.train_step(loss, optim, lr_scheduler, clock=clock)

63 assert loss != 0.0

64

65 def test_no_fc():

66 no_fc_net_spec = deepcopy(net_spec)

67 no_fc_net_spec['fc_hid_layers'] = []

68 net = ConvNet(no_fc_net_spec, in_dim, out_dim)

69 assert isinstance(net, nn.Module)

70 assert hasattr(net, 'conv_model')

71 assert not hasattr(net, 'fc_model')

72 assert hasattr(net, 'model_tail')
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73 assert not hasattr(net, 'model_tails')

74

75 y = net.forward(x)

76 assert y.shape == (batch_size, out_dim)

77

78 def test_multitails():

79 net = ConvNet(net_spec, in_dim, [3, 4])

80 assert isinstance(net, nn.Module)

81 assert hasattr(net, 'conv_model')

82 assert hasattr(net, 'fc_model')

83 assert not hasattr(net, 'model_tail')

84 assert hasattr(net, 'model_tails')

85 assert len(net.model_tails) == 2

86

87 y = net.forward(x)

88 assert len(y) == 2

89 assert y[0].shape == (batch_size, 3)

90 assert y[1].shape == (batch_size, 4)

Given their importance, unit tests should be written frequently, so they need to be easy
to write. Tests do not have to be complicated. In fact, the simpler they are, the better.
Good tests should be short and clear while covering all the important aspects of the
functions they test. They should also be fast and stable, since tests are often used as a
qualifier for accepting newly developed code, thus affecting the speed of development
cycle. A function can be trusted through unit tests that give evidence of how it works that
can be understood easily and quickly. With trust and reliability, further development and
research can proceed more smoothly.

10.1.2 Code Quality
Unit tests are necessary but not sufficient for good software engineering. It also requires
good code quality. Code does not just convey instructions for a computer—it also
communicates ideas to programmers. Good code is easy to understand and work
with—this applies to any collaborators as well as the original code authors. If we cannot
understand a piece of code written by ourselves three months from now, it is bad code
with poor maintainability.

Standard practice in software engineering to ensure code quality is to adopt a style
guide and do code reviews. A style guide for a programming language is a set of best
practices and conventions for writing code in it. It includes guidelines from general syntax
formatting and naming conventions to specific dos and don’ts for writing safe and
performant code. Style guides are usually established by a large community of
programmers in order to share common conventions. It not only makes code more
understandable in a collaborative setting, but also increases the overall quality of the code.
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Style guides are constantly evolving to match the growth of the programming languages
as well as the requirements of their communities. They are usually maintained as
crowd-sourced documents on Github with open source licenses. SLM Lab uses the Google
Python Style Guide (https://github.com/google/styleguide) as its primary style guide,
and additionally the Python Style Guide (https://github.com/kengz/python) by Wah
Loon Keng.

To help programmers write better code, modern style guides are also converted into
programs called linters, which work with text editors to help enforce the guidelines by
providing visual aids and autoformatting. The same programs are also used for automated
code reviews—which brings us to our next topic.

Code reviews help ensure the quality of code added to a software repository. Usually
this involves one or more people checking newly committed code for logical correctness
and adherence to a style guide. Major code-hosting platforms such as Github support
code review. Every new chunk of code is first reviewed through what is known as a pull
request before it gets accepted. This code review workflow is now a standard software
development practice.

In the last few years, automated code review has also proliferated, with companies like
Code Climate [27] and Codacy [26] providing free and paid cloud services to perform
code quality checks. Typically these tools perform static code analysis checking for a
number of elements, such as adherence to a style guide, security issues, code complexity,
and test coverage. These tools are used as gatekeepers to ensure that only code that passes
code review can be accepted and merged into a repository. Any identified issues contribute
to what is known as technical debt. Like monetary debt, technical debt needs to be
paid—either now or later. It also grows with interest—as a software project expands,
unresolved bad code creeps into more places wherever it gets used. To ensure the
long-term health of a project, it is important to keep technical debt under check.

10.1.3 Git Workflow
Git is a modern version control tool for source code. Its core idea is simple—every
addition and deletion of code should be committed to a code base in a traceable way. This
means it is versioned with a message describing what was done in that commit. When a
code change breaks software, it is easy to quickly revert to a previous version. Additionally,
the differences between commits can also be used for debugging. This can be shown using
the git diff command or by looking at a Github pull request page. If software suddenly
fails in a new commit, it is likely due to the recent code changes. The Git workflow is
simply to commit code changes incrementally, with clear messages, and then review the
commits before accepting them into the main code base.

Given how fragile and involved deep RL software is, using a Git workflow can be
tremendously helpful. It has been an indispensable aid in the development of SLM Lab. It
is useful not just for functional code, but also for algorithm hyperparameters. Figure 10.1
shows an example Git diff view in which a Double DQN agent spec file is tuned by
changing its gradient clipping norm, neural network optimizer, and network update type.
If the resultant agent performs better or worse, we know why.

https://github.com/google/styleguide
https://github.com/kengz/python
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Figure 10.1 A screenshot of an SLM Lab pull request Git diff view showing the before/after

code changes side by side.

The Git workflow helps SLM Lab experiments to be reproducible. In SLM Lab, any
result can be reproduced by simply supplying the Git SHA. This is used to check out the
exact version of the code that was used to run an experiment and to rerun it precisely as it
was written. Without the Git workflow, we would have to resort to manual code changes,
which can quickly get complicated given how many moving parts there are in deep RL.

The main activity for manual code review involves reviewing the Git diff just like the
one shown in Figure 10.1. A pull request accumulates multiple relevant commits for a new
feature or a bug fix and summarizes the changes clearly on a page for reviewers and
authors to inspect and discuss. This is how software gets developed incrementally. Git
workflow together with unit tests and style guides form the cornerstone of modern
software engineering.

Unit tests, style guides, and code reviews help us manage complex software projects.
They facilitate building large and complex software, and help keep it running correctly as
it grows. Given the complexity of deep RL algorithms, it is reasonable to adopt these
practices, just as SLM Lab did. To learn about the specifics of applying them to deep RL,
look at some example pull requests from the SLM Lab Github repository. Figure 10.2
shows an example in which a pull request runs unit tests and code quality checks
automatically. Until a pull request passes these checks, the code changes cannot be merged.

Good software engineering is necessary for building complex software in a manageable
way. What’s described in this section are just a few pointers for those starting to think
about this topic—which is a large and deep field in its own right. Unfortunately, it is not
a subject taught in computer science courses. Good engineering can only be learned
through observation and experience. Luckily, given the abundance of good open
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Figure 10.2 A screenshot of an SLM Lab pull request, which runs unit tests on a remote

server, and automated code quality checks using Code Climate

source projects and communities, it can be learned through hands-on involvement in those
projects. With an open and caring attitude towards code, it is not a difficult skill to achieve.
With this as foundation, we will look at some guidelines for getting deep RL to work.

10.2 Debugging Tips
In this section, we’ll look at some debugging tips that may come in useful when trying to
get an RL algorithm to work. Due to its complexity and novelty, debugging in deep RL is
still more of an art than a science. It requires significant hands-on experience with the
quirks of deep learning software, numerical computation, and hardware. Most importantly,
just like any challenging project, it takes a great deal of persistence to get things to work.
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The primary goal of debugging is to identify the root cause of a failure. The process is
essentially problem isolation where we systematically check various suspects to find the
error. It is important to be methodical. We should have a prioritized list of hypotheses and
suspects, then test them one by one, if possible in isolation. Each unsuccessful test
eliminates another candidate and refines the next hypothesis. Hopefully, this will quickly
lead us to the root cause.

In what follows we use the design of SLM Lab to outline a general RL debugging
checklist.

10.2.1 Signs of Life
To know if a deep RL algorithm is working or not, we need to check for some basic signs
of life. The simplest indicator is the total reward and its running average. A working
algorithm should obtain rewards higher than a random agent. If it is anything equal or
lower, the algorithm is not working. Additionally, for a task in which success correlates
with the number of time steps, check the episode length. If a task relies on quick completion,
shorter episodes are better; if a task involves multiple stages, longer episodes are better.

Additionally, if the learning rate or exploration variable is decayed over time, we should also
read the printout to check if the decay is done properly. For instance, if the ε variable of an
ε-greedy policy does not decay due to some bug, the algorithm will always perform
random actions. These variables are logged periodically when a session is run in SLM Lab,
as shown in a log snippet in Code 10.4.

Code 10.4 Example of diagnostic variables logged by SLM Lab when a session is running

1 [2019-07-07 20:42:55,791 PID:103674 INFO __init__.py log_summary] Trial 0

session 0 dqn_pong_t0_s0 [eval_df] epi: 0 t: 0 wall_t: 48059 opt_step:

4.775e+06 frame: 3.83e+06 fps: 79.6937 total_reward: 9.25

total_reward_ma: 14.795 loss: 0.00120682 lr: 0.0001 explore_var: 0.01

entropy_coef: nan entropy: nan grad_norm: nan

↪→

↪→

↪→

↪→

2 [2019-07-07 20:44:51,651 PID:103674 INFO __init__.py log_summary] Trial 0

session 0 dqn_pong_t0_s0 [train_df] epi: 0 t: 3.84e+06 wall_t: 48178

opt_step: 4.7875e+06 frame: 3.84e+06 fps: 79.7044 total_reward: 18.125

total_reward_ma: 18.3331 loss: 0.000601919 lr: 0.0001 explore_var: 0.01

entropy_coef: nan entropy: nan grad_norm: nan

↪→

↪→

↪→

↪→

10.2.2 Policy Gradient Diagnoses
For policy gradient methods, there are also variables specific to a policy that can be
monitored. These are the quantities that can be computed from the action probability
distribution, such as its entropy. Usually, a policy is random at the beginning of training, so
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the entropy of the action probability distribution should be close to the theoretical
maximum; the specific value will vary according to the size and type of the action space. If
the action entropy does not decrease, this means the policy remains random and no learning
is taking place. If it decreases too quickly, an agent may also not be learning properly
because this indicates that an agent has stopped exploring the action space and is selecting
actions with very high probability. As a rule of thumb, if an agent usually takes 1 million
time steps to learn a good policy, but if the action probability entropy drops rapidly over
the first 1,000 steps, then it is highly unlikely that the agent has learned a good policy.

Action probability or log-probability is closely related to the entropy of the action
probability distribution. It shows the probability of a chosen action. At the start of training,
action probabilities should be close to uniformly random. As an agent learns a better policy,
a chosen action should be more deliberate and hence have higher probability on average.

Another useful indicator is the KL divergence (KL), which measures the “size” of a policy
update. If KL is small, this implies that the change in the policy between updates is also
small and suggests that learning is slow or nonexistent. On the other hand, if KL suddenly
becomes very large, this indicates that a large policy update just took place which could
cause a performance collapse as we discussed in Chapter 7. Some of these variables are also
logged in SLM Lab, as shown in Code 10.4.

10.2.3 Data Diagnoses
Ensuring the correctness of data is crucial, especially when the information exchanged
between an agent and an environment passes through many transformations. Each step is a
potential source of error. Manual debugging of data is often very useful. The state, action,
and reward can be traced at different transformation steps and checked. For states and
rewards, the raw data comes out of the environment, gets preprocessed, stored by agent,
and is then used in training. For actions, data is produced by a neural network, gets
composed and potentially preprocessed, then is passed back to the environment. At each
step, the values of these variables can be printed out and checked manually. After looking
at them long enough, we will start developing intuitions about the raw data, which helps
select useful debugging information and identify when something looks wrong.

For an image state, besides printing out the numbers, it should also be rendered and
looked at. It is useful to render both the raw image from the environment and the
preprocessed image seen by an algorithm. When they are compared side by side, we are
better able to identify any subtle bugs in the preprocessing steps that may result in missing
or erroneous information presented to the algorithm. Stepping through the images or
video as an environment runs also helps us see how an agent is performing the task. This
can reveal much more information than just looking at the pixel numbers or logs. A
method from SLM Lab for rendering a preprocessed image is shown in Code 10.5. This is
used to generate the downsized and grayscaled image, shown in Figure 10.3 below the
original RGB image from the environment for comparison. In this mode, the process is
paused for a user to do visual inspection and continues after any key is pressed.
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Code 10.5 A method to render preprocessed images for debugging in SLM Lab. When called

on a preprocessed image state, this will render what an agent sees and compare it with what the

environment produces.

1 # slm_lab/lib/util.py

2

3 import cv2

4

5 def debug_image(im):

6 '''

7 Use this method to render image the agent sees

8 waits for a key press before continuing

9 '''

10 cv2.imshow('image', im.transpose())

11 cv2.waitKey(0)

Figure 10.3 Example of image debugging for Atari Pong in SLM Lab. The raw colored image is

rendered on top, while the preprocessed image (downsized and grayscaled) is rendered below it for

comparison. Frames can be stepped through by pressing any key.
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10.2.4 Preprocessor
States and rewards from an environment are usually preprocessed before getting stored in
an agent’s memory or used for training. To complement the manual data inspection, we
need to check the functions which produce the data. If preprocessed data looks wrong,
then the preprocessor implements some transformations incorrectly. Perhaps the output data
shape or orientation is wrong, or erroneous typecasting reduces all data to 0. One minor
detail when handling image data is the difference in image channel ordering conventions. Most
computer vision libraries, as a historical design legacy, put the image channels last, so the
image shape is (width, height, channel). PyTorch’s convention reverses it for efficiency, and
its image shape is (channel, height, width). Images produced by an environment in
OpenAI Gym use the older convention, so this needs to be handled properly before
getting passed into a PyTorch convolutional network.

10.2.5 Memory
Agent memory acts as a data storage. First, we check that the data has the correct shape
and type. We also need to ensure that the ordering of data is correct. This is especially
crucial when generating sequential data for a recurrent network. For on-policy memory, it
is vital to ensure that the memory is cleared properly after every training step. When
sampling data for training, also check that the methods used for generating random indices
and getting data are correct. More advanced memory structures, such as Prioritized
Experience Replay, have their own sampling algorithms and data structures which need to
be tested separately.

10.2.6 Algorithmic Functions
If data is generated and stored correctly, then we need to debug the primary algorithmic
functions that consume it. RL functions such as the Bellman equation or Generalized
Advantage Estimation (GAE) can be quite complicated, so implementation bugs are likely.
Empirical unit tests, such as the examples shown in Code 10.2, should be done by
comparing the implementation’s output with manually computed values. Sometimes, the
error may be due to an array indexing issue, numerical bug, a missed corner case, or a
simple typecasting mistake. We should also print and manually inspect the inputs and
outputs of the advantage function, the V- or Q-value functions, and the computed losses.
Check the range of these values, how they change over time, and whether they look
strange. Often, these computations are closely tied to the neural networks.

10.2.7 Neural Networks
When a RL algorithm fails to learn, a reasonable place to look is the neural network, since
this is where learning occurs. The easiest thing to check is the network architecture. The
input and output dimensions need to be correct. The hidden layers should be of the right
kind with an appropriate size. Activation functions must also be applied correctly. Any
squeezing functions, such as a tanh or sigmoid, will restrict the range of values, so output
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layers typically do not have an activation function. One exception is policy networks
which output action probabilities—these may have activation functions applied to the
output layer. Deep RL algorithms are also known to be sensitive to network parameter
initializations, since this affects the initial learning conditions.

The value ranges of input and output data should also be checked. Neural networks are
quite sensitive to inputs with different scales, so it is common practice to normalize or
standardize network inputs per dimension. During training, we want to avoid an exploding
loss where the loss suddenly becomes very large. If a network suddenly outputs a NaN value,
this likely means that some network parameters have become infinite due to large updates
from an excessively large loss and a correspondingly large parameter update. The loss
computation should be fixed. Also, a good rule of thumb is to always apply gradient clipping
with a norm of 0.5 or 1.0 as this helps to avoid large parameter updates.

Next, ensure that the training steps are actually updating the network parameters. If the
parameters do not change after multiple training steps with a nonzero loss, check the
computation graph. A common cause is a detached graph—somewhere along the chain
of computations from input to output, gradient propagation is accidentally dropped, so
backpropagation cannot be applied completely to all the relevant operations. Modern deep
learning frameworks have built-in checks to flag a detached computation graph and to
indicate whether gradients can be calculated properly. SLM Lab implements a decorator
method for training steps which automatically checks for network parameter updates in
development mode. This is shown in Code 10.6.

Code 10.6 SLM Lab implements a decorator method that can be used with a training step

method. It automatically checks for network parameter updates in development mode, and throws

an error if the check fails.

1 # slm_lab/agent/net/net_util.py

2

3 from functools import partial, wraps

4 from slm_lab.lib import logger, optimizer, util

5 import os

6 import pydash as ps

7 import torch

8 import torch.nn as nn

9

10 logger = logger.get_logger(__name__)

11

12 def to_check_train_step():

13 '''Condition for running assert_trained'''

14 return os.environ.get('PY_ENV') == 'test' or util.get_lab_mode() == 'dev'

15

16 def dev_check_train_step(fn):

17 '''

18 Decorator to check if net.train_step actually updates the network weights

properly↪→
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19 Triggers only if to_check_train_step is True (dev/test mode)

20 @example

21

22 @net_util.dev_check_train_step

23 def train_step(self, ...):

24 ...

25 '''

26 @wraps(fn)

27 def check_fn(*args, **kwargs):

28 if not to_check_train_step():

29 return fn(*args, **kwargs)

30

31 net = args[0] # first arg self

32 # get pre-update parameters to compare

33 pre_params = [param.clone() for param in net.parameters()]

34

35 # run train_step, get loss

36 loss = fn(*args, **kwargs)

37 assert not torch.isnan(loss).any(), loss

38

39 # get post-update parameters to compare

40 post_params = [param.clone() for param in net.parameters()]

41 if loss == 0.0:

42 # if loss is 0, there should be no updates

43 for p_name, param in net.named_parameters():

44 assert param.grad.norm() == 0

45 else:

46 # check parameter updates

47 try:

48 assert not all(torch.equal(w1, w2) for w1, w2 in

zip(pre_params, post_params)), f'Model parameter is not

updated in train_step(), check if your tensor is detached

from graph. Loss: {loss:g}'

↪→

↪→

↪→

49 logger.info(f'Model parameter is updated in train_step().

Loss: {loss: g}')↪→

50 except Exception as e:

51 logger.error(e)

52 if os.environ.get('PY_ENV') == 'test':

53 # raise error if in unit test

54 raise(e)

55

56 # check grad norms

57 min_norm, max_norm = 0.0, 1e5

58 for p_name, param in net.named_parameters():

http://logger.info(
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59 try:

60 grad_norm = param.grad.norm()

61 assert min_norm < grad_norm < max_norm, f'Gradient norm

for {p_name} is {grad_norm:g}, fails the extreme value

check {min_norm} < grad_norm < {max_norm}. Loss:

{loss:g}. Check your network and loss computation.'

↪→

↪→

↪→

62 except Exception as e:

63 logger.warning(e)

64 logger.info(f'Gradient norms passed value check.')

65 logger.debug('Passed network parameter update check.')

66 # store grad norms for debugging

67 net.store_grad_norms()

68 return loss

69 return check_fn

If a loss function is computed as a contribution from multiple individual losses, then
each of them must be checked to ensure they each produce the correct training behavior
and network updates. To check an individual loss, simply disable the other losses and run
some training steps. For example, a shared-network Actor-Critic algorithm has a loss that
is a sum of a policy loss and a value loss. To check the policy loss, simply remove the value
loss and run training to verify that the network gets updated from the policy loss. Then, do
the same to check the value loss by disabling the policy loss.

10.2.8 Algorithm Simplification
Deep RL algorithms often have many components—trying to make all of them work at
the same time is difficult. When faced with a complex problem, a tried and tested method
is simplification—starting with just the bare essentials before adding more features. We have
seen that various deep RL algorithms are extensions and modifications of simpler
algorithms, as shown in the RL family tree in Figure 9.1 of Chapter 9. For example, PPO
improves on A2C by changing the policy loss, and A2C, in turn, modifies REINFORCE.
We can use our understanding of the relationships among algorithms to our advantage. If
an implementation of PPO does not work, we can disable the PPO loss to turn it into
A2C, and focus on getting that to work first. Then, we can reenable the extension and
debug the full algorithm.

This method works the other way as well—by building from the ground up. For
example, we can first implement REINFORCE. When it works, we can extend it to
implement A2C. When that works, we can extend A2C to implement PPO. This fits
naturally within the programming framework of class inheritance, in which a more
complex class extends from a simpler parent class. This approach also allows components
to be reused, which means less new code to debug.

http://logger.info(
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10.2.9 Problem Simplification
When implementing and debugging an algorithm, it is often beneficial to first test it on
simpler problems, such as CartPole. Simpler problems usually require less hyperparameter
tuning and are less computationally intensive to solve. For example, training an agent to
play CartPole can run on a modest CPU in tens of minutes, whereas training an agent
to play an Atari game may need GPUs and hours or days to run. By focusing on a simple
problem first, each test iteration becomes much quicker, and we can speed up our
debugging and development workflow.

However, even when things work for simpler problems, they do not necessarily
translate directly to harder problems. There may still be some bugs left in the code. Harder
problems may also require modification. For example, CartPole uses a small state with four
elements and needs a multilayer perceptron network to solve, but an Atari game has an
image state and needs a convolutional network combined with some image preprocessing
and environment modifications. These new components still need to be debugged and
tested—but most of the core components will have already been tested, thus making
debugging much easier.

10.2.10 Hyperparameters
Although deep RL can be very sensitive to hyperparameters, tuning them is often a small
part of debugging if we are implementing an existing algorithm. We can often refer to
working hyperparameters from research papers or other implementations and check that
our agent achieves comparable performance with them. Once all the major bugs are fixed,
we can spend time to fine-tune the hyperparameters trying to get the best result. For
reference, Section 10.4 contains details of successful hyperparameter values for the different
algorithms and environments discussed in this book.

10.2.11 Lab Workflow
Deep RL is still very much an empirical science, so it is natural to adopt a scientific
workflow. This means establishing some hypotheses, identifying the variables, and running
experiments to obtain results. Each experiment may take days or weeks to complete, so it
is important to be strategic about which experiments to run. Think about which ones
should be prioritized, which experiments can be parallelized, and which are the most
promising. To keep track of all the experiments, keep a lab notebook to record and report
the results. This can be done in SLM Lab by committing the code used for an experiment
and recording the Git SHA together with the experiment results in an informative report.
All of the reports are submitted as Github pull requests and made available along with the
data needed to reproduce the results. An example of an SLM Lab report is shown in
Figure 10.4.
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Figure 10.4 A screenshot of an SLM Lab pull request with an experiment report, which

includes the method writeup, Git SHA, spec file, graphs, and other data for reproducibility

The tips presented in this section are not exhaustive; bugs can arise in various ways.
However, they do provide a good selection of entry points to start debugging, while the
rest requires hands-on experience to learn from. We should also not shy away from
referring to existing implementations written by other people, since they may reveal
insights we would otherwise miss—just remember to be a good open source citizen and
credit other people’s work properly.

Good debugging requires thoughtful hypothesizing and problem isolation, which is
made easier with good engineering practices. Many problems require a deep dive into the
code, and it is not uncommon to spend weeks or months getting a RL algorithm working.
A crucial human component is a positive attitude and great persistence—with faith and
grit, things will eventually work, and when they do, the reward is large.
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10.3 Atari Tricks
In this section we will look at some specific tricks to achieve good performance on the
Atari environments. We’ll first discuss the different versions of the environments available
through OpenAI Gym, and then look at the environment preprocessing steps that have
become standard practice.

The Atari environments offered in OpenAI Gym come in many variations. For
example, there are six versions of the Pong environment:

1. Pong-v4

2. PongDeterministic-v4

3. PongNoFrameskip-v4

4. Pong-ram-v4

5. Pong-ramDeterministic-v4

6. Pong-ramNoFrameskip-v4

Each version differs in terms of internal implementation, but the underlying game is
still the same. For example, NoFrameskip implies that raw frames are returned from the
environment, so users needs to implement their own frame skipping mechanism. A
ram environment returns the game RAM data as state, instead of an image. Most research
literature uses the environment with NoFrameskip, or PongNoFrameskip-v4 for the Pong
environment.

When the NoFrameskip version is used, most of the data preprocessing is implemented
and controlled by users. It is often written as environment wrappers. OpenAI’s
Baselines [99] Github repository remains a leading reference for specific environment
wrappers. SLM Lab also adapted many of these under the wrapper module at
slm_lab/env/wrapper.py, as shown in Code 10.7. Each of these wrappers serves to address
some specific quirks of the Atari environments which we discuss in this short section.

Code 10.7 SLM Lab adapts the environment preprocessing wrappers from OpenAI Baselines.

These methods are used to create Atari environments with the NoFrameskip suffix for training and

evaluation. Most of the code snippets are excluded here, but can be referenced in the source file on

SLM Lab.

1 # slm_lab/env/wrapper.py

2

3 ...

4

5 def wrap_atari(env):

6 '''Apply a common set of wrappers for Atari games'''

7 assert 'NoFrameskip' in env.spec.id

8 env = NoopResetEnv(env, noop_max=30)

9 env = MaxAndSkipEnv(env, skip=4)

10 return env
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11

12 def wrap_deepmind(env, episode_life=True, stack_len=None):

13 '''Wrap Atari environment DeepMind-style'''

14 if episode_life:

15 env = EpisodicLifeEnv(env)

16 if 'FIRE' in env.unwrapped.get_action_meanings():

17 env = FireResetEnv(env)

18 env = PreprocessImage(env)

19 if stack_len is not None: # use concat for image (1, 84, 84)

20 env = FrameStack(env, 'concat', stack_len)

21 return env

22

23 def make_gym_env(name, seed=None, frame_op=None, frame_op_len=None,

reward_scale=None, normalize_state=False):↪→

24 '''General method to create any Gym env; auto wraps Atari'''

25 env = gym.make(name)

26 if seed is not None:

27 env.seed(seed)

28 if 'NoFrameskip' in env.spec.id: # Atari

29 env = wrap_atari(env)

30 # no reward clipping to allow monitoring; Atari memory clips it

31 episode_life = not util.in_eval_lab_modes()

32 env = wrap_deepmind(env, episode_life, frame_op_len)

33 elif len(env.observation_space.shape) == 3: # image-state env

34 env = PreprocessImage(env)

35 if normalize_state:

36 env = NormalizeStateEnv(env)

37 if frame_op_len is not None: # use concat for image (1, 84, 84)

38 env = FrameStack(env, 'concat', frame_op_len)

39 else: # vector-state env

40 if normalize_state:

41 env = NormalizeStateEnv(env)

42 if frame_op is not None:

43 env = FrameStack(env, frame_op, frame_op_len)

44 if reward_scale is not None:

45 env = ScaleRewardEnv(env, reward_scale)

46 return env

1. NoopResetEnv: When an Atari game resets, the initial state passed to an agent is
actually a random frame from the first 30 in the raw environment. The helps prevent
an agent from memorizing the environment.

http://episode_life=notutil.in_eval_lab_modes(
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2. FireResetEnv: Some games require an agent to press “FIRE” during reset. For
example, Breakout requires the player to launch the ball at the start. This wrapper
does it once at reset, so that “FIRE” is not an agent action during the game.

3. EpisodicLifeEnv: Many Atari games have multiple lives before the game is over. In
general, it helps an agent to learn better when every life is treated as equally
precious. This wrapper breaks up each life into a new episode.

4. MaxAndSkipEnv: The difference between two consecutive states is too small for agents
to learn good policies. To increase the difference between consecutive states, agents
are constrained to choose an action every four time steps,1 and the selected action is
repeated in the intermediate frames, which are skipped in this wrapper. What agents
perceive to be st and st+1 are actually st and st+4. Additionally, this wrapper also
selects the maximum-valued pixel from the corresponding pixels in all the skipped
frames. A separate maximum is taken for each pixel in the state. In some games, some
objects are only rendered in even frames and others in odd frames. Depending on
the frame skip rate, this could lead to objects being entirely omitted from the state.
Using the maximum pixel from the skipped frames resolves this potential problem.

5. ScaleRewardEnv: This scales the time step reward. The most common scaling factor
for the Atari games is to clip the reward to −1, 0, or 1 by taking the sign of its
original value which helps standardize the scale of the reward between games.

6. PreprocessImage: This is an image preprocessing wrapper specific to the image
convention of PyTorch (color channel first). It grayscales and downsizes the image,
then swaps the axes to be consistent with PyTorch’s convention of channel-first.

7. FrameStack: For most agents, each network input frame is formed by stacking four
consecutive game images. This wrapper implements an efficient frame-stacking
method which only resolves the data into a stacked image during training. The
motivation behind frame-stacking is that some useful information about the game
state is not available in a single image. Recall the discussion in Box 1.1 from
Chapter 1 about the difference between MDPs and POMDPs. The Atari games are
not perfect MDPs, so the game state cannot be inferred from a single observed
state—the image. For example, an agent cannot infer the speed or direction in
which game objects are moving from a single image. However, knowing these values
is important when deciding how to act, and may make the difference between a
good score and losing the game. To remedy this issue, the previous four image states
are stacked before being passed to the agent. An agent can use four-image frames in
combination to infer important properties such as object motion. The dimension of
the states passed to an agent then becomes (84, 84, 4).

1. In Space Invaders, this is changed to acting every three steps so that the lasers are visible.
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Additionally, for algorithms such as Actor-Critic and PPO, a vectorized environment is
used. This is a wrapped environment consisting of a vector of multiple parallel game
instances running on separate CPUs. Parallelization allows for much faster and diverse
sampling of experiences to improve training. This is also part of SLM Lab’s environment
wrappers under the slm_lab.env.vec_wrapper module.

10.4 Deep RL Almanac
In this section, we provide a set of hyperparameters for the algorithms and environments
discussed in this book. It can be time-consuming to find a good starting point for tuning
the hyperparameters of an algorithm. This section is intended as a simple reference to help
with tuning.

We list hyperparameters by algorithm family for a number of environments. These
tables show which hyperparameters tend to vary more when the environment changes.
When tackling a new problem, the more sensitive (widely varying) hyperparameters are a
good place to start.

Finally, we briefly compare the performance of different algorithms on a few
environments.

A larger set of algorithm hyperparameters and performance comparisons is available
in the SLM Lab repository at https://github.com/kengz/SLM-Lab/blob/master
/BENCHMARK.md.

10.4.1 Hyperparameter Tables
This section contains three hyperparameter tables organized by the main types of
algorithms. The columns shows some examples of environments the algorithm can be
applied to (discrete or continuous control) in the order of increasing complexity from left
to right. Note that it is conventional for an algorithm to use the same hyperparameters for
all the Atari games. REINFORCE and SARSA are excluded because they are not as
frequently used in practice.

The hyperparameters are shown for a specific algorithm, but most values are applicable
to its variants. Table 10.1 shows the hyperparameters for Double DQN + PER, but they
can also be applied to DQN, DQN + PER, and Double DQN with one exception—the
learning rate should be lowered when using PER (see Section 5.6.1).

https://github.com/kengz/SLM-Lab/blob/master/BENCHMARK.md
https://github.com/kengz/SLM-Lab/blob/master/BENCHMARK.md
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Table 10.1 Hyperparameters for Double DQN + PER across environments

Hyperparameters \ Env LunarLander Atari

algorithm.gamma 0.99 0.99

algorithm.action_policy ε-greedy ε-greedy

algorithm.explore_var_spec.start_val 1.0 1.0

algorithm.explore_var_spec.end_val 0.01 0.01

algorithm.explore_var_spec.start_step 0 10,000

algorithm.explore_var_spec.end_step 50,000 1,000,000

algorithm.training_batch_iter 1 1

algorithm.training_iter 1 4

algorithm.training_frequency 1 4

algorithm.training_start_step 32 10,000

memory.max_size 50,000 200,000

m memory.alpha 0.6 0.6

memory.epsilon 0.0001 0.0001

memory.batch_size 32 32

net.clip_grad_val 10 10

net.loss_spec.name SmoothL1Loss SmoothL1Loss

net.optim_spec.name Adam Adam

net.optim_spec.lr 0.00025 0.000025

net.lr_scheduler_spec.name None None

net.lr_scheduler_spec.frame — —

net.update_type replace replace

net.update_frequency 100 1,000

net.gpu False True

env.num_envs 1 16

env.max_frame 300,000 10,000,000
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Table 10.2 shows the hyperparameters for A2C with GAE. The same set of values
can be applied to A2C with n-step returns except for replacing the GAE-specific
algorithm.lam with algorithm.num_step_returns for n-step returns.

Table 10.2 Hyperparameters for A2C (GAE) across environments

Hyperparameters \ Env LunarLander BipedalWalker Atari

algorithm.gamma 0.99 0.99 0.99

algorithm.lam 0.95 0.95 0.95

algorithm.entropy_coef_spec.start_val 0.01 0.01 0.01

algorithm.entropy_coef_spec.end_val 0.01 0.01 0.01

algorithm.entropy_coef_spec.start_step 0 0 0

algorithm.entropy_coef_spec.end_step 0 0 0

algorithm.val_loss_coef 1.0 0.5 0.5

algorithm.training_frequency 128 256 32

net.shared False False True

net.clip_grad_val 0.5 0.5 0.5

net.init_fn orthogonal_ orthogonal_ orthogonal_

net.normalize False False True

net.loss_spec.name MSELoss MSELoss MSELoss

net.optim_spec.name Adam Adam RMSprop

net.optim_spec.lr 0.002 0.0003 0.0007

net.lr_scheduler_spec.name None None None

net.lr_scheduler_spec.frame — — —

net.gpu False False True

env.num_envs 8 32 16

env.max_frame 300,000 4,000,000 10,000,000

Finally, Table 10.3 shows the hyperparameters for PPO. These hyperparameters are
available as SLM Lab spec files in the slm_lab/spec/benchmark/ folder, which also contain
many other tuned spec files. They can be run directly using the SLM Lab commands
outlined in Section 11.3.1.
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Table 10.3 Hyperparameters for PPO across environments

Hyperparameters \ Env LunarLander BipedalWalker Atari

algorithm.gamma 0.99 0.99 0.99

algorithm.lam 0.95 0.95 0.70

algorithm.clip_eps_spec.start_val 0.2 0.2 0.1

algorithm.clip_eps_spec.end_val 0 0 0.1

algorithm.clip_eps_spec.start_step 10,000 10,000 0

algorithm.clip_eps_spec.end_step 300,000 1,000,000 0

algorithm.entropy_coef_spec.start_val 0.01 0.01 0.01

algorithm.entropy_coef_spec.end_val 0.01 0.01 0.01

algorithm.entropy_coef_spec.start_step 0 0 0

algorithm.entropy_coef_spec.end_step 0 0 0

algorithm.val_loss_coef 1.0 0.5 0.5

algorithm.time_horizon 128 512 128

algorithm.minibatch_size 256 4096 256

algorithm.training_epoch 10 15 4

net.shared False False True

net.clip_grad_val 0.5 0.5 0.5

net.init_fn orthogonal_ orthogonal_ orthogonal_

net.normalize False False True

net.loss_spec.name MSELoss MSELoss MSELoss

net.optim_spec.name Adam Adam Adam

net.optim_spec.lr 0.0005 0.0003 0.00025

net.lr_scheduler_spec.name None None LinearToZero

net.lr_scheduler_spec.frame — — 10,000,000

net.gpu False False True

env.num_envs 8 32 16

env.max_frame 300,000 4,000,000 10,000,000

10.4.2 Algorithm Performance Comparison
This section compares the performance of different algorithms on a number of
environments. The environments are listed in the order of increasing complexity.
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The results in Table 10.4 and the graphs shown in this section give an indication of the
relative performance of different algorithms. However, the results can vary significantly
depending on the hyperparameters.

It is possible to further fine-tune the hyperparameters. This may change the relative
ranking among the algorithms if they have similar performance. However, if the
performance gap is large, it is unlikely that further tuning will change the ranking.

Note that there is no one best algorithm across all the environments. PPO, on the
whole, performs the best, but for some particular environments other algorithms can
perform better.

Table 10.4 The final mean_returns_ma. This is the 100-checkpoint moving average for the

total rewards, averaged across four sessions in a trial. These are obtained using the

hyperparameters shown in Section 10.4.1.

Env \ Algorithm DQN Double DQN+PER A2C(n-step) A2C(GAE) PPO

LunarLander 192.4 232.9 68.2 25.2 214.2

BipedalWalker — — 187.0 15.7 231.5

Pong 16.3 20.5 18.6 19.2 20.6

Breakout 86.9 178.8 394.1 372.6 445.4

Qbert 2913.2 10863.3 13590.4 12498.1 13379.2

(a) Multitrial graph (b) Multitrial with moving average

Figure 10.5 Comparing the performance of algorithms on the LunarLander environment
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(a) Multitrial graph (b) Multitrial with moving average

Figure 10.6 Comparing the performance of algorithms on the BipedalWalker environment

(a) Multitrial graph (b) Multitrial with moving average

Figure 10.7 Comparing the performance of algorithms on the Atari Pong environment
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(a) Multitrial graph (b) Multitrial with moving average

Figure 10.8 Comparing the performance of algorithms on the Atari Breakout environment

(a) Multitrial graph (b) Multitrial with moving average

Figure 10.9 Comparing the performance of algorithms on the Atari Qbert environment



ptg33646662

238 Chapter 10 Getting Deep RL to Work

10.5 Summary
Getting a deep RL algorithm to work can be a challenging endeavor. In this chapter, we
discussed some good engineering practices to help lay the groundwork and make
implementation and debugging more manageable. They include unit tests, style guides,
automated code review, and a Git workflow.

We then moved on to some practical debugging tips. These include checking for signs
of life, inspecting the data manually, and checking the agent components such as the
preprocessor, memory, neural network, and algorithm. General tips also include simplifying
the problem and adopting a scientific workflow. We briefly discussed the specific tricks
used to successfully train agents to play Atari games. Finally, we listed sets of good
hyperparameters for the main algorithms and environments discussed in this book. We
hope this will be a useful guide for someone working on these problems for the first time.

The ideas discussed in this chapter are not exhaustive; there are many other scenarios
and bugs we may encounter. However, these tips provide a good starting place for
debugging. Other techniques require more hands-on experience to learn. Given the
multitude of potential bugs, it is not uncommon to spend weeks or months trying to get
an implementation working. Deep RL is not easy, but the reward of getting something
hard to work is also very motivating. Most importantly, it takes a positive attitude and great
persistence to see things through.
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SLM Lab

We have used SLM Lab to run trials and experiments through this book. This chapter is
intended as a reference for its main features and commands.

The chapter begins with a summary of the algorithms implemented in SLM Lab. Then
we discuss the spec file in more detail, including the syntax for configuring
hyperparameter search. Next, we introduce the experiment framework consisting of
Session, Trial, and Experiment, as well as the main lab commands. The chapter ends with
a walkthrough of the graphs and data automatically generated when using SLM Lab.

In this chapter, we assume that SLM Lab has been installed by following the
instructions in the Preface. The source code is available on Github at
https://github.com/kengz/SLM-Lab. Since new algorithms and features are frequently
added to the library, we use the dedicated book branch for this book.

11.1 Algorithms Implemented in SLM Lab
SLM Lab implements the algorithms we have seen in this book, which are

. REINFORCE [148]

. SARSA [118]

. DQN [88]

. Double DQN [141], Prioritized Experience Replay [121]

. Advantage Actor-Critic (A2C)

. PPO [124]

. Asynchronous Advantage Actor-Critic (A3C) [87]

Features and algorithms are often being added and SLM Lab is under active
development. Here are a few examples of extensions to the core algorithms that have been
added to it recently.

. Combined Experience Replay (CER) [153]: This is a simple modification to
experience replay which always appends the most recent experience to a batch of
training data. The authors of CER showed that this reduced the sensitivity of the

https://github.com/kengz/SLM-Lab
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agent to the size of the replay buffer, reducing the need to spend as much time
tuning its size.

. Dueling DQN [144]: This algorithm uses a modification to the typical structure of
the neural network used to approximate the Q-function in DQN. In DQN, the
network typically outputs the Q-values directly. Dueling DQN decomposes this
estimation into two parts—estimating the state-value function V π and the
state-action advantage function Aπ. These estimations are combined within the
network module to produce an estimate for Q-values, so that the final form of
the network output is the same as in DQN. Training then proceeds in exactly the
same way as the DQN algorithm or its variants. Dueling DQN is based on the idea
that in some states, action selection is not very important and does not significantly
affect outcomes, whereas in others it is of critical importance. Consequently, it helps
to separate the estimation of a state’s value from the advantage of actions. When the
Dueling DQN algorithm was published, it achieved state of the art results on
the Atari games.

. Soft Actor-Critic (SAC) [47]: This algorithm is an Actor-Critic algorithm
specifically designed to be sample-efficient and stable. It is more sample-efficient
than A2C and PPO because the algorithm is off-policy so it can reuse data stored in
an experience replay memory. It also uses the maximum-entropy RL framework,
adding an entropy term to the objective function. By maximizing both the entropy
and the return, an agent learns to achieve high rewards while acting as randomly as
possible. This makes SAC less fragile and therefore training is more stable.

SLM Lab breaks the implementation of all algorithms into three components organized
into three corresponding classes.

. Algorithm: Handles interaction with the environment, implements an action policy,
computes the algorithm-specific loss functions, and runs the training step. The
Algorithm class also controls the other components and their interactions.

. Net: Stores the neural networks which serve as the function approximators for the
algorithm.

. Memory: Provides the necessary data storage and retrieval for training.

Organized in this way, implementations can benefit from class inheritance.
Furthermore, each component implements a standardized API through which the different
elements interact and integrate. Inheritance and a standardized API make it easier to
implement and test a new component. To illustrate this, let’s discuss an example,
Prioritized Experience Replay (PER).

PER, introduced in Chapter 5, changes the sampling distribution from a replay
memory. To briefly recap, in the standard DQN algorithm, experiences are sampled
random-uniformly from the replay memory whereas in PER experiences are
sampled according to a probability distribution generated from the priority of each
experience. Experiences need a priority which is typically based on the absolute TD error.
The priorities of the relevant experiences therefore need to be updated each time an agent
is trained. Other than this, the experience replay memory and the training procedure is the
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same as in the DQN algorithm. In SLM Lab, this is implemented through the
PrioritizedReplay memory class which inherits from Replay so only requires around
100 lines of new code. The source code can be found in SLM Lab at slm_lab/agent
/memory/prioritized.py.

With this design, once a component is ready, it can immediately apply to all relevant
algorithms. For example, Double DQN can automatically use PER because it inherits
from DQN. Similarly, Dueling DQN can also make use of it because Dueling DQN is
implemented independently through a modification to a Net class which interacts with the
PER memory through the standardized API.

SLM Lab is designed to maximally reuse components—this brings additional benefits
of shorter code and larger unit test coverage. The key idea is that we can trust the
well-established components and focus only on those under research and development. It
is also easier to isolate the effects of different elements because the components are
designed to be easily switched on or off, or swapped with another component, all by using
a spec file. This is helpful when debugging, but also when evaluating new ideas, since it is
straightforward to establish a baseline.

11.2 Spec File
In this section we will look at how to write a spec file in SLM Lab.

In SLM Lab, all of the configurable hyperparameters for an algorithm are specified in a
spec file. This design choice is intended to make deep RL experiments more reproducible.
Implemented code is typically version-controlled and trackable with a Git SHA—but
running an experiment also requires specifying hyperparameters that are not tracked as
part of the code. These missing or hidden hyperparameters have contributed to the
reproducibility problem in deep RL because there is not a standard practice to track them
each time an experiment is run. To address this issue, SLM Lab exposes all of the
hyperparameters in a single spec file and automatically saves it along with the Git SHA and
random seed used as part of the output data generated for every run.

Code 11.1 shows an example snippet of a saved spec from a run. The Git SHA
(line 22) allows us to recover the version of code used to run the spec, and the random
seed (line 23) makes it possible to reemulate processes that are stochastic in an agent and an
environment.

Code 11.1 An example spec file saved in a session along with the Git SHA and the random

seed used

1 {

2 "agent": [

3 {

4 "name": "A2C",

5 ...

6 }

7 ],
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8 ...

9 "meta": {

10 "distributed": false,

11 "log_frequency": 10000,

12 "eval_frequency": 10000,

13 "max_session": 4,

14 "max_trial": 1,

15 "experiment": 0,

16 "trial": 0,

17 "session": 0,

18 "cuda_offset": 0,

19 "experiment_ts": "2019_07_08_073946",

20 "prepath": "data/a2c_nstep_pong_2019_07_08_073946/a2c_nstep_pong_t0_s0",

21 "ckpt": null,

22 "git_sha": "8687422539022c56ae41600296747180ee54c912",

23 "random_seed": 1562571588,

24 "eval_model_prepath": null,

25 "graph_prepath":

"data/a2c_nstep_pong_2019_07_08_073946/graph/a2c_nstep_pong_t0_s0",↪→

26 "info_prepath":

"data/a2c_nstep_pong_2019_07_08_073946/info/a2c_nstep_pong_t0_s0",↪→

27 "log_prepath":

"data/a2c_nstep_pong_2019_07_08_073946/log/a2c_nstep_pong_t0_s0",↪→

28 "model_prepath":

"data/a2c_nstep_pong_2019_07_08_073946/model/a2c_nstep_pong_t0_s0"↪→

29 },

30 "name": "a2c_nstep_pong"

31 }

Designed this way, any experiment run in SLM Lab can be rerun using a spec file that
contains all the hyperparameters and the Git SHA of the code version used to
runthe experiment. The spec file has all of the necessary information to fully reproduce an
RL experiment. This is done by simply checking out the code at the Git SHA and running
the saved spec. We have used spec files throughout this book to run trials and experiments;
now, let’s look at a spec file in more detail.

A spec file is used by SLM Lab to construct an agent and an environment. Its format is
standardized to follow the lab’s modular component design. The different components of a
spec file are:

1. agent: The format is a list, to allow for multiple agents. However, for our purposes
we can assume that there is only one agent. Each element in the list is an agent spec
which contains the specs for its components:

a. algorithm: The main parameters specific to the algorithm, such as the policy
type, algorithm coefficients, rate decays, and training schedules.
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b. memory: Specifies which memory to use as appropriate to the algorithm
along with any specific memory hyperparameters such as the batch size and
the memory size.

c. net: The type of neural network, its hidden layer architecture, activations,
gradient clipping, loss function, optimizer, rate decays, update method, and
CUDA usage.

2. env: The format is also a list to accommodate multienvironments, but for now we
can assume only one environment. This specifies which environment to use, an
optional maximum time step per episode, and the total time steps (frames) in a
Session. It also specifies the state and reward preprocessing methods and the number
of environments in a vector environment (Chapter 8).

3. body: Specifies how multiagent connects to multienvironments. This can be ignored
for our single-agent single-environment use case—simply use the default values.

4. meta: The high-level configuration of how the lab is run. It gives the number of
Trials and Sessions to run, the evaluation and logging frequency, and a toggle to
activate asynchronous training (Chapter 8).

5. search: The hyperparameters to search over, and the methods used to sample them.
Any variables in the spec file can be searched over, including environment variables,
although it is typical to search over a subset of the agent variables.

11.2.1 Search Spec Syntax
The syntax to specify a hyperparameter to search over is "{key}__{space_type}": {v}.
The {key} is the name of the hyperparameter specified in the rest of the spec file. {v}
typically specifies the range to search within, as in random search. However, to allow for
more flexible search strategies, v may also be a list of choices, or the mean and standard
deviation of a probability distribution. There are four distributions to choose from in SLM
Lab, two each for discrete and continuous variables, and the interpretation of v depends on
the space_type, which defines the method for sampling values.

. Discrete variables space_type

. choice: str/int/float. v = list of choices

. randint: int. v = [low, high)

. Continuous variables space_type

. uniform: float. v = [low, high)

. normal: float. v = [mean, stdev)

Additionally, grid_search is also available as a space_type to iterate through a list of
choices completely instead of sampling them randomly as above. We have seen it used in
all the algorithm chapters in this book.

Let’s look at an example search spec that can be used to run an experiment in SLM Lab.
In this experiment, we train a DQN agent with a target network to play CartPole and
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search over three hyperparameters—the discount rate γ, the number of batches to sample
from memory at each training step, and the replacement update frequency of the target
network. The spec is fully enumerated in Code 11.2. Each line is annotated with a brief
description of the hyperparameter.

Code 11.2 DQN CartPole search spec

1 # slm_lab/spec/experimental/dqn/dqn_cartpole_search.json

2

3 {

4 "dqn_cartpole": {

5 "agent": [{

6 "name": "DQN",

7 "algorithm": {

8 "name": "DQN", # class name of the algorithm to run

9 "action_pdtype": "Argmax", # action policy distribution

10 "action_policy": "epsilon_greedy", # action sampling method

11 "explore_var_spec": {

12 "name": "linear_decay", # how to decay the exploration variable

13 "start_val": 1.0, # initial exploration variable value

14 "end_val": 0.1, # minimum exploration variable value

15 "start_step": 0, # time step to start decay

16 "end_step": 1000, # time step to end decay

17 },

18 "gamma": 0.99, # discount rate

19 "training_batch_iter": 8, # parameter updates per batch

20 "training_iter": 4, # batches per training step

21 "training_frequency": 4, # how often to train the agent

22 "training_start_step": 32 # time step to start training

23 },

24 "memory": {

25 "name": "Replay", # class name of the memory

26 "batch_size": 32, # batch size sampled from memory

27 "max_size": 10000, # max. experiences to store

28 "use_cer": false # whether to use combined experience replay

29 },

30 "net": {

31 "type": "MLPNet", # class name of the network

32 "hid_layers": [64], # size of the hidden layers

33 "hid_layers_activation": "selu", # hidden layers activation fn

34 "clip_grad_val": 0.5, # maximum norm of the gradient

35 "loss_spec": { # loss specification

36 "name": "MSELoss"

37 },
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38 "optim_spec": { # optimizer specification

39 "name": "Adam",

40 "lr": 0.01

41 },

42 "lr_scheduler_spec": null, # learning rate scheduler spec

43 "update_type": "polyak", # method for updating the target net

44 "update_frequency": 32, # how often to update the target net

45 "polyak_coef": 0.1, # weight of net params used in update

46 "gpu": false # whether to train using a GPU

47 }

48 }],

49 "env": [{

50 "name": "CartPole-v0", # name of the environment

51 "max_t": null, # max time steps per episode

52 "max_frame": 50000 # max time steps per Session

53 }],

54 "body": {

55 "product": "outer",

56 "num": 1

57 },

58 "meta": {

59 "distributed": false, # whether to use async parallelization

60 "eval_frequency": 1000, # how often to evaluate the agent

61 "max_session": 4, # number of sessions to run

62 "max_trial": 32 # number of trials to run

63 },

64 "search": {

65 "agent": [{

66 "algorithm": {

67 "gamma__uniform": [0.50, 1.0],

68 "training_iter__randint": [1, 10]

69 },

70 "net": {

71 "optim_spec": {

72 "lr__choice": [0.0001, 0.001, 0.01, 0.1]

73 }

74 }

75 }]

76 }

77 }

78 }

In Code 11.2, the three variables to search over are specified in lines 64–76. We search
over one continuous variable gamma with values sampled using a random uniform
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distribution. A discrete variable training_iter is searched with values sampled uniformly
from integers ∈ [0, 10). The learning rate lr is sampled randomly from a list of choices
[0.0001, 0.001, 0.01, 0.1]. This illustrates some of the different sampling methods that can
be used in hyperparameter search in SLM Lab.

The other important variable when running an experiment is max_trial (line 62). This
specifies how many sets of hyperparameter values will be generated and used to run trials.
In this example, with max_trial = 32, there will be 32 random combinations of values for
gamma, training_iter, and lr and these are used to replace their default values in the
complete spec file. This produces 32 spec files containing distinct sets of hyperparameters
used to run the trials. Each trial will run four Sessions (line 61).

Now that we know how to write a spec file, let’s look at how to run an experiment
using SLM Lab.

11.3 Running SLM Lab
Running a deep RL experiment typically involves testing different sets of
hyperparameters. Deep RL results are known to have high variance even for the same set
of hyperparameters, so a good practice is to perform multiple runs using different random
seeds and average the results.

The experiment framework in SLM Lab incorporates this practice and is organized
hierarchically into three components.

1. Session: A session, at the lowest level of the SLM Lab experiment framework, runs
the RL control loop. It initializes the agent and the environment using a specific set

of hyperparameters and a given random seed, and trains the agent. When a session
finishes, it saves the trained agent, spec file, data, and graphs into a data folder for
analysis.

2. Trial: A trial runs multiple sessions using the same set of hyperparameters and
different random seeds, then averages the session results and plots trial graphs.

3. Experiment: An experiment, at the highest level of SLM Lab’s experiment
framework, generates different sets of hyperparameters and runs a trial for each one.
It can be thought of as a study—for example, “What values of gamma and learning
rate provide the fastest, most stable solution, if the other variables are held constant?”
When an experiment completes, it compares the trials by plotting multitrial graphs.

11.3.1 SLM Lab Commands
Let’s look at the main commands in SLM Lab. They follow a basic pattern
python run_lab.py {spec_file} {spec_name} {lab_mode}. There are four core
commands with different use cases.
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1. python run_lab.py slm_lab/spec/benchmark/a2c/a2c_nstep_pong.json

a2c_nstep_pong dev: Development mode. This differs from train mode described
below in that it is limited to a single Session, renders the environment, checks
network parameter updates, and uses a verbose debugging log.

2. python run_lab.py slm_lab/spec/benchmark/a2c/a2c_nstep_pong.json

a2c_nstep_pong train: Train an agent using the given spec by spawning a Trial.

3. python run_lab.py slm_lab/spec/benchmark/a2c/a2c_nstep_pong.json

a2c_nstep_pong search: Run an experiment with a hyperparameter search by
spawning an Experiment.

4. python run_lab.py data/a2c_nstep_pong_2018_06_16_214527

/a2c_nstep_pong_spec.json a2c_nstep_pong enjoy@a2c_nstep_pong_t1_s0: Load
a saved agent from the SLM Lab data/ folder of a completed trial or experiment.
The lab mode enjoy@a2c_nstep_pong_t1_s0 specifies the trial-session of a
model file.

11.4 Analyzing Experiment Results
After an experiment completes, it will output data automatically into a folder located at
SLM-Lab/data/. This section focuses on how to use that data to gain insights into the
experiment. Experiment data mirrors the session-trial-experiment hierarchy discussed in
Section 11.3. We give an overview of the data generated by SLM Lab along with some
examples.

11.4.1 Overview of the Experiment Data
Experiments generate data which is automatically saved to the data/{experiment_id}

folder. The {experiment_id} is the concatenation of the spec name and a timestamp
generated when the experiment starts.

Each session generates a plot of the learning curve and its moving average, the saved
agent model parameters, a CSV file containing the session data, and session-level metrics.
The session data includes rewards, loss, learning rate, exploration variable value, and more.
Figure 11.1 shows an example of the session graphs of an Actor-Critic experiment from
Section 6.7.1.

Each trial generates a plot of the session-averaged learning curves with an error band of
±1 standard deviation. A moving average version of the plot is also included. It also
produces trial-level metrics. Figure 11.2 shows an example of the trial graphs.
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(a) Session graph (b) Session graph with moving average

Figure 11.1 An example of the session graphs. The vertical axis shows the total rewards

averaged over eight episodes during checkpoints, and the horizontal axis shows the total

training frames. The moving average with a window of 100 evaluation checkpoints

is shown on the right.

(a) Trial graph (b) Trial graph with moving average

Figure 11.2 An example of the trial graphs averaged from session data. The vertical axis

shows the total rewards averaged over eight episodes during checkpoints, and the horizontal axis

shows the total training frames. The moving average with a window of 100 evaluation checkpoints

is shown on the right.
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An experiment generates a multitrial graph which compares all the trials. It also
includes a moving average version. Additionally, it produces an experiment_df CSV file
which summarizes the variables and the results from the experiment, sorted from
the best-performing to worst-performing trial. It is intended to clearly show the
hyperparameter value ranges and combinations from the most successful to the least.
Figure 11.3 shows an example of the multitrial graphs.

(a) Multitrial graph (b) Multitrial with moving average

Figure 11.3 An example of the multitrial graphs

11.5 Summary
This chapter took a closer look at the companion library, SLM Lab. We discussed the
algorithms it implements and the spec files which are used to configure them. We also
introduced the main lab commands.

We then looked at the experiment framework consisting of Session, Trial, and
Experiment. They each produce graphs and data useful for analyzing algorithm
performance.

SLM Lab is in active development with new algorithms and features added frequently
to the latest version. To use this, check out the main master branch on the Github
repository at https://github.com/kengz/SLM-Lab.

https://github.com/kengz/SLM-Lab
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12

Network Architectures

Neural networks are a component of every algorithm we have discussed in this book.
However, up to this point, we have never discussed in detail the design of these networks,
nor their functionality that is useful when combining neural networks with RL. The
purpose of this chapter is to take a closer look at neural network design and training in the
context of deep RL.

The chapter begins with a brief introduction to the different neural network families
and the types of data they are specialized to process. Then we discuss how to select an
appropriate network based on two characteristics of an environment—how observable it is
and what the nature of the state space is. To characterize the observability of an
environment, we discuss the difference between Markov decision processes (MDPs) and
partially observable Markov decision processes (POMDPs) and introduce three different
types of POMDPs.

The remainder of the chapter discusses SLM Lab’s Net API which is designed to
encapsulate the common functionality for training neural networks in the context of deep
RL. We review some desirable properties for the Net API and, using examples from SLM
Lab, show how these properties can be implemented.

12.1 Types of Neural Networks
Neural networks can be organized into families. Each network family has particular
characteristics and each is good at different tasks and for processing different types of input
data. There are three main categories—multilayer perceptrons (MLPs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs). These network types
can also be combined to produce hybrids—for example, a CNN-RNN.

Each family is characterized by the types of layers a network contains and the way the
flow of computation through the network is organized. These families can also be
interpreted as incorporating different prior knowledge about their inputs and exploiting
this knowledge to better learn from data with certain characteristics. What follows in this
section is a very brief overview of the characteristics of the main network families.
Readers familiar with neural networks can skip this section entirely or just briefly look at
Figure 12.4. For readers wishing to learn more, we recommend two excellent books,
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Neural Networks and Deep Learning by Michael Nielsen [92] and Deep Learning by Ian
Goodfellow, Yoshua Bengio, and Aaron Courville [45], both of which were freely available
online at the time of writing.

12.1.1 Multilayer Perceptrons (MLPs)
Multilayer perceptrons (MLPs) are the simplest and most general type of neural network.
They consist only of fully connected layers (also known as dense layers). In a fully connected
layer, every output from the previous layer is connected to every node in the current layer
by a distinct weight. Nonlinear activation functions are typically applied to the outputs
of each dense layer. These nonlinear activation functions give neural networks their
expressivity, making it possible for them to approximate highly complex nonlinear
functions.

MLPs are general-purpose, and inputs to these networks are organized as a single vector
with n elements. MLPs assume very little about the nature of their inputs. For example,
they don’t encode any information about how different dimensions of the input relate to
each other. This is both a strength and a limitation. It makes it possible for MLPs to take a
global view of their inputs. They can respond to global structure and patterns by learning
features which are a combination of all of the input elements.

However, MLP’s may also ignore structure in the data they are trained on. Consider the
two images, Figures 12.1a and 12.1b. Figure 12.1a is a picture of a mountainous landscape.
Figure 12.1b looks like random noise. The pixel values in Figure 12.1a exhibit very strong
2D spatial correlation. In most cases, a strong indicator of the value of a particular pixel is
the values of the neighboring pixels. In contrast, a pixel value in Figure 12.1b does not
correlate strongly with its neighboring pixels. Any realistic image is much more like
Figure 12.1a than 12.1b, exhibiting a high degree of local correlation in the pixel values.

(a) Mountain (b) Random image

Figure 12.1 Image of a mountain vs. a random image

The 2D structure of an image is not readily available to a MLP because each image will
be flattened into a long 1D list of numbers before being passed as input to the network.
Before training, the order of the pixel values could be randomly permuted and the
representation of the image in 1D would be equivalent. In contrast, consider what would
happen if the pixels of a 2D image were randomly permuted. This is what Figure 12.1b
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is—Figure 12.1a after the pixels have been randomly permuted. In 2D space,
Figures 12.1a and 12.1b are clearly not the same and it is impossible to determine just from
looking at Figure 12.1b what the pixels represent. The meaning of these pixels more
readily emerges from the pixel values combined with how they are ordered in 2D space.

Converting a 2D image to 1D is an example of a meta state information loss discussed
in more detail in Section 14.4. Images are inherently two-dimensional as each pixel is
related to other pixels in 2D space. When images are converted to a 1D representation, the
problem becomes harder. The network has to do some work to reconstruct the 2D
relationships between pixels because this information is not apparent in the way the input
is represented.

Another characteristic of MLPs is that the number of parameters tends to grow very
quickly. For example, consider an MLP which takes an input ∈ R784, has two hidden
layers, with 1024 and 512 nodes respectively, and an output layer of 10 nodes. The
function the MLP computes is shown in Equation 12.1. The activation function in this
network is a sigmoid: σ(x) = 1

1+e−x .

fMLP(x) = σ
(
W2 σ(W1x+ b1) + b2

)
(12.1)

There are two weight matrices, W1 and W2, and two bias vectors, b1 and b2. W1 has
1024× 784 = 802,816 elements, W2 has 512× 1024 = 524, 288 elements, and the two
bias vectors, b1 and b2, have 1024 and 512 elements, respectively. There will be
802,816 + 524,288 + 1024 + 512 = 1,328,640 parameters in the network. By
contemporary standards, this is a small network but it already has many parameters that
need to be learned. This can be problematic because the number of examples needed to
learn good values for each of the parameters increases with the total number of parameters
in a network. When a large number of learnable parameters is combined with the sample
inefficiency of current deep RL algorithms, an agent may take a very long time to train.
Consequently, MLPs tend to be well suited to environments with two characteristics: their
state space is low-dimensional and learning features requires all of the elements of a state.

Finally, MLPs are stateless. This means they do not remember anything about the
history of inputs that came before the current one. Inputs to MLPs are not ordered and
each input is processed independently of all other inputs.

12.1.2 Convolutional Neural Networks (CNNs)
Convolutional neural networks (CNNs) excel at learning from images. CNNs are
specifically designed to exploit the spatial structure of image data because they contain one
or more convolutional layers each consisting of a number of convolution kernels.
Convolution kernels are applied repeatedly to subsets of their input to produce an output.
We say that a kernel is convolved with its input and this is known as a convolution operation.
For example, a kernel might be convolved with a 2D image to produce a 2D output. In
this case, a single application of a kernel would correspond to it being applied to a small
patch of an image consisting of just a few pixels, for instance 3× 3 or 5× 5 pixels; this
operation produces a scalar output.
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This scalar output can be interpreted as signaling the presence or absence of a particular
feature in the local region of the input to which it was applied. Consequently, a kernel can
be thought of as a local feature detector because it produces an output based on a spatially
contiguous subset of the input features. The kernel (feature detector) is applied locally
across the entire image to produce a feature map that describes all of the places that a
particular feature occurs in that image.

A single convolutional layer typically consists of a number of kernels (8–256 is
common), each of which may learn to detect a different feature. For example, one kernel
may learn to detect vertical straight edges, another horizontal straight edges, and a third a
curved edge. When layers are composed, subsequent layers can learn increasingly complex
features using the outputs from the feature detectors in the layer below. For example, a
feature in a higher-level network layer may learn to detect the paddle in a game of Atari
Pong, and another may learn to detect the ball.

One advantage of structuring layers in this way is that a kernel can detect the presence
of a feature regardless of where it appears in the image. This is beneficial because the
position of useful features in an image may vary. For example, the positions of the player’s
and opponent’s paddles, as well as the ball, vary in a game of Atari Pong. Applying a
“paddle detector” kernel to an image will produce a 2D map with the locations of all of
the paddles in the image.

Using convolutions, a network learns “for free” that a particular configuration of values
represents the same feature in different parts of an image. Convolutional layers are also
more efficient than fully connected layers in terms of the number of parameters. One
kernel can be used to identify the same feature anywhere in an image—we don’t have to
learn a separate kernel to detect that feature in many different locations. As a result, applied
to inputs with the same number of elements, convolutional layers typically have
significantly fewer parameters than fully connected layers. This is a consequence of
applying a single kernel repeatedly to many subsections of an input.

A disadvantage of convolutional layers is that they are local—they only process a subset
of the input space at a time and ignore the global structure of the image. However, global
structure is often important. Consider again the game of Atari Pong. Good performance
requires using the locations of the ball and paddles to decide how to act. Location is only
defined relative to the whole input space.

This limitation of convolutions is often mitigated by increasing the receptive field of the
kernels in higher layers.1 This means the effective area of the input space that a kernel
processes is increased—such kernels can “see” more of the input space. The larger the
receptive field of a kernel, the more global its perspective. An alternative approach is to
add a small MLP to the top of a CNN to get the best of both worlds. Going back to
the Atari Pong example, the output of the CNN would produce 2D maps containing the
locations of the ball and paddles; these maps are passed as input to an MLP which
combines all of the information and produces an action.

Like MLPs, CNNs are also stateless. However, unlike MLPs, CNNs are ideally suited to
learning from images because they assume that their inputs have spatial structure.

1. For example, through pooling operations, dilated convolutions, strided convolutions, or larger kernels.
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Furthermore, the use of kernels is an effective way to reduce the number of parameters in
a network when the number of elements in the input is large—and digital representations
of images typically have thousands or millions of elements each. In fact, CNNs are so
much better at learning from images than the other network families that a general rule of
thumb is: if the state provided by the environment is an image, include some convolutional
layers in the network.

12.1.3 Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNNs) are specialized to learn from sequential data. A single
datapoint for an RNN consists of a sequence of elements where each element is a vector.
Unlike MLPs and CNNs, RNNs assume that the order in which elements are received
has meaning. Sentences are one example of the type of data that RNNs are good at
processing. Each element of the sequence is a word, and the order of these words affects
the overall meaning of the sentence. However, a datapoint could also be a sequence of
states—for example, an ordered sequence of states experienced by an agent.

The distinguishing feature of RNNs is that they are stateful, which means they
remember previous elements they have seen. When processing element xi in a sequence,
an RNN remembers the x0, x1, . . . , xi−1 elements that have come before it. This is
achieved with specialized recurrent layers that have a hidden state. The hidden state is a
learned representation of the elements in the sequence that the network has seen so far,
and it is updated each time the network receives a new element. An RNN’s memory lasts
for the length of the sequence. At the beginning of a new sequence, the hidden state of an
RNN is reset. Long Short-Term Memory (LSTM) [52] and Gated Recurrent Units
(GRUs) [21] are the most common layers with this characteristic.

A mechanism for remembering the past is useful when the information provided by the
environment at time step t doesn’t fully capture everything that would be useful to know
at the current point in time. Consider a maze environment in which gold coins are
spawned in the same position and can be picked up by an agent to get positive reward.
Suppose further that the gold coins reappear after being picked up by an agent once a fixed
amount of time has elapsed. Even if an agent can see where all of the currently existing
coins are in the maze, it will only be capable of predicting when specific coins will
reappear if it remembers how long ago it picked them up. It is easy to imagine that under
time constraints, maximizing the score will involve keeping track of which coins it has
picked up and when. For this task, an agent requires a memory. This is the main advantage
that RNNs provide over CNNs or MLPs.

Fortunately, one does not have to choose a single network type exclusively. Instead, it is
very common to create hybrid networks which contain multiple subnetworks, each of
which might belong to a different family. For example, we could design a network with a
state processing module which is an MLP or CNN that outputs a representation of the
raw state,2 and a temporal processing module which is an RNN. At each time step,
the raw state is passed through the state processing module, and the output is passed as

2. This representation will typically have fewer elements than the original state.
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input to the RNN. The RNN then uses this information to produce the final output of
the overall network. A network containing both CNN and RNN subnetworks is called a
CNN-RNN. Since MLPs are so commonly used as additional small subnetworks, they are
typically dropped from the name.

To sum up, RNNs are best suited to problems where data is represented as ordered
sequences. In the context of deep RL, they are typically used when an agent needs to
remember what happened over a long time horizon in order to make good decisions.

12.2 Guidelines for Choosing a Network
Family

Having introduced the different types of neural networks, we can ask: given a particular
environment, what type of network should an agent use? In this section, we discuss
guidelines for choosing a network family based on the characteristics of the environment.

All deep RL environments can be interpreted as generating sequential data. We saw that
RNNs are specialized to handle this type of input. So why not always use an RNN or a
CNN-RNN in deep RL? To answer this question, we need to discuss the difference
between MDPs and partially observable MDPs (or POMDPs).

12.2.1 MDPs vs. POMDPs
Chapter 1 introduced the formal definition of an MDP which we briefly recap here. An
MDP is a mathematical framework which models sequential decision making. At the core
of an MDP is the transition function which models how the state st transitions into the
next state st+1. The MDP transition function is shown in Equation 12.2.

st+1 ∼ P (st+1 | st, at) (12.2)

The transition function has the Markov property—the transition to st+1 is fully
determined by the current state and action, (st, at). There may have been many earlier
states experienced by the agent in the episode, s0, s1, . . . , st−1, but these do not convey
any additional information about the state the environment will transition to.

The concept of state appears in two places. First, we have the state that is produced by
an environment and observed by an agent. This is called the observed state st. Second,
there is the state that is used by transition function. This is the environment’s internal
state sint

t .
If an environment is an MDP, then it is described as fully observable, and st = sint

t . For
example, the CartPole and LunarLander problems are both fully observable environments.
The CartPole environment provides four pieces of information at each time step: the cart’s
position along the linear axis, the cart velocity, the pole angle and the pole velocity at the
tip. Given an action—left or right—this information is sufficient to determine the next
state of the environment.
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However, the internal state of the environment may be hidden from the agent—that is,
st 6= sint

t . These types of environments are known as partially observable MDPs (POMDPs).
POMDPs have the same transition function as MDPs. However, POMDPs do not provide
the internal state sint

t of the environment to an agent; instead, they provide the observed
state st. This means that an agent no longer knows the internal state sint

t and must infer it
from some or all of the observed states (st, st−1, . . . , s1, s0).

Internal states fully describe the system that we care about. For example, in Atari Pong
the internal state sint

t of the environment will include the position and velocity of the
paddles and ball. Observed states st typically consist of the raw data provided by the
sensors of a system—for example, the game image. When playing the game, we use the
image to infer the environment’s internal state.

Let’s consider a modified version of the CartPole environment. Suppose the
environment only provides two pieces of information at each time step—the cart’s
position along the linear axis and the pole angle.3 This is the observed state st because it is
the information the agent has access to. However, the environment still keeps track of the
cart and pole velocity in addition the the cart position and pole angle. This is the
environment’s internal state since it fully describes the cartpole.

It was not necessary to make the distinction between observed and internal states until
now because we were only considering MDPs. The internal state is what the agent
observes in an MDP. However, in POMDPs, we need a way to distinguish between
the observed state and the internal state of the environment.

POMDPs can be split into three categories:

. Fully observable given partial history

. Fully observable given full history

. Never fully observable

Fully Observable Given Partial History In these environments, the internal state
sint
t can be inferred from the last few observed states, (st, st−1, . . . , st−k), where
k is small, for example 2–4. Most Atari games are generally considered to have this
characteristic [65]. As an example, consider the observed state in the Atari game of
Breakout. Figure 12.2 shows the agent’s paddle, the position of the ball, the unbroken
bricks, the number of lives the agent has left, and the score. This is almost sufficient to
identify which internal state the game is in—except for one crucial piece of information:
the direction in which the ball is moving. This can be inferred from st and st−1 by taking
the difference between them to obtain the direction of movement. Once we know which
way the ball is moving, it is possible to determine which state the game is in4 and predict
what would happen next. If it was relevant to infer the acceleration as well as the speed of
the ball, we could use the previous three observed states to estimate these values.

3. This is the modification suggested in “Recurrent Policy Gradients” by Wierstra et al.[147]
4. In Atari Breakout, the ball moves at constant speed, so we can ignore higher-order information such as
acceleration.
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Figure 12.2 Atari Breakout

We have already seen in Chapter 5 that for Atari games, it is common practice to select
every fourth frame and stack four of the skipped frames together. An agent can use the
differences between stacked frames in a single input to infer useful motion-based
information about the game objects.

Fully Observable Given Full History In these environments, it is always possible
to determine the internal state of a game by tracking the history of all the observed states.
For example, the T-maze proposed by Bram Bakker in “Reinforcement Learning with
Long Short-Term Memory” [10] has this property. Figure 12.3 shows the environment
which consists of a long corridor with a T-junction at the end. An agent always starts in
the same state at the bottom of the T. The agent only observes its immediate surroundings
and has four available actions at each time step—moving up, down, left, or right. The
objective is to move to a goal state which is always positioned at one end of the T.

At the start state of the game, the agent observes at which end of the T the goal is
located. In each episode, the position of the goal state changes to either end of the T.
Upon reaching the junction, an agent can choose to go left or right. If it moves to the goal
state, the game ends with a reward of 4. If it moves to the wrong end of the T, the game
ends with a reward of −1. Provided the agent can remember what it observed in the start
state, it is always possible to behave optimally. Hence, this environment is fully observable
given the full history of observed states.

Figure 12.3 T-Maze [10]
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Let’s look at another example from DMLab-30 [12] which is an open source library by
DeepMind. Many of its environments are specifically designed to test an agent’s memory,
so they fall into this category of POMDPs. natlab_varying_map_regrowth is a mushroom
foraging task in which an agent must collect mushrooms within a naturalistic environment.
The observed state is an RGBD5 image generated based on an agent’s current viewpoint.
The mushrooms regrow in the same location after about a minute, so it is advantageous for
an agent to remember which mushrooms it has collected and how long ago it happened.
This environment is interesting because the number of observed states an agent needs in
order to infer the internal state of the game varies depending on the time step and the
actions the agent takes. For this reason, it is helpful to use the entire history of observed
states so that the agent never misses important information.

Never Fully Observable In these environments, the internal state sint
t cannot be

inferred even when we have the entire history of observed states (s0, s1, . . . , st−1, st).
Poker is a game with this characteristic: even if you remember all of the cards dealt so far,
you are not aware of the cards the other players hold.

Or, consider a navigation task in which an agent is placed in a large room containing a
number of balls of different colors. The location of each ball is randomly generated at the
start of every episode, and there is always exactly one red ball in the room. An agent is
equipped with an ego-centric grayscale camera to perceive the environment, so the camera
images are the observed states. Suppose the agent’s task is to navigate to the red ball. The
task is unambiguous, but without colored images the agent is unable to perceive the color
of the balls—so it never has enough information to solve the task.

12.2.2 Choosing Networks for Environments
Given a new environment, how can one tell whether it is an MDP or one of the three
types of POMDPs? A good approach is to take some time to understand the environment.
Consider how a human would solve the task—try playing the environment yourself if
possible. Based on the information contained in a single observed state, could we decide
on a good action at each time step? If the answer is yes, the environment is likely an MDP.
If not, then how many observed states do we need to remember in order to perform well?
Is it a few states or the entire history? Then the environment is likely a fully observable
POMDP given partial history or full history, respectively. Finally, consider if there is any
crucial information missing from the history of observed states. If so, the environment may
be a POMDP that is never fully observable. How does this affect potential performance? Is
it still possible to achieve a reasonably good solution or is the task unsolvable? If reasonable
performance is still achievable despite the missing information, deep RL may still be
applicable.

We have characterized environments according to their observability—the extent to
which the internal state of an environment can be inferred from the observed states. This

5. RGB plus Depth.
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approach can be combined with information about the environment state space to yield
some clues about which neural network architectures will be most suitable for an agent.

The most important characteristic of a neural network in relation to an environment’s
observability is whether it is stateful or not—that is, does a network have the capacity to
remember the history of observed states?

MLPs and CNNs are stateless, so they are best suited to environments which are MDPs
because it is not necessary to remember any history. They can also perform well when
applied to POMDPs that are fully observable given partial history. However, in this case it
will be necessary to transform the observed states so that the input to the network contains
information about the previous k time steps. This way we can provide MLPs and CNNs
with sufficient information in a single input to infer the environment’s state.

RNNs are stateful, so they are best suited to POMDPs that are fully observable given
full history because the task requires remembering a potentially long sequence of observed
states. RNNs may also perform well on POMDPs that are never fully observable, but there
is no guarantee that an agent will perform well—there may simply be too much missing
information.

How does the state space affect the choice of network? Section 12.1 described how
CNNs are the best suited of the three network families to learning from image data.
Consequently, if the observed states are images, as in the Atari games, then it is usually best
to use a CNN. Otherwise, an MLP will likely be sufficient. If the observed state is a mix of
image and nonimage data, consider having multiple subnetworks, MLPs and CNNs, to
process data of different types, then combine their outputs.

If the environment is fully observable given full history or never fully observable, then it
is important to have an RNN subnetwork. Try a hybrid network that uses a CNN or
MLP to process the observed state before passing data to an RNN subnetwork.

Figure 12.4 sums up this discussion of network architectures and environments. It
shows some common variations of networks for each of the three different families, MLP,
CNN, and RNN, as well as the hybrid CNN-RNN. Solid boxes show the required
subnetworks while dashed boxes show optional subnetworks. It also describes the
characteristics of the network inputs, some example environments, and some algorithms
that achieved state-of-the-art performance using their respective network types.

CartPole, LunarLander, and BipedalWalker are some of the environments we have
discussed in this book. Humanoid and Ant are two more challenging continuous-control
environments available through OpenAI Gym. All of these environments are MDPs that
provide a low-dimensional observed state to an agent. Thus, they are best solved using
MLPs. At the time of writing, the Twin Delayed Deep Deterministic Policy Gradient
(TD3) [42] and Soft Actor-Critic (SAC) [47] algorithms achieved the best known results
on the Humanoid and Ant environments using only MLPs.

We have often discussed the Atari games throughout this book. These environments are
mostly POMDPs that are fully observable given partial history. The observed state is an
RGB image, so CNNs are best suited to these problems. The strongest results over the past
few years for these environments include a CNN component—for example, DQN [88],
Double DQN [141], Dueling DQN [144], and ApeX [54].
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Figure 12.4 Neural network families

Dota 2 is a complex multiplayer game that requires strategies over a long time horizon.
It can be characterized as a POMDP that is fully observable given full history. The
OpenAI Five [104] PPO agents used nonimage observed states derived from the game
API. The state contains about 20,000 elements and includes a game map and unit
information. A suitable network type for this state is MLP. Since the game requires
long-term strategies, an agent needs to remember the history of the observed states. The
MLP output is then passed into an LSTM network of 1024 units. For more details, see
the model architecture linked under the “Model Structure” section in the OpenAI Five
blogpost [104]. Combined with some serious engineering effort and computing power,
they managed to defeat the world’s top players in 2019 [107].

DMLab-30 environments have image-based observed states. The best architectures are
those combining CNN and RNN modules so that the networks can process images well
and keep track of the history of observed states. IMPALA [37] and R2D2 [65] are two of
the best-performing algorithms on these environments; both make use of CNN-RNN
hybrid networks.

Finally, HandManipulateBlock is another environment provided by OpenAI. The
objective is to change the orientation of a block placed in a robotic hand. It is a complex
continuous-control environment with a robot that has 24 degrees of freedom. The
observed state is a combination of three images of the hand and the block and a vector
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describing the robot fingertip positions [98]. To diversify the training data, OpenAI
randomizes some of the environment’s internal parameters, such as the weight of the
block, at every episode. Solving the task therefore requires an agent to infer the internal
parameters of the episode using a sequence of observed states passed to an RNN. The
network used for this task had a CNN and an MLP to process and combine observed state;
the sequence of the processed states is passed to an RNN.

Summary Neural networks can be organized into families according to the type of
data they learn best from. There are three main types of networks—MLPs, CNNs, and
RNNs, which are best suited for processing low-dimensional unordered data, images, and
sequences, respectively. It is also possible to create hybrid networks consisting of multiple
subnetworks from different families. We also discussed the distinction between MDPs and
POMDPs. RL environments differ according to the (observed) state space and whether
they are MDPs or POMDPs. We saw that this information can be used to choose a
network architecture best suited to solving a particular environment.

Now, let’s shift focus and look at the practical side of neural network design for
deep RL.

12.3 The Net API
Deep RL algorithms use neural networks. Even though the function that a network
approximates differs depending on the algorithm, their network training workflows share
many common routines, such as calculating the loss and updating the parameters.
Therefore, it is helpful to use a standardized Net API for all the neural networks used by
different algorithms. Modularized network components also make algorithm
implementations easier to read and debug by using less code.

A Net API for deep RL has the following requirements:

1. Input and output layer shape inference: The shape of the input and output
layers changes depending on the combination of environment and algorithm. These
can be inferred automatically, so users do not need to specify the input and output
dimensions manually every time. This feature saves time and makes code less
error-prone.

2. Automatic network construction: Network architecture is an important factor in
algorithm performance and varies by environment. Since it is common to try many
different network architectures in deep RL, it is better to specify network
architectures through a configuration file instead of code changes. This requires a
method to take a configuration and automatically construct the corresponding
neural network.

3. Training step: All neural networks need a training step, which involves computing
the loss, calculating the gradient, and updating the network parameters. It is useful to
standardize these steps in a single function so they can be reused for each algorithm.
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4. Exposure of underlying methods: The API, as a wrapper on top of a neural
network library, should also expose its most commonly used methods, such as
activation functions, optimizers, learning rate decay, and model checkpointing.

The Net is a base class which implements a number of common methods shown in
Code 12.1, also available in SLM Lab at slm_lab/agent/net/base.py. This base class is
extended by the MLPNet, ConvNet, RecurrentNet classes tailored to different network types.

Code 12.1 The Net base class defining the API methods

1 # slm_lab/agent/net/base.py

2

3 class Net(ABC):

4 '''Abstract Net class to define the API methods'''

5

6 def __init__(self, net_spec, in_dim, out_dim):

7 '''

8 @param {dict} net_spec is the spec for the net

9 @param {int|list} in_dim is the input dimension(s) for the network.

Usually use in_dim=body.state_dim↪→

10 @param {int|list} out_dim is the output dimension(s) for the network.

Usually use out_dim=body.action_dim↪→

11 '''

12 ...

13

14 @abstractmethod

15 def forward(self):

16 '''The forward step for a specific network architecture'''

17 ...

18

19 @net_util.dev_check_train_step

20 def train_step(self, loss, optim, lr_scheduler, clock, global_net=None):

21 '''Makes one network parameter update'''

22 ...

23

24 def store_grad_norms(self):

25 '''Stores the gradient norms for debugging.'''

26 ...

The Net class is also supported by a set of utility functions which aid with automatic
network construction and exposing the useful methods of the underlying neural network
library. Let’s take a look at each of the API requirements in detail.
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12.3.1 Input and Output Layer Shape Inference
To appropriately construct a network, it is necessary to infer the shape of the input and
output layers. The input layer shape is given by the environment’s state space. For example,
if the environment states are vectors with 16 elements, the input layer should have
16 nodes. Alternatively, if the observed states are 84× 84 grayscale images, the input layer
should be defined as a (84, 84) matrix. Additionally, CNNs should also include the
number of channels, and RNNs need to know the sequence length.

The shape of the output layer is determined by the environment’s action space and the
algorithm used to train an agent. Based on the deep RL algorithms discussed in this book,
there are three variants of network output to consider. An agent may learn the Q-function,
a policy, or both a policy and the V-function. The outputs of a network will therefore
represent, respectively, Q-values, action probabilities, or action probabilities and V-values.

Inferring the output shape is more complex than the input, so SLM Lab includes
some helper methods for doing this, shown in Code 12.2. These methods are located at
slm_lab/agent/net/net_util.py in the library.

First, the get_policy_out_dim method (lines 3–19) infers the output shape when a
network learns a policy.

. The shape of the environment’s action space is stored in an agent’s body.action_dim
attribute (line 5).

. Discrete cases are handled on lines 6–12: when there are multiple actions (lines 7–9)
or when there is a single action (lines 10–12).

. Continuous cases are handled on lines 13–18: when there are multiple actions
(lines 17–18) or when there is a single action (lines 15–16).

Next, the get_out_dim method (lines 21–31) infers the output shape for a network
from the algorithm. If an algorithm learns a V-function (uses a Critic), we add an extra
output layer with one output unit (lines 24–28). Otherwise, the output shape is simply the
policy output shape (lines 29–30).

A Q-function can be seen as an instance of a discrete Argmax policy (probability = 1 for
the maximum Q-value), so we can use the policy output shape to infer the output
dimension when an algorithm learns a Q-network.

Code 12.2 Helper method to infer network output layer shape

1 # slm_lab/agent/net/net_util.py

2

3 def get_policy_out_dim(body):

4 '''Helper method to construct the policy network out_dim for a body

according to is_discrete, action_type'''↪→

5 action_dim = body.action_dim

6 if body.is_discrete:

7 if body.action_type == 'multi_discrete':

8 assert ps.is_list(action_dim), action_dim

9 policy_out_dim = action_dim
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10 else:

11 assert ps.is_integer(action_dim), action_dim

12 policy_out_dim = action_dim

13 else:

14 assert ps.is_integer(action_dim), action_dim

15 if action_dim == 1: # single action, use [loc, scale]

16 policy_out_dim = 2

17 else: # multiaction, use [locs], [scales]

18 policy_out_dim = [action_dim, action_dim]

19 return policy_out_dim

20

21 def get_out_dim(body, add_critic=False):

22 '''Construct the NetClass out_dim for a body according to is_discrete,

action_type, and whether to add a critic unit'''↪→

23 policy_out_dim = get_policy_out_dim(body)

24 if add_critic:

25 if ps.is_list(policy_out_dim):

26 out_dim = policy_out_dim + [1]

27 else:

28 out_dim = [policy_out_dim, 1]

29 else:

30 out_dim = policy_out_dim

31 return out_dim

The get_out_dim method is used to construct neural networks inside algorithm classes.
Code 12.3 shows an example from Reinforce. When the network is constructed in the
method init_nets (lines 7–13), the output dimension is inferred using the get_out_dim

method (line 10).

Code 12.3 Network construction in the Reinforce class

1 # slm_lab/agent/algorithm/reinforce.py

2

3 class Reinforce(Algorithm):

4 ...

5

6 @lab_api

7 def init_nets(self, global_nets=None):

8 ...

9 in_dim = self.body.state_dim

10 out_dim = net_util.get_out_dim(self.body)

11 NetClass = getattr(net, self.net_spec['type'])

12 self.net = NetClass(self.net_spec, in_dim, out_dim)

13 ...
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A chosen Net class (MLPNet, ConvNet, or RecurrentNet) is initialized using the net spec
and the inferred input and output dimensions (lines 11–12). Let’s now look at how the Net

class constructs an instance of a neural network using these inputs.

12.3.2 Automatic Network Construction
A Net class is able to build a neural network from a given net spec. Code 12.4 shows two
example net specs, one for a MLP (lines 2–20) and one for a CNN (lines 21–44). The
MLP has a hidden layer of 64 units (lines 7–8), SeLU activation function (line 9), gradient
norm clipping to 0.5 (line 10), the loss function (lines 11–13), optimizer (lines 14–17), and
a learning rate decay scheduler (line 18). The CNN has three convolutional hidden layers
(lines 26–31) and one fully connected layer (line 32); the rest of its spec has standard
components similar to the MLP (lines 33–43).

Code 12.4 An example net spec for building a Net

1 {

2 "reinforce_cartpole": {

3 "agent": [{

4 "name": "Reinforce",

5 ...

6 "net": {

7 "type": "MLPNet",

8 "hid_layers": [64],

9 "hid_layers_activation": "selu",

10 "clip_grad_val": 0.5,

11 "loss_spec": {

12 "name": "MSELoss"

13 },

14 "optim_spec": {

15 "name": "Adam",

16 "lr": 0.002

17 },

18 "lr_scheduler_spec": null

19 }

20 ...

21 "dqn_pong": {

22 "agent": [{

23 "name": "DQN",

24 ...

25 "net": {

26 "type": "ConvNet",

27 "conv_hid_layers": [

28 [32, 8, 4, 0, 1],

29 [64, 4, 2, 0, 1],
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30 [64, 3, 1, 0, 1]

31 ],

32 "fc_hid_layers": [256],

33 "hid_layers_activation": "relu",

34 "clip_grad_val": 10.0,

35 "loss_spec": {

36 "name": "SmoothL1Loss"

37 },

38 "optim_spec": {

39 "name": "Adam",

40 "lr": 1e-4,

41 },

42 "lr_scheduler_spec": null,

43 ...

44 }

Internally, a Net class uses another helper function to build its network layers using
PyTorch’s Sequential container class. The MLPNet class uses the build_fc_model method
(Code 12.5) to build fully connected layers, and the ConvNet additionally uses the
build_conv_layers method (Code 12.6) to build convolutional layers.

The build_fc_model method takes a list of layer dimension dims, which is specified in
the net spec as hid_layers for an MLP or fc_hid_layers for a CNN. It iterates through
the dimensions to construct fully connected nn.Linear layers (line 10) with added
activation functions (lines 11–12). These layers then get collected into a Sequential

container to form a full neural network (line 13).

Code 12.5 Automatic network construction: building fully connected layers

1 # slm_lab/agent/net/net_util.py

2

3 def build_fc_model(dims, activation):

4 '''Build a full-connected model by interleaving nn.Linear and

activation_fn'''↪→

5 assert len(dims) >= 2, 'dims need to at least contain input, output'

6 # shift dims and make pairs of (in, out) dims per layer

7 dim_pairs = list(zip(dims[:-1], dims[1:]))

8 layers = []

9 for in_d, out_d in dim_pairs:

10 layers.append(nn.Linear(in_d, out_d))

11 if activation is not None:

12 layers.append(get_activation_fn(activation))

13 model = nn.Sequential(*layers)

14 return model
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The build_conv_layers method is defined inside the ConvNet class specifically to
build convolutional layers in a similar manner, although it has extra details specific
to convolutional networks.

Code 12.6 Automatic network construction: building convolutional layers

1 '# slm_lab/agent/net/conv.py

2

3 class ConvNet(Net, nn.Module):

4 ...

5

6 def build_conv_layers(self, conv_hid_layers):

7 '''

8 Builds all of the convolutional layers in the network and stores in a

Sequential model↪→

9 '''

10 conv_layers = []

11 in_d = self.in_dim[0] # input channel

12 for i, hid_layer in enumerate(conv_hid_layers):

13 hid_layer = [tuple(e) if ps.is_list(e) else e for e in hid_layer]

# guard list-to-tuple↪→

14 # hid_layer = out_d, kernel, stride, padding, dilation

15 conv_layers.append(nn.Conv2d(in_d, *hid_layer))

16 if self.hid_layers_activation is not None:

17 conv_layers.append(net_util.get_activation_fn(

self.hid_layers_activation))↪→

18 # Don't include batch norm in the first layer

19 if self.batch_norm and i != 0:

20 conv_layers.append(nn.BatchNorm2d(in_d))

21 in_d = hid_layer[0] # update to out_d

22 conv_model = nn.Sequential(*conv_layers)

23 return conv_model

The source code for automatically building different types of neural networks is located
in SLM Lab under slm_lab/agent/net/. It may be useful to read the code to gain a
detailed understanding of the Net classes, but this is not necessary.

http://in_d=self.in_dim[0]#inputchannel
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12.3.3 Training Step
The Net base class implements a standardized train_step method used by all the subclasses
to make a network parameter update. This follows a standard deep learning training logic
as shown in Code 12.7. The main steps are:

1. Update the learning rate using the learning rate scheduler and the clock (line 8).

2. Clear any existing gradients (line 9).

3. An algorithm will compute its loss before passing it into this method. Call
loss.backward() to calculate the gradient using backpropagation (line 10).

4. Optionally clip the gradient (lines 11–12). This prevents overly large parameter
updates.

5. Update the network parameters using the optimizer (line 15).

6. If training asynchronously, a global_net will be passed into this method to push
local gradients to the global network (lines 13–14). After the network update, copy
the latest global network parameters to the local network (lines 16–17).

7. A @net_util.dev_check_training_step function decorator is used to check if the
network parameters are updated. This is only active in development mode, and is
discussed in more detail in Section 10.2.

Code 12.7 Standardized method to make a network parameter update

1 # slm_lab/agent/net/base.py

2

3 class Net(ABC):

4 ...

5

6 @net_util.dev_check_train_step

7 def train_step(self, loss, optim, lr_scheduler, clock, global_net=None):

8 lr_scheduler.step(epoch=ps.get(clock, 'frame'))

9 optim.zero_grad()

10 loss.backward()

11 if self.clip_grad_val is not None:

12 nn.utils.clip_grad_norm_(self.parameters(), self.clip_grad_val)

13 if global_net is not None:

14 net_util.push_global_grads(self, global_net)

15 optim.step()

16 if global_net is not None:

17 net_util.copy(global_net, self)

18 clock.tick('opt_step')

19 return loss



ptg33646662

270 Chapter 12 Network Architectures

12.3.4 Exposure of Underlying Methods
Code 12.8 shows a number of examples of how useful PyTorch features can be exposed in
SLM Lab with minimal code.

get_activation_fn (lines 3–6) and get_optim (lines 22–27) show how the components
in a net spec are used to retrieve and initialize the relevant PyTorch classes to be used by
the Net classes.

get_lr_scheduler (lines 8–20) is a simple wrapper around PyTorch’s
LRSchedulerClass. It can also use custom schedulers defined in SLM Lab.

save (lines 29–31) and load (lines 33–36) are simple methods to save and load network
parameters at checkpoints.

Code 12.8 Exposing common PyTorch functionality

1 # slm_lab/agent/net/net_util.py

2

3 def get_activation_fn(activation):

4 '''Helper to generate activation function layers for net'''

5 ActivationClass = getattr(nn, get_nn_name(activation))

6 return ActivationClass()

7

8 def get_lr_scheduler(optim, lr_scheduler_spec):

9 '''Helper to parse lr_scheduler param and construct PyTorch

optim.lr_scheduler'''↪→

10 if ps.is_empty(lr_scheduler_spec):

11 lr_scheduler = NoOpLRScheduler(optim)

12 elif lr_scheduler_spec['name'] == 'LinearToZero':

13 LRSchedulerClass = getattr(torch.optim.lr_scheduler, 'LambdaLR')

14 frame = float(lr_scheduler_spec['frame'])

15 lr_scheduler = LRSchedulerClass(optim, lr_lambda=lambda x: 1 - x /

frame)↪→

16 else:

17 LRSchedulerClass = getattr(torch.optim.lr_scheduler,

lr_scheduler_spec['name'])↪→

18 lr_scheduler_spec = ps.omit(lr_scheduler_spec, 'name')

19 lr_scheduler = LRSchedulerClass(optim, **lr_scheduler_spec)

20 return lr_scheduler

21

22 def get_optim(net, optim_spec):

23 '''Helper to parse optim param and construct optim for net'''

24 OptimClass = getattr(torch.optim, optim_spec['name'])

25 optim_spec = ps.omit(optim_spec, 'name')

26 optim = OptimClass(net.parameters(), **optim_spec)

27 return optim

28
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29 def save(net, model_path):

30 '''Save model weights to path'''

31 torch.save(net.state_dict(), util.smart_path(model_path))

32

33 def load(net, model_path):

34 '''Save model weights from a path into a net module'''

35 device = None if torch.cuda.is_available() else 'cpu'

36 net.load_state_dict(torch.load(util.smart_path(model_path),

map_location=device))↪→

12.4 Summary
This chapter focused on the design and implementation of neural networks for deep RL.
We gave a brief overview of the three main network families, MLPs, CNNs, and RNNs,
and discussed some guidelines for selecting an appropriate network family based on an
environment’s characteristics.

An important characteristic is whether an environment is an MDP or a POMDP. A
POMDP can be one of three types—fully observable given partial history, fully observable
given full history, and never fully observable.

MLPs and CNNs are well suited to solving MDPs and POMDPs that are fully
observable given partial history. RNNs and RNN-CNNs are well suited to solving
POMDPs that are fully observable given full history. RNNs may also improve
performance in POMDPs that are never fully observable, but this is not guaranteed.

There are a set of frequently used methods that are standardized as part of the Net API
for reusability. They make algorithm implementation simpler. These include input and
output layer shape inference, automatic network construction, and a standardized
training step.

12.5 Further Reading
. General

. Neural Networks and Deep Learning, Nielsen, 2015 [92].

. Deep Learning, Goodfellow et al., 2016 [45].

. CNNs

. “Generalization and Network Design Strategies,” LeCun, 1989 [71].

. “Neural Networks and Neuroscience-Inspired Computer Vision,” Cox and
Dean, 2014 [28].
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. RNNs

. “The Unreasonable Effectiveness of Recurrent Neural Networks,” Karpathy,
2015 [66].

. “Natural Language Understanding with Distributed Representation,” Cho,
2015, pp. 11–53 [20].

. “Reinforcement Learning with Long Short-Term Memory,” Bakker,
2002 [10].

. “OpenAI Five,” OpenAI Blog, 2018 [104].



ptg33646662

13

Hardware

Deep RL owes part of its success to the arrival of powerful hardware. To implement or
use deep RL algorithms, one inevitably needs to understand some basic details about
a computer. These algorithms also require a significant amount of data, memory, and
computational resources. When training agents it is useful to be able to estimate an
algorithm’s memory and computing requirements and to manage data efficiently.

This chapter is intended to build intuition for the types of data encountered in deep
RL, their sizes, and how to optimize them. We first briefly describe how hardware
components such as CPU, RAM, and GPU work and interact. Then, in Section 13.2 we
give an overview of data types. Section 13.3 discusses the common types of data in deep
RL and provides some guidelines for managing them. The chapter ends with some
reference hardware requirements to run different types of deep RL experiments.

This information is useful for in-depth debugging and for managing or choosing
hardware for deep RL.

13.1 Computer
Computers are ubiquitous these days. They are in our phones, laptops, desktops, and in
the cloud (remote servers). We have come a long way since Ada Lovelace wrote the first
algorithm and Alan Turing envisioned the general-purpose computer, the Turing
machine. The first computers were massive mechanical devices made with actual moving
parts, with programs being fed in as punch cards, and computer bugs were, well, real
bugs.1 Today, the computer is electronic, small, fast, and very different in appearance from
its ancestors. Most people use it without wondering how it works—this is a privilege of
living in the computing age.

Even as it evolves, a computer is still an implementation of a Turing machine, and this
means certain elements of its design are unchanging. A computer consists of a processor
and a random-access memory, which correspond to the head and tape of a Turing
machine. The architecture of a modern computer is much more complicated than that,

1. A fun fact on the origin of the term “computer bug”: it literally referred to a bug that got inside an early
mechanical computer and caused it to malfunction. People had to open up the computer to clean it out.
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mostly to handle practical issues such as data storage, data transfer, and read/write speed.
At the end of the day, a computer still processes information, and the processor and
memory are always present.

Let’s look at the processor first. Today, it comes packed with a number of processing
cores known as central processing units (CPUs)—for example, dual-core or quad-core.
Each core can be hyperthreaded, allowing it to run more than one thread simultaneously.
This is why processor packaging may say, for example, “2 cores 4 threads,” implying that it
contains two cores, with two threads each.

Let’s look at this example in more detail. A computer with two cores and four threads
may show the number of threads as the number of CPUs, even though the number of
cores is lower. This is because with the four threads, it can run four processes at 100%
process utilization each. However, if needed, we can choose to run only two processes
without hyperthreading and maximize the two cores. This is how a CPU may show 200%
process utilization. The maximum percentage depends on how many threads there are in a
single core.

Depending on the mode, the cores may reorganize and act as if there are more CPUs.
For this reason, the true cores are known as physical CPUs, while the organized threads are
known as logical CPUs. This can be checked using a terminal command lscpu on Linux,
or system_profiler SPHardwareDataType on MacOS. Code 13.1 shows a Linux server
with 32 logical CPUs, which is in fact 16 physical CPUs with 2 threads per core.

Code 13.1 Example output of the command lscpu to show the CPU information on a Linux

server. This machine has 16 physical cores and 32 logical cores, and the CPU speed is 2.30GHz.

1 # On Linux, run `lscpu` to show the CPU info

2 $ lscpu

3 Architecture: x86_64

4 CPU op-mode(s): 32-bit, 64-bit

5 Byte Order: Little Endian

6 CPU(s): 32

7 On-line CPU(s) list: 0-31

8 Thread(s) per core: 2

9 Core(s) per socket: 16

10 Socket(s): 1

11 NUMA node(s): 1

12 Vendor ID: GenuineIntel

13 CPU family: 6

14 Model: 79

15 Model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

16 Stepping: 1

17 CPU MHz: 2699.625

18 CPU max MHz: 3000.0000

19 CPU min MHz: 1200.0000

20 BogoMIPS: 4600.18

21 Hypervisor vendor: Xen
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22 Virtualization type: full

23 L1d cache: 32K

24 L1i cache: 32K

25 L2 cache: 256K

26 L3 cache: 46080K

27 NUMA node0 CPU(s): 0-31

28 ...

This implies that we can choose to run more processes more slowly by maximizing the
threads, or run fewer processes faster by maximizing the cores. The former mode is great
for hyperparameter search where a lot of parallel sessions are run, while the latter is
helpful for running a few specific training sessions faster. The limitation is that a single
process cannot utilize more than one physical core, so we get no benefit from running
fewer processes than the number of physical cores.

A CPU has an internal clock which ticks once every operation, and the clock speed
measures the speed of the processor. This is apparent in the model name in Code 13.1
(line 15) as the frequency of 2.30GHz, meaning 2.3 billion clock cycles per second. The
true clock speed at a given time may vary depending on multiple factors such as the CPU
temperature for safe operation (electronics are still made of physical parts which may
overheat).

A CPU can be overclocked to make it run even faster. This can be enabled in the BIOS
during booting, but before doing this people usually protect their CPUs with some serious
liquid cooling. For deep RL this is not necessary, and it’s not doable when using servers
remotely—but if you own a personal desktop, it is an option.

Now, let’s look at the computer memory. There are multiple types of memory in a
computer, organized hierarchically from the closest to the CPU to the furthest. Memory
closer to the CPU has a lower transfer latency, therefore data access is faster. On the other
hand, it also tends to be smaller because a large amount of memory won’t fit into a small
CPU. To make up for this, the most frequently accessed chunks of data are put into
memory that’s closer to the CPU, while the larger but less frequently accessed data is
placed further away.

Right inside the CPU are the registers that hold the instructions and data being
processed—this is the smallest and the fastest memory. Next is the cache which keeps data
that will be reused frequently to prevent duplicate computation. The different cache
memories, all slower than registers, are also shown in Code 13.1 (lines 23–26).

Next, we have the Random Access Memory (RAM). This is where data is loaded and
placed into during a program’s runtime to be processed by the CPUs. RAM is what we
refer to when we say “loading data into memory” or “a process is out of memory.” A
computer motherboard usually fits four or more RAM slots, so if we replace four 4GB
cards with four 16GB cards, the memory is upgraded from 16GB to 64GB.

When running a program, one typically cares about the CPU and RAM utilizations.
CPU usage has been described above. When reading RAM usage, there are two numbers
displayed—VIRT (virtual memory) and RES (resident memory). An example screenshot
of a system dashboard generated with Glances [44] is shown in Figure 13.1; in the list of
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Figure 13.1 A screenshot of a system dashboard generated using the monitoring tool

Glances [44]. This shows crucial stats such as CPU load, memory usage, I/O, and processes.

processes, the main columns display CPU usage %, memory (RAM) usage %, VIRT,
and RES.

A quick glance at the top of the figure shows that the total RAM (MEM total) of this
computer is 8.00GB. Looking at the first row of the table of tasks, we can see a process
running at 97.7% CPU utilization.

The actual amount of RAM occupied by a process is shown as the resident memory
RES—it is quite small, which is also reflected honestly in the MEM %. For example, the top
process uses 3.6% of the RAM, which corresponds to 297M resident memory of the total
8GB available.

However, the virtual memory consumption far exceeds that—with the VIRT column
summing to over 40GBs. The virtual RAM is in fact simply an estimate of the amount of
memory a program might claim. For example, declaring a large empty array in a Python
runtime will add to the virtual memory estimate, but no memory will be occupied until
the array starts getting filled with actual data.

The size of the virtual memory is not a problem as long as the resident memory does
not exceed the actual amount of RAM available—otherwise we risk running out of
memory and crashing the computer.

Register, cache, and RAM are fast runtime memories used for computation, but they
are nonpersistent. When a computer is rebooted, these memories usually get cleared. For
storing information more permanently, a computer uses a hard drive or a portable storage
device such as a memory stick. Depending on hardware, a drive can store a large amount
of information with decent read/write speed—this is shown on the left side of Figure 13.1
under DISK I/O and FILE SYS. Nevertheless, this kind of memory is still significantly
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slower than nonpersistent memories. As memory gets further away from the processor, its
read/write speed decreases but its storage capacity expands. This rule of thumb is useful
when deciding how to manage data during a training session.

A CPU, coupled with its random-access memory, is a general-purpose device. Without
a CPU, a computer ceases to be a computer. Computing power has been increasing
exponentially, following Moore’s law. However, our computing demands seem to always
accelerate even more rapidly because bigger computers open up new frontiers of problems
to tackle. The rise of deep learning is a great example—symbiotically, it even helps drive
the hardware industry.

Although CPUs are general-purpose and quite powerful, they cannot always keep up
with our computing demands. Fortunately, some of the things we compute very
frequently consist of particular types of operations. For this, one can design specialized
hardware that computes these operations very efficiently by giving up the computational
generality of a CPU.

One such example is matrix operations. Since matrices can encode and compute data
transformations, they are the foundation of image rendering. Camera movement, mesh
construction, lighting, shadow casting, and ray tracing are all typical computer graphics
functions used in any rendering engine, and they are all matrix operations. A video that
renders at a high frame rate needs to compute a lot of these—which motivated the
development of the graphics processing unit (GPU).

The video game industry was the first to make use of GPUs. The precursor to the GPU
was the graphics processor inside arcade machines. These developed with the growth of
personal computers and video games, and in 1999 Nvidia invented the GPU [95]. In
parallel, creative studios such as Pixar and Adobe also helped lay the foundation for the
computer graphics industry by creating and spreading the software and algorithms for
GPUs. Gamers, graphics designers, and animators became the primary consumers
of GPUs.

Convolutional networks which process images also involve many matrix operations.
Therefore, it was only a matter of time until deep learning researchers started adopting
GPUs as well. When this finally happened, the field of deep learning rapidly accelerated.

A GPU computes expensive matrix computations, freeing up the CPUs to perform
other tasks. A GPU performs computations in parallel and is highly efficient at what it
does because it is so specialized. Compared to a CPU, a GPU has many more processing
cores, and it has an analogous memory architecture—registers, caches, and RAM, though
its RAM is typically smaller. To send data to a GPU for processing, it first needs to be
loaded into the GPU RAM. Code 13.2 shows an example of moving a PyTorch tensor
created on a CPU into the GPU RAM.

Code 13.2 An example of creating a PyTorch tensor on a CPU and then moving it into the

GPU RAM

1 # example code to move a tensor created on CPU into GPU (RAM)

2 import torch

3

4 # specify device only if available
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5 device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

6

7 # tensor is created on CPU first

8 v = torch.ones((64, 64, 1), dtype=torch.float32)

9 # moving to GPU

10 v = v.to(device)

With GPUs, computations that are slow on CPUs get accelerated dramatically. This
opened up new possibilities in deep learning—researchers started training larger and
deeper networks with more and more data. This drove state-of-the-art results in many
areas, including computer vision, natural language processing, and speech recognition.
GPUs have helped fuel the rapid developments in deep learning and related fields,
including deep RL.

Despite their efficacy, GPUs are still optimized for graphics processing, not neural
network computations. For industrial applications, even GPUs have limitations. This
motivated the development of another type of specialized processor. In 2016, Google
announced its tensor processing unit (TPU) to meet this need. This helped to deliver “an
order of magnitude better-optimized performance” for deep learning applications [58]. In
fact, DeepMind’s deep RL algorithm AlphaGo was powered by TPUs.

In this section on computer hardware, we discussed the basic makeup of a
computer—processor and memory. A CPU is a general-purpose processor, but it is
limited in the amount of data it can process at once. A GPU has many cores which
specialize in parallel computation. A TPU specializes in tensor computation for neural
networks. Regardless of its specialization, every processor needs a properly designed
memory architecture, including registers, caches, and RAM.

13.2 Data Types
To compute efficiently, we need to understand a problem’s space and time complexities.
For any data-intense applications such as deep RL, it helps to understand some of the
important details and processes that are involved at all levels, from software to hardware. So
far, we have seen how a computer is organized; now, let’s build some intuition for data that
is commonly encountered in deep RL.

A bit is the smallest unit used to measure the size of information. Modern data is
extremely large, so a bigger scale is needed. For historical reasons, 8 bits is 1 byte, or
8b = 1B. From there, a metric prefix is used. 1,000 bytes is 1 kilobyte (kB),
1,000,000 bytes is 1 megabyte (MB), and so on.

Information encoding is general, so any data can be encoded as digital bits. Data, if it is
not already numerical, gets converted into numbers before being represented as raw bits in
hardware. An image gets converted into pixel values, sound into frequencies and
amplitudes, categorical data into one-hot encodings, words into vectors, and so on. A
prerequisite to making data representable by a computer is to make it numerical. Numbers
then get converted into bits on the hardware level.
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By design, the smallest memory chunk commonly used to encode numbers is 1 byte, or
8 bits. Using the power rule, we know that a bit string of length 8 has the capacity to
represent 28 = 256 distinct messages, so 1 byte can represent 256 distinct numbers. A
numerical library such as numpy [143] uses this to implement integers of different ranges,
namely unsigned 8-bit integers uint8: [0, 255] and signed 8-bit integers int8: [−128, 127].

Bytes are suitable for storing data with small numerical ranges, such as the pixel values
in a grayscale image (0–255), as a byte occupies minimum space in the memory. A single
uint8 number is 8 bits = 1 byte in size, so for an image grayscaled and downsized to
84× 84 pixels, there are only 7,096 numbers to store—that is, 7096B ≈ 7kB. A million
of these in the replay memory will take 7kB× 1,000,000 = 7GB which fits in most
modern computers’ RAM.

Obviously, such a small range is insufficient for most computational purposes. By
doubling the size of bit string, we can implement a 16-bit integer with a far larger range,
int16: [−32768, 32768]. Moreover, since a 16-bit string is sufficiently long, it can also be
used to implement floating-point numbers known as “floats,” which are numbers with
decimals. This yields the 16-bit float float16. The implementation of floats, which we
will not discuss here, is quite different from integers; despite this difference, both 16-bit
integers and floats use bit strings of the same size of 16 bits = 2 bytes.

The same bit-doubling scheme can be repeated to implement integers and floats of
32 bits and 64 bits, which occupy 4 and 8 bytes respectively, and yield int32, float32,
int64, float64. However, every doubling of the number of bits will halve the compute
speed, since there are twice as many elements in the bit string to perform binary
operations on. More bits is not always better, as it comes with the cost of larger size and
slower computation.

Integers can be implemented as int8, int16, int32, int64 with a range of values
centered at 0. Unsigned integers can be implemented as uint8, uint16, uint32, uint64 by
shifting the range of values to start from 0. The differences between integers with different
numbers of bits are the size, computing speed, and the range of values they can represent.

When a signed integer int is assigned a value beyond its range, it will overflow with
undefined behavior and break the arithmetic. An unsigned integer uint never
overflows—instead, it silently calculates using the modulus, for example np.uint8(257)

= np.uint8(1). This behavior may be desirable for some specific applications—but in
general, beware of this when downcasting unsigned integer-valued data. If extreme values
need to be capped, clip them first before downcasting. These are shown in Code 13.3.

Code 13.3 A simple script showing size comparison and optimization methods for different

data types

1 import numpy as np

2

3 # beware of range overflow when downcasting

4 np.array([0, 255, 256, 257], dtype=np.uint8)

5 # => array([ 0, 255, 0, 1], dtype=uint8)

6

7 # if max value is 255, first clip then downcast
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8 np.clip(np.array([0, 255, 256, 257], dtype=np.int16), 0, 255).astype(np.uint8)

9 # => array([ 0, 255, 255, 255], dtype=uint8)

Floating-point numbers can be implemented starting from 16 bits as float16, float32,
or float64. The differences are the size, computing speed, and the precision of decimals
they can represent—more bits have higher precision. This is why float16 is known as
half-precision, float32 as single-precision, and float64 as double-precision (or just
“double”). There is no implementation of 8-bit floats because the low precision is
unreliable for most applications. Half precision can be computed twice as fast as single
precision and is sufficient for computations that do not need to be accurate to as many
decimal places. It is also ideal for storage, as most raw data does not use that many decimal
places. For most computations, single precision suffices, and it is the most common type
used by many programs, including deep learning. Double precision is mostly reserved for
serious scientific computing such as physics equations that need to be accurate to many
significant digits. Byte size, speed, range, precision, and overflow behavior are some of the
things to consider when choosing the appropriate type to represent floating-point values.

13.3 Optimizing Data Types in RL
So far we have gained some understanding of how numerical data manifests in hardware,
along with the considerations of size, compute speed, range, and precision. Code 13.4
contains some examples of these data types in numpy and their sizes in memory. Let’s now
look at how they relate to the data we commonly encounter in deep learning and deep RL.

Code 13.4 A simple script showing the various data types and their sizes

1 import numpy as np

2

3 # Basic data types and sizes

4

5 # data is encoded as bits in the machine

6 # and so data size is determined by the number of bits

7 # e.g., np.int16 and np.float16 are both 2 bytes, although float is

represented differently than int↪→

8

9 # 8-bit unsigned integer, range: [0, 255]

10 # size: 8 bits = 1 byte

11 # useful for storing images or low-range states

12 np.uint8(1).nbytes

13

14 # 16-bit int, range: [-32768, 32768]

15 # size: 16 bits = 2 bytes

16 np.int16(1).nbytes
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17

18 # 32-bit int, 4 bytes

19 np.int32(1).nbytes

20

21 # 64-bit int, 8 bytes

22 np.int64(1).nbytes

23

24 # half-precision float, 2 bytes

25 # may be less precise for computation, but ok for most data storage

26 np.float16(1).nbytes

27

28 # single-precision float, 4 bytes

29 # used by default most computations

30 np.float32(1).nbytes

31

32 # double-precision float, 8 bytes

33 # mostly reserved for high-precision computations

34 np.float64(1).nbytes

By default in most libraries, a neural network initializes and computes using float32.
This means that all of its input data needs to be cast to float32. However, float32 is not
always ideal for data storage because of its large byte size (32b = 4B). Suppose a frame of
RL data is 10kB, and we need to store 1 million frames in a replay memory. The total size
is 10GB, which will not fit into a typical RAM during runtime. It is therefore common to
downcast the data and store it in half-precision float16.

Most of the data we need to store in deep RL consists of the state, action, reward, and a
boolean “done” signal indicating the end of an episode. Additionally, there are auxiliary
variables necessary for specific algorithms or for debugging, such as the V- and Q-values,
log probabilities, and entropies. Typically, these values are either small integers or
low-precision floats, so uint8, int8, or float16 are suitable options for storage.

Let’s take a million frames as a standard amount of data to be stored in a replay memory.
Except for states, many of these variables are scalars. For each scalar variable, storing
a million values requires a million elements. When using uint8, it will take
1,000,000× 1B = 1MB, whereas float16 will take 1,000,000× 2B = 2MB. The
difference of 1MB in size is quite insignificant for modern computers, so it is common to
use float16 for all of them to eliminate the risks of accidentally dropping the decimals or
restricting the value range.

However, a lot of memory optimization effort goes into states because they usually
constitute most of the data generated in deep RL. If a state is a relatively small tensor, for
example a vector of length 4 in CartPole, we can use float16. It is only when each state is
large—such as an image—that we need to optimize. These days, images generated from
cameras or game engines typically have high resolution that can run above 1920× 1080
pixels, and such an image may be several MB in size. Suppose a state is a small RGB image
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of 256× 256 pixels with float32 values. Then one image state is (256× 256× 3)× 4B
= 786432B ≈ 786kB, and loading a million of these into RAM will require 786GB. This
is beyond the capacity of even large servers.

By grayscaling the image, three color channels are reduced to one, so the size shrinks
to 262GB, but this is still too big. By downsampling from 256× 256 to 84× 84 pixels,
the size is reduced by roughly 9 times to ≈ 28GB. This compression will lose some
information, and the downsampled pixel values will depend on the compression
algorithm. Note also that the original RGB values are integers with range 0–255, but
grayscaling converts them to a single float32 pixel value with range 0.0–255.0. Most tasks
do not require high-precision pixel values, so they can be converted back to uint8, which
reduces the size further by 4 times.

In the final form, a grayscaled image of 84× 84 pixels with uint8 values occupies just
84× 84× 1B = 7096B. A million of these take up ≈ 7GB, which easily fits into the
RAM of most modern computers. The data sizes of all these optimization stages are
compared in Code 13.5.

Code 13.5 The sizes at different stages of optimizing data for storage in a replay memory

1 import numpy as np

2

3 # Handy data sizes for debugging RAM usage

4

5 # replay memory with 1 million uint8 data = 1MB

6 np.ones((1000000, 1), dtype=np.uint8).nbytes

7

8 # replay memory with 1 million float16 data = 2MB

9 np.ones((1000000, 1), dtype=np.float16).nbytes

10

11 # a downsized greyscale image with uint8 range ~ 7kB

12 np.ones((84, 84, 1), dtype=np.uint8).nbytes

13

14 # replay memory with a million images ~ 7GB

15 np.ones((1000000, 84, 84, 1), dtype=np.uint8).nbytes

16

17 # a raw small image is ~ 262kB, 37 times larger than above

18 # a million of these would be 262GB, too large for standard computers

19 np.ones((256, 256, 1), dtype=np.float32).nbytes

When running an actual RL algorithm, the memory consumption of the process can
be larger than contributions from the state, action, reward, and “done” data alone. In
value-based algorithms, the replay memory also needs to store the next state when adding
the tuple (s, a, r, s′). When preprocessing states from an Atari game, four frames are
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concatenated together. These considerations may increase the memory footprint by a few
times, although the amount of raw states needed in theory does not change.

To ensure efficient memory management, it is worth extra effort to ensure that only the
minimal required amount of data is stored. The general strategy is to keep soft variable
references to the raw data and only resolve them when needed for computation. For
example, we can concatenate frames from the raw states to produce a larger preprocessed
state right before passing them into a network.

Besides data, another significant source of memory consumption is the neural network
itself. A feedforward network of two layers can take up to 100MB in RAM, whereas a
convolutional network can take up to 2GB. A Tensor object also takes up some RAM
when accumulating gradients for autograd, although it is usually a few MBs in size
depending on the batch size. All these have to be accounted for as well when running a
training session.

Having discussed efficient information storage in CPU RAM and GPU RAM, we now
consider how to move the data from storage into computation in a neural network.

Since data transfer has latency imposed by hardware, one needs to follow a strategy
when creating and moving data. When transferring data, less is better, so it helps to
optimize storage as we discussed above. The goal is to ensure that data transfer is not a
bottleneck in the training process—such as when the CPU/GPU is idle waiting for data
transfer, or when most of the processing time is spent on moving or copying data.

The part of a computer’s memory that is closest to the processors and that we typically
have programmatic control over is the RAM. As long as we load data efficiently into
RAM, the major transfer bottleneck has already been eliminated.

Before being passed into a neural network, data needs to be converted into a Tensor

object to support various differential operations such as autograd. If the data is already
loaded as numpy data in the CPU RAM, PyTorch simply refers to this same numpy data
to construct the Tensor without extra copying, making it extremely efficient and easy to
work with. An example of this numpy-to-Tensor operation is shown in Code 13.6. From
there, it passes directly from the CPU RAM into CPUs for computation.

Code 13.6 PyTorch uses numpy data in the CPU RAM to directly construct a Tensor.

1 import numpy as np

2 import torch

3

4 # Storage-to-compute tips

5

6 # Often, raw data comes in high precision format such as float64

7 # but this is not so useful for learning (e.g., a high-def game image)

8 # for storage, use a low-precision int/float

9 # to reduce RAM usage by up to x8 (e.g., float64 to uint8)

10

11 # for float data, downcasting to float16 is ok for storage

12 state = np.ones((4), dtype=np.float16)
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13

14 # for storing an image into replay memory and fitting into RAM

15 # use an optimized format by downsizing and downcasting

16 im = np.ones((84, 84, 1), dtype=np.uint8)

17

18 # just right before feeding into a neural network for compute

19 # cast into a consumable format, usually float32

20 im_tensor = torch.from_numpy(im.astype(np.float32))

If we wish to use a GPU to compute, the tensors need to be transferred from CPU
RAM into GPU RAM. This takes extra time to copy and construct data in the new
location. For large networks, this transfer overhead is compensated by the computational
speedup from a GPU. However, for smaller networks (e.g., a single hidden layer with less
than 1000 units), a GPU does not provide a significant speedup over a CPU, so training
will potentially be slower overall due to the transfer overhead. Therefore, a rule of thumb
is to not utilize a GPU for small networks.

Since most of the neural networks in deep RL are relatively small, often GPUs are not
fully utilized. The other bottleneck can arise from the environment if the data generation
process is slow. Recall that GPUs were originally created for gaming, so most game
engines can be accelerated with a GPU. Other physics engines or environments may also
come with this option. Therefore, it is possible to utilize GPU to speed up environment
data generation as well.

Another potential bottleneck arises when parallelizing algorithm training using multiple
processes. When we use multiple distributed nodes on multiple machines, communication
between the machines can be slow. If it is possible to run the training on a single larger
machine, this is preferable because it eliminates the communication bottleneck.

Additionally, within a single machine, the fastest way for multiple parallel workers to
share data is by sharing RAM. This eliminates data transfer between processes. PyTorch’s
native integration with Python’s multiprocessing module does precisely this by calling a
network’s share_memory() to share a global network’s parameters with all the worker
processes, as shown in Code 8.1 of Chapter 8.

An extreme scenario is when the data size is so large that it cannot fit in the RAM but
can only be stored in the persistent memory. Disk read/write is extremely slow compared
to moving data within RAM, so one needs an intelligent strategy to deal with this. For
instance, we can schedule the loading of a chunk of data required by computation before it
is needed, so the processors do not have to wait. Once a data chunk is no longer needed,
remove it to free up the RAM for the next chunk.

To sum up, the factors we care about when it comes to hardware include where to
compute (CPU or GPU), where to put the data (RAM), how much data can fit into
RAM, and how to avoid the data generation and transfer bottlenecks.
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13.4 Choosing Hardware
With the practical information presented so far, we can use our intuition about data to
give some reference hardware requirements for deep RL.

All the nonimage-based environments discussed in this book can run on a laptop. Only
the image-based environments such as the Atari games benefit from a GPU. For these, we
recommend one GPU and at least four CPUs. This can run a single Atari Trial consisting
of four Sessions.

For desktops, a reference spec is GTX 1080 GPU, four CPUs above 3.0GHz, and
32GB RAM. Tim Dettmers has an excellent guide for building desktops for deep learning
available at https://timdettmers.com/2018/12/16/deep-learning-hardware-guide [33].
A different option is to rent a remote server in the cloud. A good place to start is an
instance of a server with a GPU and four CPUs.

However, for more extensive experimentation, more computing power is desirable. For
desktops, this generally means increasing the number of CPUs. In the cloud, one option is
to rent a server with 32 CPUs and 8 GPUs. Alternatively, consider a server with 64 CPUs
and no GPU. In Chapter 8 we saw that some algorithms such as A2C can be parallelized
with many CPUs to compensate for the lack of GPUs.

13.5 Summary
In deep RL, it is helpful to be able to estimate the memory and computing requirements
of an algorithm. In this chapter, we built some intuitions for the size of basic data types
encountered in RL, such as vector and image states. We also highlighted some ways in
which the memory requirements of an algorithm can increase.

We also briefly looked at the different types of processors—CPUs and GPUs. GPUs
are most commonly used to speed up training on image-based environments.

The tips introduced in this chapter are intended to help optimize memory consumption
in deep RL algorithms in order to use computational resources more efficiently.

https://timdettmers.com/2018/12/16/deep-learning-hardware-guide
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States

Solving a new problem using deep RL involves creating an environment. We will therefore
now shift our focus from algorithms to the components of environment design—
which are the states, actions, rewards, and the transition function. When designing an
environment, we first model the problem and then decide what information, and how,
our environment should present to its users.

It is essential that an RL environment provides sufficient information to an algorithm so
that it can solve a problem. This is one crucial role of states, which are the subject of this
chapter.

First, we will give some examples of states both in the real world and in RL
environments. In the sections that follow, we consider the following questions which are
important when designing a state:

1. Completeness: Does the state representation include sufficient information from
the world to solve the problem?

2. Complexity: How effective is the representation, and how computationally
expensive it is?

3. Information loss: Does a representation lose any information—for example, when
grayscaling or downsampling an image?

In the final section, we look at some commonly used state-preprocessing techniques.

14.1 Examples of States
A state is information that describes an environment. It can also be referred to as an
“observable”—that is, a set of quantities that can be measured.1 States are more than just
numbers representing a game or simulator running on a computer. In the same spirit, an
environment is more than just a computer simulation for an RL problem; environments
include real-world systems. Let’s look at some example states.

1. This definition of an observable is widely used in physics and plays a foundational role in many theories,
including quantum mechanics.
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What we see, hear, and touch are all states of the environment that surrounds us. It is
information that we can “measure” with our perceptions via sensory organs such as eyes,
ears, and skin. Apart from the raw sensory information, states can also include abstract
information, such as the velocity of a moving object.

There is also information that we can detect indirectly, using tools—for example,
magnetic fields, infrared light, ultrasound, and more recently gravitational waves.2 Animals,
with perceptions different to ours, sense their surroundings differently. For instance, dogs
are red-green colorblind, but they can smell much better than humans.

All of these examples are states—information about an environment measured through
different instruments of perception, whether biological or mechanical. The same
environment may yield different information depending on the context and what gets
measured—that is, information may change according to one’s perspective. This is one
crucial idea to bear in mind, and it should be a guiding principle for designing
information-processing systems—not just in RL but in everyday things as well.

Real-world environments contain a lot of complex information. Fortunately, there are
ways to manage this complexity, which is the subject of this chapter. For now, let’s look at
some simple examples. Video games, such as the classic Atari games (Figure 14.1), have
states that are observable via vision and sound—game graphics on a screen and sound from
a speaker. Robots, either physical or simulated, have higher-level states such as their joint
angles, speed, and torque. States in RL tend to get simplified to exclude irrelevant
background noise and side effects and to focus only on information the designer deems
relevant. For instance, a robotic simulation may not account for friction, drag, thermal
expansion, etc.

(a) Breakout (b) Pong (c) Qbert

Figure 14.1 Examples of Atari games with RGB colored images (rank-3 tensors) for states.

These are available as part of OpenAI Gym’s [18] offerings of the Arcade Learning Environment

(ALE) [14].

2. In September 14, 2015, LIGO (operated by Caltech and MIT) detected gravitational waves for the first
time [80]. This was truly a remarkable milestone in humanity’s scientific achievements.
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It is crucial to distinguish states from actions and rewards. A state is information about
an environment—even when no action is taken or reward assigned. An action is an effect
imposed on the environment by an entity which is not the environment—that is, an
agent. A reward is a form of metainformation about a transition of states caused by
an imposed action.

We can represent a state with any suitable data structure—for example, a scalar, a
vector, or a generic tensor.3 If not originally numerical, we can always encode it as such.
For instance, in natural language, words or characters can be represented numerically using
word embeddings. We can also biject4 information to a list of integers. For example, the
88 keys of a piano can be uniquely labeled with the integers [1, 2, . . . , 88]. A state can also
have discrete or continuous values, or a mixture of both. For example, a kettle may
indicate that it is on (discrete state) and provide its current temperature (continuous state).
It is up to the designer to represent information in a suitable way for an algorithm to use.

A state s is an element of a state space S, which fully defines all the values that the state
of an environment can have. A state can have more than one element (dimension), and
each element may be of any cardinality5 (discrete or continuous). However, it is
convenient to represent state using tensors with a single data type (int or float) because
most computing libraries, such as numpy, PyTorch, or TensorFlow, expect this.

States can come in any ranks and shapes:6

. Scalar (rank-0 tensor): temperature

. Vector (rank-1 tensor): [position, velocity, angle, angular velocity]

. Matrix (rank-2 tensor): grayscale pixels from an Atari game

. Data cube (rank-3 tensor): RGB color pixels from an Atari game (see examples in
Figure 14.1)

A state can also be a combination of tensors. For instance, a robotic simulator may
provide the visual field of the robot as an RGB image (rank-3 tensor) and its joint angles as
a separate vector. Having differently shaped tensors as inputs also requires a different neural
network architecture to accommodate them; in this case, we consider the separate tensors
to be substates which together form the overall state.

Having described what states are in general, let’s now look at the workflow for
designing a state, shown in Figure 14.2. The process begins by deciding what information
to include about the world and in what form. For example, the electromagnetic spectrum
can be represented in many different ways using lidar or radar data, RGB images, depth
maps, thermal images, etc. The information that is ultimately selected can be described as
the raw state.

3. A tensor is a generalized information cube of N dimensions. A scalar (single number) is a rank-0 tensor; a
vector (list of numbers) is rank-1; a matrix (table of numbers) is rank-2; a cube is rank-3, and so on.
4. Bijection is a mathematical term for a one-to-one and onto mapping of two sets of elements—that is, sets with
mutual one-to-one correspondence. In our applications, we usually biject a set to a list of integers starting from 0.
5. Cardinality is a measure of the “size”of a set, and is also used to distinguish between discrete and continuous sets.
6. More terminology: “rank,” loosely speaking, is the number of dimensions of a tensor, whereas “shape”comprises
the sizes of its dimensions. For example, a vector with ten elements has shape (10); a matrix of 2×4 has shape (2, 4).
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Figure 14.2 Information flow from the world to an algorithm

We can use our knowledge about a problem to design a simpler state by more directly
presenting the information we consider useful—for example, by downsizing and
grayscaling images. This can be described as a designed state of an environment.

An agent can take the raw state or designed state from an environment and further
preprocess it for its own use. For example, a series of grayscale images can be stacked
together to form a single input. This is known as a preprocessed state.

Let’s take the Atari Pong game from Figure 14.1 as a case study. It is a two-dimensional
ping pong game. There are two paddles and one ball, with the paddle on the left
controlled by the game, and the paddle on the right controlled by the player. The player
that gets the ball past their opponent’s paddle earns a point, and the game terminates after
21 rounds. To win a game, an agent needs to be able to sense the ball and both paddles.
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In Pong, the raw state is the RGB colored image from the computer screen at a
particular time step, which contains the complete unfiltered information about the game.
If the agent uses this raw state, it would have to learn to identify which patterns in the
pixels represent the ball and the paddles and to infer their movements through pixels. Only
then can it begin to devise a winning strategy—or at least that’s what a human would do.

However, we as humans already know that the useful information includes positions
and velocities of those objects. We can use this knowledge to create a designed state. One
candidate is a vector of numbers representing the positions and velocities of both paddles
and the ball.7 This state contains significantly less information to process than the raw
state—but it contains things that are far more direct and easier for an algorithm to learn.

Let’s look at another example: the CartPole environment from OpenAI Gym in
Figure 14.3. Both the raw image and the designed state are available, as shown in
Code 14.1. The designed state is the one returned directly from the environment API
methods env.reset (line 15) and env.step (line 37). The RGB raw image state can be
obtained using the env.render(mode='rgb_array') function (line 21).

Figure 14.3 CartPole-v0 is the simplest environment in OpenAI Gym. The objective is to

balance the pole for 200 time steps by controlling the left-right motion of the cart.

If we replace the usual state with the RGB raw image state, any algorithm would have a
much harder time solving the otherwise simple problem. This is because now there is
much more work to be done by the agent—it has to figure out what collection of pixels
to pay attention to, work out how to identify the cart and pole objects in an image, infer
the movement of objects from the changes in pixel patterns between frames, etc. From all
the pixel values, an agent has to filter out the noise, extract useful signals, form high-level
concepts, then recover the information similar to that provided by the designed vector
state of positions and velocities. Only then can it use these relevant features to inform its
policy for solving the problem.

7. This designed state is a hypothetical example; the game environment actually only offers the raw image state.
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Code 14.1 Example code to obtain the raw and designed state of the CartPole-v0

environment

1 # snippet to explore the CartPole environment

2 import gym

3

4 # initialize an environment anc check its state space, action space

5 env = gym.make('CartPole-v0')

6 print(env.observation_space)

7 # => Box(4,)

8 print(env.action_space)

9 # => Discrete(2)

10 # the natural maximum time step T to terminate environment

11 print(env.spec.max_episode_steps)

12 # => 200

13

14 # reset the environment and check its states

15 state = env.reset()

16 # example state: [position, velocity, angle, angular velocity]

17 print(state)

18 # => [0.04160531 0.00446476 0.02865677 0.00944443]

19

20 # get the image tensor from render by specifying mode='rgb_array'

21 im_state = env.render(mode='rgb_array')

22

23 # the 3D tensor that is the RGB image

24 print(im_state)

25 # => [[[255 255 255]

26 # [255 255 255]

27 # [255 255 255]

28 # ...

29

30 # the shape of the image tensor (height, width, channel)

31 print(im_state.shape)

32 # => (800, 1200, 3)

33

34 done = False

35 while not done:

36 rand_action = env.action_space.sample() # random action

37 state, reward, done, _info = env.step(rand_action)

38 print(state) # check how the state changes

39 im_state = env.render(mode='rgb_array')

A raw state should contain all the information that could be relevant to the
problem—but it is typically much harder to learn from. It often has a lot of redundancy
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and background noise, so there is the unavoidable processing cost of extracting and
contextualizing this information into a useful form. Raw and complete information gives
more freedom but there is a heavier burden of extracting and interpreting useful signals
from it.

A designed state typically contains extracted signals that are more useful for learning.
One risk is that it can miss crucial information—we discuss this in more detail in
Section 14.4. Environments may offer both raw and designed states. Which to use depends
on the purpose—harder raw states can be used to challenge and test the limits of an
algorithm, easier designed states can be used if the goal is to solve a problem.

Research environments tend to have simpler states that can be computed quickly. This
is partly due to the fact that model-free deep RL methods require a lot of samples to train,
so anything more complex would make learning intractable. Until there is a massive
improvement in sample efficiency, this remains a bottleneck. Classical control and robotic
environments from OpenAI Gym [18] and MuJoCo [136] have relatively low-dimensional
designed states including positions, velocities, and joint angles. Even the image-based Atari
game environments produce images that have low but sufficient resolution to solve the
problems.

Modern video games are often quite complex and realistic. They mimic the real world
very closely, thanks to sophisticated game engines. For these games, the states may
correspond to the real-world modes of perception—such as the point-of-view camera
vision and surround sound from a desktop computer game. VR headsets have high-fidelity
stereoscopic (3D) vision, and their consoles provide touch or vibration feedback. Arcade
shooter games with motion seats even simulate physical movements.8

It is still uncommon in AI research to utilize these types of complex sensory
information. There are several reasons for that: data storage and computation requirements
are massive, and the development of environment platforms is still in its early days.
Fortunately, more realistic RL environments started to emerge in the past few years by
building on top of powerful game engines. To name a few, Unity ML-Agents [59] includes
a number of toy environments built on the Unity game engine; Deepdrive 2.0 [115] (built
on Unreal Engine) provides a realistic driving simulation; Holodeck [46] (built on Unreal
Engine) provides high-fidelity simulation of virtual worlds. These open up a whole new
playground for even more challenging tasks in RL.

The complexity of the state space correlates with the complexity of a problem,
although the effective problem complexity also depends on how well the states are
designed. State design can make the difference between an RL environment that is
solvable and one that is not.

Common objects which we interact with serve as great references for state design.
Many of these convey information visually—vision being the most powerful of all human
senses. Temperature and mass are measured with graded scales; status of an electrical
appliance is shown by its light indicators; pressure and vehicle speed are displayed by
gauges; games are tracked on scoreboards. There are also nonvisual channels, such as the

8. It is worth visiting an arcade center to experience some of the richest and most novel sensory experiences (and
a lot of fun).
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sound from a car horn or vibrations from a silenced phone. These are examples of how
information about a system can be measured and represented. In the information age, we
are so used to measuring things—ideas for state design are all around us.

A good environment design accelerates research and applications. It also needs to be
thoroughly tested so that users can avoid tinkering with and fixing issues unrelated to their
work. Providing a set of standard and robust environments was one of the main
motivations for creating OpenAI Gym which contains a large set of environments with
carefully designed states, actions, and rewards. Good design coupled with ease of use and
permissive license has helped OpenAI Gym contribute to advancing the field by providing
a testbed for researchers; since its inception, it has become one of the de facto standard
environments in deep RL.

Despite its importance, there are few formal or comprehensive guidelines on state
design for deep RL. However, acquiring sufficient skills in state design—or at least an
understanding of it—is complementary to having core knowledge of RL algorithms.
Without it, you cannot solve new problems.

14.2 State Completeness
Let’s talk about raw state design. The most important question is whether the raw state
contains sufficient information about the problem.

As a general rule, think about what information a person needs to know in order to
solve the problem. Then, consider if this information is available from the world. If we
have complete information, then the problem is fully observable; for example, chess can be
represented completely by the positions of all the pieces on the board. A problem with
incomplete information is only partially observable; poker is an example since a player
cannot observe other players’ cards.

A state which contains complete information is ideal, but may not always be possible to
have. This may be due to theoretical or practical restrictions. Sometimes a state is fully
observable in theory but not in practice due to noise, imperfect conditions, or other
unaccounted factors. For example, in real-world robotics scenarios, signals take time to
travel from a computer to the motors, so high-precision control needs to account for these
effects.

When a state is partially observable, the effects of incomplete information can vary
widely. An agent may be able to compensate for noise and latency in the environment if
they are not too large. On the other hand, online video games that require split-second
decisions to win become impossible to play when latency is too high.

Next, there are some secondary considerations when designing a raw state.

1. What are the data types? Are they discrete or continuous? Will they be dense or
sparse? This determines the suitable format for data representation.

2. What is the cardinality of the state space? Will the states be computationally cheap to
produce? Depending on this, we may or may not be able to obtain the amount of
data required for training.
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3. How much data is required to solve a problem? One rule of thumb is to estimate
how much data a human would need to solve the problem, then multiply it by a
number between 1,000 to 100,000. This is only a rough estimation; the true number
will depend on the nature of the problem, the state design, and the efficiency of the
algorithm used. For example, a human can take 10 to 100 episodes to learn how to
play an Atari game well, but an algorithm typically requires over 10 million frames
(roughly 10,000 episodes) to play on the same level.

Answering these questions requires domain expertise and a good understanding of the
problem at hand—especially if it has never been solved before. One lens through which to
evaluate these options is the complexity of the resulting state.

14.3 State Complexity
States are represented with a data structure—and, as always in data structure design, we
need to consider its computational complexity. This complexity can manifest in two
forms: tractability and effectiveness of feature representation. What follows is a number of
guidelines for designing efficient state representations. These guidelines apply to both raw
states and designed states.

Tractability9 relates directly to the cardinality of the state space. How large is every
sample of data? How many samples are required to get a good representation of the entire
problem and to solve it? Recall that a frame refers to all the data produced over a time step.
We have seen that RL algorithms typically require millions of frames to perform well on
the Atari games. A typical frame of downsized and grayscaled image is 7kB, so 10 million
frames will contain 10 million × 7kB, which is 7GB in total. Depending on how
many frames an agent stores at once, memory (RAM) consumption can be high. In
contrast, consider a modern game with high-resolution images, each 1MB in size.
Processing 10 millions frames is equivalent to computing through 10TB worth of data.
This is why it is a good idea to downsample images.10

An environment model that faithfully reproduces the problem (e.g., uses the
highest-quality game images) may generate so much raw data that computation becomes
intractable in practice. Therefore, the raw state often has to be compressed and distilled into
features that are properly designed to represent what is relevant about a problem. Feature
engineering is an extremely critical part of solving a problem, especially when the problem
is new. Not all features are created equal, so we need to consider their effectiveness.

Given that there are multiple potential feature representations, ask what happens when
the same algorithm runs on them. Will the storage size be too massive? Will computation
be so costly that a solution becomes impractical? What is the computation cost for
extracting features from the raw state? What we are looking for is the minimum sufficient

9. In computer science, a tractable problem is one that can be solved in polynomial time.
10. Preprocessing techniques are discussed in Section 14.5; calculations to determine memory consumption were
discussed in Chapter 13.
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feature representation that makes computation tractable and does not generate too much
data to process.

A good first strategy is to compress raw information. Complexity scales with the size
of data—the more bits the algorithm has to compute, the more space and time it will
take. Image-based games are good examples: encoding a game in full resolution retains
all of the original information—but to effectively play the game, we often do not need
high-resolution images that are costly to produce and process.

If a convolutional network is used to process an input image, the number of pixels will
cascade down the layers and more computation will be required to process them. A
smarter way is to compress the image using any standard techniques. This will downsize it
into a reasonable smaller size—say, 84× 84 pixels—with a proportional speedup in
computation time. Even with the powerful hardware available today, downsizing can make
the practical difference between a model that can or cannot fit in memory—and,
consequently, between a training session that takes days and one that takes months.

Complexity also grows with the number of dimensions because of the combinatorial
explosion that comes with every additional dimension. Even where dimensions represent
fundamentally different types of information, they can still be reduced with some clever
design. Consider video games again. Instead of using the full 3-channel RGB colors, we
can grayscale the image into a single channel. However, this is only applicable if color is of
little importance; if The Matrix movie were in black and white, Neo would have had a
hard time telling the red pill from the blue pill. Converting an image to grayscale reduces it
from a 3D pixel volume (with the color channels) to a 2D grayscale pixel matrix (no color
channels), and complexity is reduced by a cube root. That is why, besides downsizing, the
states of Atari games are usually preprocessed from colored to grayscaled images.

Another strategy for compressing information is feature engineering. Recall the
distinction between raw state and designed state. Feature engineering is the process of
transforming the former into the latter—that is, going from low-level raw information to
higher-level representations. This is of course limited by what information is available in
the raw state. Take CartPole for example. Instead of using an image, the environment can
be succinctly represented with only four numbers—the x-position and x-velocity of the
cart, and the angle and the angular velocity of the pole. This state is also much more
relevant, because the algorithm does not need to perform extra work to understand the
concept of positions and velocities from raw images.

A state designer can choose to manually encode useful information. Depending on the
choice, the new encoding can either make the problem easier or harder. Let’s suppose we
do not use the image state of Atari Pong for learning. Then, what useful high-level
information can be extracted from the raw image such that it forms a succinct
representation of the game, analogous to the CartPole example in the last paragraph? We
can guess that such a designed state will include positions, velocities, and accelerations11 of
the ball, the agent’s paddle, and the opponent’s paddle. If we leave out the information
about the opponent’s paddle, we make the game harder to beat since the agent will not be
able to anticipate or exploit its opponent. On the contrary, if we include the velocities of

11. Acceleration is necessary because the longer the ball remains in play, the faster its speed.
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the ball and both paddles, the problem becomes easier as the agent will not need to learn
to estimate velocities by taking the difference between positions over time.

Feature engineering achieves two things: cardinality of the state is drastically lowered,
and its complexity is greatly reduced. By hand-picking only the useful features, irrelevant
information from the raw state is excluded, and we are left with a designed state that is
more compact with fewer dimensions. Moreover, the designed state could also include
information that can only be derived, but not directly observed, from the raw data. The
velocity of objects is a good example. When these features are presented directly in a
designed state, an agent does not have to learn to extract them from the raw state.
Essentially, most of the work in understanding the problem has already been done for the
agent. Given a designed state, an agent only needs to utilize it and focus directly on solving
the main problem.

One disadvantage of feature engineering is that it relies on humans who use their
knowledge about the problem to identify the relevant information from raw data to design
an effective and appropriate feature representation. Compared to the raw data, this process
inevitably encodes more human-based priors because we utilize our knowledge and
heuristics to select what we think is useful. Certainly an agent which learns from such a
state is not really doing it “from scratch”—but if solving a problem is our main concern,
this is not something we need to worry about. Feature engineering results in designed
states with more context built from a human perspective, and it makes them more
interpretable—although some might argue that, for the exact same reason, such states are
less general or more likely to include human biases.

Although desirable, feature engineering is not always possible or practical. For instance,
if the task is to recognize images or navigate visually, it would be impractical to craft states
to account for all the relevant features in images, not to mention that it may defeat the
purpose. However, sometimes it is extremely difficult, but worth the effort, to do so. Vastly
complex games, such as Dota 2,12 are an example where it requires monumental effort to
design states, but using raw game images makes for a much more challenging problem
to solve.

To play Dota 2, OpenAI designed a massive game state that consists of a staggering
20,000 elements derived from the game API. The state contains basic map-related
information such as terrain and spawn timing. For a number of creeps or hero units, the
state also contains a set of information related to each such as attack, health, position,
abilities, and items. This massive state is separately processed, then combined before being
passed into an LSTM network of 1024 units. For more details, see the model architecture
linked under the “Model Structure” section in the OpenAI Five blogpost [104].
Combined with some serious engineering effort and computing power, they managed to
defeat the world’s top players in 2019 [107].

Overall, state feature engineering is doable and encouraged, especially when the
important elements of a game are known and can be described quite straightforwardly.

12. Dota 2 is a popular eSports game. It consists of two teams of five players each, picking heroes from a pool of
over 100 characters to fight and take over the enemy’s throne. With a large map and a mind-boggling number
of combinations of characters and skills, it is an extremely complex game.
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There may be problems with which obvious elements to include in the designed state. In
games, we are generally interested in things that change or move. In robotics, we are
interested in the positions, angles, forces, and torques. In the stock market, useful trading
indicators include market volume, price changes, moving averages, etc.

There are no hard and fast rules for designing effective states from raw data. However, it
is always useful to spend time understanding the problem so that domain knowledge and
context can be incorporated into the state. For practical applications, this is often
particularly worthwhile.

State design is fundamentally about compressing information and removing noise, so
any standard methods for doing this are worth exploring. In general, think about the
following:

1. Obvious information: Something that is immediately obvious as relevant to a
human, such as positions of the paddle, ball, and bricks in Breakout—simply
because those are the game objects.

2. Counterfactual: If x is missing and a problem cannot be solved, then x must be
included. If object velocity is not available in CartPole, we cannot anticipate where
the relevant object is moving to, so it is essential to predicting the movement of
objects—which means velocity cannot be missing.

3. Invariance (borrowed from physics): What is something that remains constant or
invariant under transformations, that is, exhibits symmetry? For instance, CartPole is
invariant to horizontal translations (as long as it does not veer off the screen), so the
absolute x-position of the cart does not matter and can be excluded. However, the
pole falling is not invariant to vertical flipping, because gravity acts in one direction
only and this fact is reflected in the angular position and velocity.

4. Changes (borrowed from physics): Usually we are interested in something that
changes. Has the position of the ball changed? Has the price increased or decreased?
Has the robotic arm moved? These changes might be relevant. However, other
things that change—background noise—may be irrelevant. For instance, a
self-driving car does not need to notice tree leaves moving in the wind. It is
tempting to think that an agent should only care about the changes its actions can
produce. However, there are also purely observational changes that are useful, such as
traffic lights which we cannot control but must obey. Overall, the key idea here is:
include in the state relevant things that change and are useful to the goal. Conversely,
if a feature cannot be controlled by an agent and does not contribute towards
achieving the objective, it can be excluded.

5. Time-dependent variables: Many, but not all, changes happen in time instead of
space. However, information from a single frame (time step) cannot indicate any
changes in time. If we expect x to change over time, we should include dx

dt in the
state. For example, position changes do matter for CartPole, therefore velocity is
crucial.

6. Cause and effect: If the goal or task is the effect of other causes (it usually is), then
all the elements in the causal chain must be included.
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7. Established statistics or quantities: In stock trading, the common wisdom in
technical analysis is to look at quantities such as volume and moving averages. It is
more useful to include such well-established data points than to invent one’s own
using the raw price point data from the stock exchange. Essentially, do not reinvent
the wheel.

Finally, it is often useful to borrow techniques from domains with related or similar data
types and problems. For images, make use of the downsizing, grayscaling, convolutional
and pooling techniques from computer vision, which have helped to advance deep
RL—for example, all state-of-the-art results on the Atari games make use of a
convolutional neural network. If the data is sparse, look to natural language processing
(NLP) and use word embeddings. For sequential data, look to NLP again and use
recurrent networks. Do not shy away from borrowing techniques from a wide variety of
domains—such as game theory and good old-fashioned AI (GOFAI) for games, classical
mechanics for robotics, classic control for control systems, and so on.

14.4 State Information Loss
State design begins with the set of available information in a raw state. Then, various
compression methods can be applied to obtain the desired final set of information in
the form of a designed state. When compressing information, some of it may be
lost—otherwise, the process is called lossless compression.

In this section, we look at a common pitfall when designing a state from raw
states—the possibility that crucial information is lost. It is the responsibility of the designer
to ensure that this does not happen. We look at multiple case studies, including image
grayscaling, discretization, hash conflicts, and metainformation loss that arises from an
inappropriate representation.

14.4.1 Image Grayscaling
When downsizing images, designers need to check with their eyes that the images do not
become too blurry—too low-resolution—to be useful. Furthermore, in video games
some elements are color-coded to make it easier for humans to play. When compressing a
game image from RGB colors to grayscale, make sure that crucial elements do not
disappear when decolorized. This may happen when there is a hashing overlap from
mapping a larger set of numbers (3D tensor, RGB with three channels) into a smaller set
(2D tensor, grayscale image), so different colors may end up with brightness values that are
nearly identical.

Figure 14.4 shows an example of information loss from grayscaling. OpenAI trained an
agent to play Atari Seaquest [103] where the player controls a submarine whose mission is
to rescue divers while shooting enemy sharks and other submarines to gain rewards.
Preprocessed images mapped green and blue to very close grayscale values, making them
indistinguishable. This mistake caused the enemy sharks to blend into the background and
become invisible to the agent (Algorithm View in Figure 14.4). The loss of this crucial
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piece of information negatively affected performance. Luckily, there are many grayscale
schemes, so this issue can be avoided by choosing an appropriate scheme that does not
cause the shark to disappear, as shown in the Corrected View in Figure 14.4. No grayscale
scheme is completely foolproof, so we need to always manually check our preprocessed
images.

Figure 14.4 Grayscaling can cause crucial game elements to disappear, hence it is good

practice to always check the preprocessed images when debugging.

Image from OpenAI Baselines: DQN [103].

14.4.2 Discretization
Another common cause of information loss occurs when discretizing continuous
values—that is, mapping a range of continuous or infinite discrete values into a set of
finite discrete values. For example, take a task which involves reading an analog watch. An
efficient feature design is to discretize the circumference of the watch. Depending on
whether we want to read the hour or the minute hand, we need to use different
discretization schemes. If the task is to only read the hour, then discretizing the angle into
12 parts makes sense, since there are only 12 hour values on a watch. If we wish to read the
minutes, then this will not be sufficient. Depending on the accuracy required, the watch
needs to be discretized by intervals of 30, 10, or 1 minute, but anything lower becomes
illegible to the human eye. As a matter of fact, the tick marks on a watch are one
discretization scheme that helps us read the time with a permissible degree of accuracy. It
also influences how we say the time: someone who is wearing a watch with only
30-minute tick marks, when asked the time, will likely respond in the same discretization
scheme—whether it is 10:27, 10:28, or 10:29, this person will probably say, “Ten thirty.”
This example shows that discretization causes information loss (which should not be
surprising).
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14.4.3 Hash Conflict
The previous two examples are instances of what is known as a hash conflict. This occurs
when a larger data set is compressed into a smaller set that does not have enough power to
represent all of its distinct elements. Therefore, collisions arise when different elements of
the original set get mapped to the same value in the smaller set.

Information compression may cause hash conflicts—but they are not always
problematic. If we look at the Atari Seaquest example, all grayscaling schemes cause hash
conflicts, but only some of them will cause the issue of the disappearing sharks in
Figure 14.4. Unfortunately, there is no easy way to determine which hash conflicts are
detrimental because it is problem-dependent. We need to rely on manually inspecting
samples of the data.

In our everyday lives, we also experience hash conflicts. Humans use colors to convey
semantics, such as red for danger and green for safety; the familiar three red-yellow-green
bulbs are used for traffic lights worldwide. Even though we have the technology to use a
single bulb that changes its color to any of these three, and even though this may make
sense economically or technologically, driving would become extremely dangerous for
people who are colorblind—they will have a hard time telling whether the light is red or
green. This is why traffic lights still use three separate monochromatic bulbs.

14.4.4 Metainformation Loss
Some information provides higher-level knowledge about the data we are dealing with.
This is metainformation—information about information. Let’s look at some examples.

Chess is played on a two-dimensional board, and players have no trouble moving the
pieces during the game. Some really advanced players can play mentally by memorizing
the positions of the pieces and calling out moves such as “bishop from A2 to D5.” This is
harder than using a board because a player has to construct a mental image of these
positions on an imaginary board, but this is still doable.

In chess, the coordinates are in two dimensions—an alphabet letter for the horizontal
position, and a number for the vertical position. For a challenge, let’s switch to a
1-dimensional coordinate by mapping the 2D coordinates to the set of 64 digits—say,
A1 7→ 1,B1 7→ 2, . . . ,A2 7→ 9,B2 7→ 10, . . . ,H8 7→ 64. The move “bishop from A2 to
D5” now becomes “bishop from 9 to 36.”

Imagine playing chess with this 1D system. It is significantly harder because we would
have to convert the numbers 9, 36 back to A2,D5 so we can visualize the piece positions
on the 2D board. This is assuming we have played chess before. To take it further, imagine
introducing chess to a new player without ever showing them any 2D boards—just by
describing all the rules using this new 1D coordinate. Furthermore, we never tell them
that this is a 2D game, so they do not have the context about the spatial nature of the
game. No doubt the new player will be very confused.

Is this compression lossless? All 2D coordinates are mapped to 64 distinct
numbers—there are no hash conflicts. So why does the game become so much harder? A
quantitative check would not tell us that anything is wrong, but a qualitative check reveals
the problem. When we turn the 2D coordinates into 1D, we rid them of their dimensional
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information—we ignore the fact that the game is designed for two dimensions and that
the pieces move in two-dimensional space, so the rules are sensibly devised for 2D. For
example, the concept of checkmate which depends on 2D positioning will become very
bizarre in 1D.

The same thing happened in the earlier days of digit recognition from images (for
example, using the MNIST [73] dataset) before 2D convolutional networks were used. An
image would be sliced into strips and then joined adjacently to a vector. This is then passed
as an input to an MLP. It is not surprising that the network had a hard time recognizing
digits, given that all it got was the 1D version of the image, not knowing that the image
was supposed to be 2D. This problem was fixed when 2D convolutions, designed to
process 2D data, began to be used. Figure 14.5 shows an image of a digit “8” taken from
the MNIST [73] dataset. When flattened into a 1D vector, it looks like Figure 14.6 (only
shown partially due to its length), which is much harder to identify as an “8”.

Figure 14.5 An image of the digit “8” from MNIST. This natural two-dimensional

representation can be identified easily.

Figure 14.6 What Figure 14.5 looks like when flattened into a 1-dimensional vector by

concatenating all the rows together (only shown partially due to its length). This is very difficult to

identify as an “8”.

This scenario is an example of metainformation loss. Such loss is not immediately clear by
looking at the information itself—we need to look at its external context. For instance,
the collection of 64 numbers in chess does not tell us anything about the data being
two-dimensional: that context has to be supplied externally. Such metainformation does
not happen just in space, but also in time.

Consider a frame from the CartPole environment in Figure 14.7a at t = 1. Assume that
we only have access to the image but not the designed state. Looking at this frame alone,
can we tell what is going to happen at t = 2, 3, . . .? It is impossible. Without access to the
state, we do not know the cart or pole’s velocity. The pole could be standing still, falling
leftward, or falling rightward. Only when we look at all the other frames at later time steps
in Figure 14.7 do we know that the pole is falling to the left. This illustrates the missing
high-level information about how the information itself changes over time. A way to restore this
information is to collect consecutive frames together and observe them.
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In Figure 14.7, we can observe the sequence of changes because the snapshots are taken
at reasonable intervals. Our ability to perceive these changes is determined by the frame
rate. High-quality games have a frame rate of over 60 frames a second, so the video looks
smoother for players. However, with a high frame rate, the changes between consecutive
frames are also smaller. When choosing the frame rate for training, we need to ensure that
the changes are detectable. What qualifies as “detectable” depends on the perceiver.
Humans are less sensitive to changes than machines, so if an object on a screen moves by
1 pixel, humans are likely to miss it. On the other hand, changes will accumulate over time
and become more detectable. A common strategy is therefore to accentuate consecutive
changes by skipping frames—that is, sampling once every k number of frames. For games
with a frame rate of 60, a good frame skipping frequency is k = 4. This technique can
make learning easier for an agent; it also reduces the total amount of data that needs to be
stored.

If we were now told that the frames in Figure 14.7 are being played in reverse, we
would conclude that the pole is not actually falling leftward but is recovering and falling
rightward. The metainformation about the direction of ordering of the data needs to be given.
One way to preserve this metainformation is to use a recurrent neural network; the other
is to pass the sequence of frames in a consistent manner to an MLP or CNN.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Figure 14.7 Four consecutive frames of the CartPole environment

Our final example is Chinese text. Chinese characters are written in a grid, and a
sentence is made from a sequence of characters. Sometimes a sentence is meant to be read
left-right-top-bottom, sometimes top-bottom-left-right, and sometimes
top-bottom-right-left. Additionally, a book could be read left-to-right or right-to-left,
although it is usually consistent with the sentences’ direction of flow. If we try to train a
neural network on a 2D grid of Chinese characters without knowing which direction
it is supposed to be read, all it will see is some garbled up, disjointed sequence of
characters—the story in the book will be lost.

These examples demonstrate how information can be lost in both direct and subtle
manners. We can encounter this kind of loss in unexpected places. We can call all such
kind of loss “information blindness”—similar to “colorblindness” but in other dimensions
and forms of information, including metainformation and exterior context.

To summarize, when compressing data, check for information loss using the methods
discussed in this section:
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1. Accidental exclusion (basic): Check that no critical information is accidentally
left out.

2. Hash conflict (quantitative): Check that, when mapping a larger set to smaller
space, no elements that must remain distinguishable are merged.

3. Information blindness (qualitative): Check that, from a human perspective, no
subtle, qualitative, or meta information is lost.

As a general rule of thumb, it is always a good thing to simply debug the compressed
information manually. If a human cannot use the compressed image or states to play the
game or solve the problem, do not be surprised if an algorithm fails too. This principle
does not just apply to games but to all problems in general. If the state is an image, render
and look at it. If it is a sound, listen to it. If it is some abstract tensors, print them out and
inspect the values. Take some examples and try to act based on them. The bottom line is
that everything about the environment needs to make sense to a human. We may discover
that the problem does not lie with the algorithm, but rather in the designed state providing
insufficient information.

The transformation of raw states into designed states can be implemented as a state
preprocessor module. It can either be applied within the environment, or by the agent
transforming the state produced by the environment. Where to apply it depends on what
we have control over; for example, if the environment is given to us by a third party, it
makes sense to implement the preprocessor within an agent.

14.5 Preprocessing
In this section we look at common preprocessing implementations. We also take a more
detailed look at frame skipping. This section can be omitted on first reading without loss
of understanding of what follows.

A preprocessor is a function that transforms data before it gets used. Preprocessing is not
unique to deep RL; it is widely used in machine learning. Generally, data preprocessing is
done for multiple reasons, including:

1. Cleanup: In natural language processing, nonstandard characters are removed from a
sentence.

2. Numerical representation: In natural language processing, we cannot directly
perform computations on alphabetic characters. They have to be encoded as
numbers, such as a 0, 1, 2, . . ., or as continuous word embeddings that can be fed
into a neural network.

3. Standardization: It is common to standardize input data so that each feature has a
similar range and mean. Networks may pay more or less attention to features
depending on their relative scales. Scales can often be arbitrary (e.g., length can be
measured in millimeters or meters), and these arbitrary choices should not affect
learning. Standardization helps prevent this by subtracting the mean and dividing by
the standard deviation for each feature.
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4. Exploration: Often, it is not clear what the best data representation is for a
particular problem. Part of the experimentation workflow involves trying a variety of
preprocessing methods, such as embedding, encoding, grayscaling, downsampling,
and frame concatenation.

14.5.1 Standardization
To standardize a dataset, first compute the overall mean and standard deviation, then
subtract the mean and divide by the standard deviation for every data point. Now, the
overall distribution will center at mean 0 and have a standard deviation of 1. This is shown
in Equation 14.1, with implementation in Code 14.2 (lines 2–6).

Another closely related method is data normalization, which serves to rescale the value
range of each feature in a dataset to between 0 and 1. Given a dataset, for each feature, find
the minimum, maximum, and the range of values, then for every data point, subtract the
minimum and divide by the range. This is shown in Equation 14.2, with implementation
in Code 14.2 (lines 8–15).

xstd =
x− x

σ
(14.1)

xnorm =
x− xmin

xmax − xmin
(14.2)

Code 14.2 Method to standardize a tensor

1 # source: slm_lab/agent/algorithm/math_util.py

2 def standardize(v):

3 '''Method to standardize a rank-1 np array'''

4 assert len(v) > 1, 'Cannot standardize vector of size 1'

5 v_std = (v - v.mean()) / (v.std() + 1e-08)

6 return v_std

7

8 def normalize(v):

9 '''Method to normalize a rank-1 np array'''

10 v_min = v.min()

11 v_max = v.max()

12 v_range = v_max - v_min

13 v_range += 1e-08 # division guard

14 v_norm = (v - v_min) / v_range

15 return v_norm

Methods in Code 14.2 work only for offline data. In RL, data is generated
online—that is, produced gradually over time via agent interactions with an environment.
Therefore, we need an online standardization method for states. An implementation of
online standardization can be found in SLM Lab at slm_lab/env/wrapper.py.
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These are effective and commonly used techniques. However, it is important to first
sense-check that no crucial information will be lost in the process. Let’s illustrate this with
an example.

Consider an environment with a large domain and fixed features at specific locations,
such as the map in Dota 2. The terrain and crucial game objects are fixed at certain
locations. Suppose during training an agent only sees standardized location coordinates.
Since the map is large, chances are the agent will only manage to explore a small part of it.
This means its standardized data will only represent that specific small patch of the map. If
the agent is placed in an unexplored area, the range or standard deviation of the data will
suddenly change. This may result in an anomalous data point with extreme values after
standardization; even more problematically, it may shift the values that the previously seen
states map to, thereby changing their meaning. If standardization or normalization helps,
but global information is also needed, we can supply both raw and processed data to the
agent. In OpenAI Five’s agent architecture, absolute position on the map is used as one of
the inputs [104].

To summarize, standardization and normalization are extremely useful methods for
cleaning up datasets. They can be beneficial for training, but should be applied with care.
Information about relative changes is transformed and retained, but absolute global
information may be lost. When considering these methods, it helps to have a deep
understanding of the dataset and the information required for the task.

14.5.2 Image Preprocessing
A colored digital image typically comes in three color channels, abbreviated RGB for
Red, Green, Blue. This decomposes an image into three two-dimensional slices, where
each value in a slice represents intensity (brightness). Each slice is therefore the intensity of
the image in one of the color channels. When the 2D slices are stacked together, they
form a 3D tensor. Each pixel will be rendered as the combination of its intensities in all
three base color channels. On a modern LCD screen, every physical pixel is actually three
tiny red, green, and blue light diodes crammed closely together; from far away, we see
colorful images without ever noticing these diodes.

Having colored channels means having three sets of values for an image, which require
three times as much storage compared to a monochromatic image. We can map each color
pixel’s three values to a single scalar, using a weighted sum. This is called grayscaling, and
the resultant image is a 2D tensor that consumes three times less memory storage than the
original. The color weights need to be chosen carefully so as not to cause a color hashing
conflict. Fortunately, standard computer vision libraries have built-in methods with robust
coefficients for grayscaling.

Even after grayscaling, a modern digital image still has a high resolution. This translates
to a lot of pixels per image—usually more than necessary for learning purposes. We
need to downsize the image to reduce the number of values in the tensor, so that there are
fewer elements to store and compute. This is called downsampling or “resizing.” The
problem with downsampling is that it blurs an image and loses some information. There
are many downsampling algorithms that blur images in different ways.
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Sometimes, only a part of an image is useful. The irrelevant parts, usually the border,
can be discarded to further reduce the number of pixels. This is typically done with image
cropping. For some Atari games, the top or bottom part displays game scores; these do not
directly relate to the game state so they can be cropped off, although it is harmless to keep
them in.

Finally, the pixel intensity of an image is an integer with 256 distinct values in the range
0–255. It is a common practice to perform image normalization by typecasting it into a float
tensor, then dividing it, element-wise, by the range 255.0. The final image tensor will thus
have values in the range 0.0–1.0.

All these image preprocessing methods can be combined. For efficiency, apply them in
the following order: grayscaling, downsampling, cropping, and image normalization.
Code 14.3 shows the implementations for these image preprocessing methods, along with
some combinations, in SLM Lab.

Code 14.3 Image preprocessing methods in SLM Lab

1 # source: slm_lab/lib/util.py

2 import cv2

3 import numpy as np

4

5 def to_opencv_image(im):

6 '''Convert to OpenCV image shape h,w,c'''

7 shape = im.shape

8 if len(shape) == 3 and shape[0] < shape[-1]:

9 return im.transpose(1, 2, 0)

10 else:

11 return im

12

13 def to_pytorch_image(im):

14 '''Convert to PyTorch image shape c,h,w'''

15 shape = im.shape

16 if len(shape) == 3 and shape[-1] < shape[0]:

17 return im.transpose(2, 0, 1)

18 else:

19 return im

20

21 def crop_image(im):

22 '''Crop away the unused top-bottom game borders of Atari'''

23 return im[18:102, :]

24

25 def grayscale_image(im):

26 return cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)

27

28 def resize_image(im, w_h):
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29 return cv2.resize(im, w_h, interpolation=cv2.INTER_AREA)

30

31 def normalize_image(im):

32 '''Normalizing image by dividing max value 255'''

33 return np.divide(im, 255.0)

34

35 def preprocess_image(im):

36 '''

37 Image preprocessing using OpenAI Baselines method: grayscale, resize

38 This resize uses stretching instead of cropping

39 '''

40 im = to_opencv_image(im)

41 im = grayscale_image(im)

42 im = resize_image(im, (84, 84))

43 im = np.expand_dims(im, 0)

44 return im

14.5.3 Temporal Preprocessing
Temporal preprocessing is used to restore or accentuate multistep temporal information
that is otherwise impossible or difficult to notice from a single frame.

Two effective temporal preprocessing methods are frame concatenation and frame stacking.
These are used to include multistep information, such as the motion of objects in Atari
Pong and the temporal ordering of sequential changes.

Concatenation and stacking can be used with any nonrecurrent networks. Suppose state
sk is a state that is input to a network without any concatenation/stacking. Collect a total
of c frames, where c is the concatenation/stack length, and combine them into a single
tensor using concatenation (e.g., np.concatenate) or stacking (e.g., np.stack [143]).

The preprocessed state is then passed as input to a network. Note that since the new
input has a different shape, the network’s input layer needs to be modified accordingly to
handle it. With training, the network will learn to view the slots in the preprocessed input
as representing temporal ordering—that is, the first frame preceding the second, and so on.

The difference between the two methods is the shape of the resulting output.
Concatenation retains the tensor rank but extends the length in the combined dimension.
For example, concatenating four vectors produces a vector with four times the length of
the original. Concatenation is usually done for nonimage states, so they can be easily be
fed into a plain multilayer perceptron network with appropriately extended input layer.

In contrast, stacking increases the tensor rank by 1 but retains the shape of the
underlying tensors. It is equivalent to organizing a sequence of states into a list. For
instance, stacking four grayscale images (2D tensors) produces a 3D tensor. This is similar
to an image with four channels, only now the channels correspond not to RGB colors but
to temporal positions. Stacking is usually done for grayscaled image states, and the
preprocessed 3D tensor is fed to a convolutional network as an image with four channels.
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State concatenation and stacking can also be combined with other preprocessing
methods. For example, we can first preprocess images using methods from Code 14.3,
then stack them together. This is commonly done for the Atari environments.
Frame skipping is a temporal preprocessing method that changes the effective frame rate.

For example, a frame skip of 4 will only render one of every four frames in a video and
discard the rest. It is a form of downsampling for temporal data.

Frame skipping is most commonly done for video games. A video is shown on a screen
by rapidly rendering a series of images in succession. This rendering frequency is called a
frame rate, such as 60 frames per second (FPS) for modern video games. When the frame
rate is higher than a human’s visual response time (roughly 10 FPS), we stop seeing a
sequence of static images and perceive a continuous motion video. A high frame rate is
needed to make a video smooth, which translates to a lot of images in a short amount of
time. This is why movie files are typically huge.

If we lay out all the images that make up a video, there will be a lot of them—more
than is needed for an agent to learn a good policy. Most of the images will contain changes
that are too small to be meaningful—which is good for making a video smooth, but
unhelpful for learning. A learning agent needs to perceive meaningful differences between
frames. What’s worse, processing all the images would be very computationally expensive
and wasteful.

Frame skipping addresses the problem of redundancy in a high-FPS video by skipping
most of the images. Given a frame skip frequency of 4 for example, we will only render
every fourth frame and discard all the images in between. This will also speed up the
environment considerably because it consumes less computing resources for rendering.
This has become common practice for the Atari games, ever since it was proposed in the
original DQN paper [89], to create an effective frame rate of 15 FPS. The same method
can be applied to other videos as well, although the frame skipping frequency needs to be
chosen appropriately for each environment.

Generalizing, frame skipping is not limited to videos; it can also be applied to any form
of temporal data with an equivalent notion of frame rate. Examples include the stock
market signals, audio data, object vibrations, and so on. Reducing the sampling rate is
essentially a temporal downsampling method.

Although effective, frame skipping is not without its issues. Video games usually have
blinking elements such as character animation in classic Mario, or the bricks in Atari
Breakout. If the frame skip frequency unfortunately matches the blink rate of these
elements, they will not animate properly—or, worse, they will not show at all if we only
get the frames when these blinking elements turn dark. We can thus lose some crucial
information.

One workaround is to take the consecutive frames between skips and select the
maximum value (maximum brightness) per pixel. This adds extra computing cost to
process the originally skipped data, so it may slow things down. Furthermore, it assumes
that we are interested in the bright elements, but some games use a negative color scheme,
so the crucial game elements are dark instead. In this case, we would need to select the
minimum pixel values.
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A simpler solution for the problem caused by regular frame skipping is to do it
stochastically. To illustrate, let’s look at a stochastic frame skip of 4. To do this, we produce
and cache the next four frames, then randomly select one of them to render and discard
the rest. The downside of this method is that it introduces stochasticity with random frame
lags—which may be fine for many problems, but not all. If an environment requires a
frame-perfect strategy to solve, this preprocessing method will jeopardize it. Frame-perfect
strategies do actually exists in competitive gaming; simply look up the world record in
Super Mario Bros speedrun to see how the best human record holders play by acting at
precise frames to achieve specific tasks.

Overall, there is no one ideal frame skipping method generally applicable to all
problems. Every environment and dataset has its own quirks; we must first understand the
data before choosing a suitable frame skipping method.

Frame skipping can also be applied to actions. When playing a game, humans tend to
observe multiple frames before making an action. This makes sense because we need
enough information before making a deliberate decision. Every game has its own ideal
effective action rate to play—shooting games require fast reflexes, while strategy games
require slower and longer planning. This is commonly measured as actions-per-minute
(APM), with the assumption that the frame rate is constant (e.g., 60Hz). For our
discussion, a more reliable measure is the inverse frames-per-action (FPA), obtained by
dividing the frame rate by APM. Every game has its typical distribution of FPA, with a
fast-paced game having a lower FPA and a slow-pace game having a higher FPA.
Normally, since we act once every multiple frames, FPA should be larger than 1.

When implementing frame skipping for actions, there is one detail to handle. Suppose
an environment has its underlying true frame rate, while state frame skipping produces a
lower effective frame rate. During frame skips, states are perceived at the effective frame rate,
and actions are also applied at the same rate. Relative to the true frames, FPA is equivalent
to the frame skip frequency. Under the hood, the environment steps at the true frame rate,
so every true frame expects a corresponding action, so FPA under the hood is always equal
to 1. Therefore, when skipping frames, the logic for providing actions at the true frame
rate needs to be handled. This is usually done by an environment’s frame skipping logic.

Some environments simply allow for no action at all. In that case, nothing needs to be
done, and we only need to care about supplying actions at the effective frame rate. In other
cases, the environment requires actions at the true frame rate. If the actions do not have a
cumulative effect, one can safely repeat the action on the skipped frames. Mouse clicks in
Dota 2 have this property: it does not matter how many redundant clicks a player makes
before an action is actually executed. However, if actions are cumulative, they may
interfere with one another. For example, throwing a banana in MarioKart [84] is
cumulative: bananas are precious resources that should not be wasted through repeated
actions. A safe option is to supply inactions (idle/null actions) in between skipped frames.

If FPA is too low for a game, an agent becomes hyperactive, and its rapid actions may
compete with each other. It will exhibit a form of Brownian motion—a random walk
averaged over many contributing actions. Even when the state frame skip frequency is
ideal, FPA can still be too low.
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One remedy to make the effective FPA higher is to use action skipping on top of state
frame skipping. To get an effective FPA of 5 on top of state frame skip frequency of 4, an
action has to skip 5 effective frames before it changes. The same methods of constant and
stochastic frame skipping can be reapplied for actions as well. Then, relative to the true
frame rate under the hood, state gets rendered every 4 true frames, and action gets applied
every 5× 4 = 20 true frames.

By analogy, if action skipping addresses agent hyperactivity, then frame skipping for states
addresses agent hypersensitivity. Without frame skipping, an agent will train on states that
vary little, which means it has to be sensitive to small changes. If frame skipping is
suddenly introduced after training, the successive state changes will be too large for the
agent—it will be hypersensitive.

To conclude, frame skipping can be done for states with either constant or stochastic
skipping. This introduces a difference between true and effective frame rates, and the
underlying environment stepping logic may need special handling. Frame skipping can also
be applied to actions.

14.6 Summary
In this chapter, we looked at some important properties of states and the various forms
they can take, such as a vector or an image. We also introduced the distinction between a
raw state and a designed state.

We should consider if the raw state extracted from the world contains the complete set
of information needed to solve the problem. This can then be used to design state
representations which are a set of handpicked information we consider to be useful. There
are a number of important factors when designing a state—most notably their complexity,
completeness, and information loss. For usability, states should have low computational
complexity. We also looked at some potential pitfalls to be aware of so that a state
representation does not lose information crucial for solving a problem.

Finally, we looked at some common methods for preprocessing states such as
standardization for numerical data, downsizing, grayscaling, and normalizing for image
data, and frame-skipping and stacking for temporal data.
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Actions

An action is an output from an agent that changes an environment by causing it to
transition into the next state. A state is perceived; an action is actuated.

Action design is important because it gives an agent the ability to change its
environment. How actions are designed affects whether the control of a system is easy or
hard, and therefore directly impacts the difficulty of the problem. A particular control
design may make sense to one person but not another. Fortunately, there often exist
multiple ways to perform the same action. For example, the transmission of a car can be
controlled manually or automatically, but people usually find automatic transmission easier
to use.

Many of the lessons from Chapter 14 also apply to action design. This chapter is
organized similarly. First, we give some examples of actions and talk about general design
principles. We then consider action completeness and complexity.

15.1 Examples of Actions
Actions are also commonly called “controls” in our daily lives—think a TV remote
control. They can come in various forms, from the familiar to the unexpected. As long as
something can produce changes in an environment, it is considered an action. Game
controllers and musical instruments are some of the most familiar examples of controls.
The physical movements of our body are another one. The movement of a robotic arm
inside a simulation is a virtual action.

On the less familiar side, a voice command to a digital assistant is an action which causes
it to carry out tasks. A cat purring is an action to get attention of its human. A magnetic
field can exert force to act on charged particles. Essentially, actions can come in any form,
as long as it is information that can be transmitted to produce changes in a system.

Real-world environments are often complex, and actions can be as well. For example,
hand manipulation is a complex form of control involving many muscles, precise
coordination, and dexterous responses to an environment. We humans spend many years
learning to master this while growing up. In simulated environments, actions are often
simplified. For example, a robotic hand may have up to tens of degrees of freedom. This is
a far cry from the complexity of a human hand, but it is not necessarily disadvantageous.
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Similar to states, actions can be represented as numbers organized into any suitable data
structures. They need to be designed to properly represent information necessary for an
algorithm to use. This, too, is feature engineering, and can benefit from thoughtful design
principles.

An action a is an element of an action space A which defines all the possible actions an
environment can receive. Actions can be discrete and numbered with integer values, such
as the buttons with floor numbers inside an elevator, or continuous with real values,
such as the gas pedal of a car. They can also be a mixture of discrete and continuous
values, such as a kettle with a power button (discrete) and a temperature knob
(continuous).1 An action can have more than one element (dimension), and each element
may be of any cardinality (discrete or continuous).

For convenience and compatibility with standard computing libraries, actions are also
encoded as tensors with a single data type (int, float). They can come in any ranks and
shapes:

. Scalar (rank-0 tensor): temperature knob

. Vector (rank-1 tensor): piano keys

. Matrix (rank-2 tensor): calculator buttons

It is important to note the distinction between dimension and cardinality. A
temperature knob has only 1 element, and hence 1 dimension, but its value is continuous,
so its cardinality is |R1|. A piano has 88 keys and each can coarsely be considered binary
(pressed or not pressed), so the cardinality of a piano’s action space is 288. The rank and
shape of an action tensor is merely how the elements get arranged into a tensor.

Most controls that we can immediately interact with only have up to rank-2. Control
knobs, telephone, keyboard, and piano are rank-1 tensor actions. A DJ’s music synthesizer
and a smartphone’s multitouch are rank-2 tensors, as is a shower knob, where usually there
is one handle that can be tilted to control the water volume and rotated to control the
water temperature.

Rank-3 tensor actions are less common but not completely absent. One example is a
virtual reality controller that allows motion-capture in 3D space. Or, imagine a warehouse
with many lockers positioned in a 3D grid, their doors controllable through a computer,
so these virtual lock/unlock buttons form a 3D layout.

An action can also be a combination of tensors. A kettle can be controlled with a
button that can be pressed to turn it on and a dial to set the temperature. A DJ controller is
an example with a rich set of buttons, dials, sliders, and rotating platters. A computer game
typically requires combined outputs, such as keyboard presses and mouse movements.
Driving a car also involves a lot of controls such as a gas pedal, break, steering wheel, gear
shift, light indicator, and so on.

1. We can argue that everything in the real world is actually discrete with some minimum granularity, but we
choose to conceptually treat certain things as continuous regardless.
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When actions are represented with multiple differently shaped tensors, this requires a
neural network to have separate output layers. These distinct tensors are considered as
subactions, which together form a combined action.

Even though an agent produces actions, they are defined by the environment that
determines which actions are valid. An agent has to accept the states and actions as defined
by the environment, although it can choose to preprocess them for its own usage, as long
as the inputs to the environment have the correct final format.

There are, broadly, three ways to design actions—singular, singular-combination, or
multiple. Let’s look at some examples.

In simple environments, control is normally singular. The action is a rank-0 tensor
(scalar), so an agent can only do one thing at a time. In CartPole, the available actions are
to move either left or right, but an agent can only choose one option at a time.

However, this is not always the case. The retro Atari game controller supports action
combinations, for example a button press to shoot and a joystick flip to move in a game.
When designing an environment, these combinations can be implemented by making
them appear as a single action to an agent. This can be described as a singular combination.
Practically, this is achieved by fully enumerating all the possible combinations and mapping
them to a list of integers. This design makes it easier to construct a policy network since
only one output layer is needed. At each time step, an agent would pick one of the
integers to perform. When the integer gets passed into an environment, it gets mapped
back to the button-joystick combination.

Sometimes, singular combinations make the control problem harder. This happens
when the set of combinations is too big. In robotics, agents often need to simultaneously
control multiple torques or joint angles. These are represented as distinct real numbers.
Fully enumerating these combinations requires an unnecessarily large set of numbers.
In these cases, we keep the dimensions separate so that an action consists of multiple
subactions, one for each dimension.

Actions in RL are designed mainly for machines or software to use—but we can still
take inspiration from the variety and ingenuity of controls designed for humans. A number
of examples are given in Section 15.5. The core design principle to take from these is that
a control should be familiar and intuitive to users, since it helps them understand the
effects of their actions better. For both hardware and software control design, it is helpful if
the control is easy to understand and thus more straightforward to debug. Also, if a control
is intuitive, software can potentially hand off control to a trained human for a manual
override. This feature is particularly useful in autopilot systems, self-driving cars, and
factory machines.

We as humans control a lot of things in our daily lives—these can serve as both good
and bad examples of action design. In general, control design falls under the broader
category of user interface (UI), which pertains to the designing of interactions between a
user and a system. Good user interfaces should be effective and easy to use. Poorly
designed controls can make a task harder, more error-prone, and sometimes dangerous.
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15.2 Action Completeness
When constructing an action space we need to ensure that it provides sufficiently diverse
and precise control to solve a problem—that it is complete. Does it allow us to control
everything we need to control?

A useful starting point is to consider what we as humans would use to control a system
to solve a problem. Then, consider what degree of precision and range of control is
required. For example, industrial robots may need controls that are precise to within a
fraction of a degree but do not need to move very far, whereas a human steering a car
needs precision to only a few degrees, but cars need to be able to travel large distances.

We can take inspiration from humans—for example, by looking at video game
design—when deciding what needs to be controlled. However, how an agent controls a
system may be very different. For example, a machine can control multiple things
simultaneously and very precisely—something humans find hard to do. We just gave an
example of how humans and agents might control a robotics system differently.

Video games have some of the best and richest control designs. This is not that
surprising given the variety of games that exist and how many of them mimic real-world
scenarios. Typically, the control design process goes like this.

First, from the game dynamics, identify the elements that need to be controllable for a
player to achieve an objective. It helps to have a theoretical model of the game, usually in
the form of a flowchart describing all the game scenarios. Perform a sanity check to ensure
that the identified elements and their intended actions are correct, at least in theory. This
ensures that the actions are completely specified. Once the elements have been identified,
figure out the ways to control them. If the game mimics reality, this should be relatively
straightforward as the controls can also mimic their real-life counterparts. Otherwise, there
is some designing to do.

If the control design is feasible, the next factors to consider are intuitiveness and
efficiency. Not only do they help create a good gaming experience, but they also affect the
difficulty of the game. Badly designed interfaces can make a task much harder than it
should be. A design should strike a balance between conciseness and verbosity. Suppose
there are 100 distinct actions in a game. One could have 100 distinct buttons for each
one—but this is too verbose. One could also have 2 dials with 10 options each, their
combinations mapped to the 100 actions—but this is too concise and unintuitive. If the
actions have a natural categorization scheme—for example, a set of attacks, a set of spells,
and a set of motion primitives such as moving left or right—then it is more natural to
divide the controls into these categories. Within each category, one can then use a more
compact design of a few keys, one for each element in the category.

Finally, when the control design is done and implemented, a designer needs to test it.
Check if the set of actions achievable with the design is indeed complete by comparing
and verifying them with the theoretical schema used for the implementation. Next, write
a set of unit tests. Verify that it actually works and does not crash the game. Often, unit
tests also check that the output values are within the prescribed range, because extreme
values may cause unexpected behaviors. To verify action completeness, check that the
design does not miss any necessary actions or produce extraneous actions that were not
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originally intended. Usually, the entire design and testing process goes through several
iterations, improving and fine-tuning the design until it is acceptable for release.

The same process used in game design can also be useful and relevant for nongaming
applications. It involves asking several questions. First, given an environment, what do we
want an agent to do? This is largely answered when the objective of the environment is
defined, and it helps provide a direction for listing a complete set of actions. Second, how
can the environment be affected by the agent? What are the elements an agent should
control? What about the elements an agent cannot control? These pertain to identifying the
categories of actions that should exist. Third, how would an agent control them? This
determines the possible design schemas for the identified actions and suggests how actions
can be encoded intuitively and effectively. The implemented control design should then be
tested similarly.

Take an example from robotics. Suppose the task is to pick up an object. A robotic arm
has three axes of motion, thus an action would have three dimensions, one for each axis.
The arm can move freely toward an object, but it does not have a way to pick it up. This
action design is incomplete—it cannot perform the task. To fix this, we can attach a
gripper to the end of the arm to pick things up. The final working control has four
dimensions: three to move the arm and one for the gripper. Now the robotic arm can
perform a complete set of intended actions to achieve its objective.

Suppose we wish to create an interface for controlling the robotic arm. What would be
a good design? How might the interface differ if a machine or a human were controlling
the robot? One option is for the actions to be represented as four numbers, corresponding
to the three axes and one gripper. This is the easiest design for a machine to control.
However, this would not be very intuitive or easy for a human. They would have to first
become familiar with how the numbers map to the actual states of the robotic arm, not to
mention typing the individual numbers would be quite slow. A better design for a human
would include three turnable dials, mapped to the rotation of the axes, and one slider that
tightens and releases the gripper.

After deciding on an action design, we can identify the appropriate data types to
encode an action with the right ranges. If a control dimension is discrete, it can be turned
into a button or a discrete dial, and correspondingly be encoded as an integer. If a control
dimension is continuous, it can be turned into a continuous dial or a slider, and be
encoded as a real number.

It is important to strike a balance between conciseness and the expressiveness of an
action space design. If it is too small, an agent may not be able to control a system precisely
enough. In the worst case, it will not be capable of performing the desired task at all. If the
action space is too large or too complex, learning to control the system becomes much
harder. In the next section we look at some techniques to manage action complexity.

15.3 Action Complexity
Let’s now discuss a number of strategies for dealing with action complexities. These
strategies include combining or splitting actions, using relative actions, discretizing
continuous actions, and taking advantage of invariance in an environment.



ptg33646662

320 Chapter 15 Actions

One of the ways that humans deal with complex control is by combining low-level
actions into a single high-level action.

A piano has 88 keys; to master it takes a lifetime of practice. Even with that many keys
to control, when playing we do not focus on one key at a time because our brains lack the
capacity to do so. Focusing on individual keys independently is also inefficient—it is much
easier to organize sequences of keys into larger patterns. Piano music is written and played
in chords, scales, and intervals.

Computer games such as Dota 2 and StarCraft have a lot of components and a vast
strategy space; learning to play such a game at professional level takes many years of screen
time. A game typically has many command keys to control units and their actions. Skilled
players don’t play at the level of individual actions; instead, they make use of command
hotkeys, key combinations, and repeatable macro strategies. With practice, these get
encoded into their muscle memory as they find more shortcuts to reduce the action
complexity by reorganizing actions into higher-level patterns.

Effectively, forming higher-level patterns is equivalent to creating a control scheme
using the original controls—just as chords are simpler control schemes composed from
individual piano keys. This technique is a form of meta control, and humans do it all the
time. Presently, we do not yet know how to make RL agents autonomously design their
own control schemes. Therefore, we have to do the meta control for them—we put
ourselves in their shoes and design these patterns from our perspective.

Sometimes, actions can be represented more simply as combinations of multiple
subactions instead of a single complex action.

For example, consider a shooting game in which a player aims on a screen of 84 by 84
pixels. When designing the “aim” action, we have a choice to represent it in 1D or 2D.
Sampling an action in 2D will draw from two distributions, each with a cardinality of 84.
If this is bijected into 1D, it will have a cardinality of 84× 84 = 7096 instead. In this case,
sampling an action from 1D will draw from a single distribution that is very wide and
sparse. Sparsity can complicate agent exploration and artificially make the problem even
harder. Imagine being given a row of 7,096 distinct buttons to choose from—a player is
likely to end up learning and using just a few while ignoring the rest. Sampling from 2D is
much more manageable in comparison.

If a problem’s natural control has multiple dimensions, such as a chess board or a game
console, we need to find a balance between conciseness and verbosity when designing its
action. We can either keep all the dimensions distinct or biject all of them into one
dimension. Having too many dimensions increases the complexity of control, since an
agent would have to explore and learn to control these separate subactions in one action.
However, we also saw how splitting actions into multiple dimension can be an effective
way to reduce the cardinality of the action space.

As a general guideline, things such as key combinations are better encoded as unique
actions because it makes them easier to discover, especially if a combination involves a long
chain of subactions.

We also saw that the Atari game controller can be bijected into an 1D vector mapped to
all the possible button-joystick combinations.
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Doing so may help in some scenarios, but it is not always beneficial—as we saw in the
chess example where reducing the piece movements from 2D to 1D can make the game
much harder. In other cases, bijection to 1D blows up the action space so much that it is
simply impractical. If we take the full screen resolution from a modern video game with
1920× 1080 pixels and biject it to 1D, this has a cardinality of 2,073,600.

A rule of thumb is to consider the sparsity and the information loss when bijecting a
control to a lower dimension than the original. If bijection loses some crucial information
or metainformation, such as the spatiality of the control, we should avoid that. Since
bijecting to a lower dimension also increases its cardinality, the control sampling from that
dimension will suddenly become very sparse.

Another factor to consider when it comes to complexity reduction is that of absolute
versus relative control. In Dota 2, an agent can control many units over a vast game map.
When designing the control to move units around, using the absolute x, y coordinates
makes the problem quite impossible to solve, simply because the map is huge. A better
control design is to allow the agent to first select a unit, get its current position, then
choose a limited relative x, y offset to apply to it. This was used by the OpenAI Dota 2
agent [104] to reduce the cardinality of movement actions by orders of magnitude. It is also
applicable to any action dimensions which are huge but have a natural ordering of values,
such as a scale of values. Using a relative scale can shrink the cardinality of an action space
by so much that it makes an intractable problem more approachable.

An advantage of this approach is that the relative x, y offset on a unit is applicable
wherever it is, so this control design has translational symmetry. As soon as an agent learns
to apply a useful movement maneuver, it can apply it to a unit anywhere on the map.
When the same maneuver is combined with other subactions under different scenarios,
they effectively become composable, and we get diverse actions for free by learning
multiple simpler subactions.

More importantly, relative control is possible only because of the nature of the
problem—locality. Since the movement control of a unit is only relevant to its
neighborhood, moving the unit is a local problem and relative control can be used. Its
disadvantage, however, is that it is blind to any global strategies tied to the terrain and map
which are nonlocal. To solve the nonlocal aspect of a problem, global context and
additional information must be restored.

To simplify continuous control, it can be discretized. When discretizing a continuous
space, we need to think about the resolution of dividing the space—that is, how large is
the “pixel” when the continuous space is forced into a grid. If it is too coarse, the agent
will struggle to provide a faithful approximation; if it is too fine, the problem may become
computationally intractable. Discretization must be done with care so as to not produce an
action space with too high cardinality.

Another potential issue is the introduction of artificial boundaries in an otherwise
continuous space. Suppose a continuous action with the range 0 to 2 is discretized into
integers 0, 1, 2. Then, is it justified enough that the value 1.5 gets discretized to 2 by
rounding up? If the resolution used for discretization is too coarse, we risk losing some
precision and sensitivity in the discretized actions.
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We humans use our intuition about a problem and our adaptivity to learn, test, and
adjust the sensitivity of our controls to achieve balance between precision and efficiency.
We understand how large the temperature increment in a thermostat should be, or how
sensitive the volume knob on a speaker. Another major difference between machines and
humans is reaction time. Machines can act extremely fast, so we may need to rate limit an
agent to act once every N time steps to prevent it from becoming hyperactive. Otherwise,
rapidly changing actions—counteracting the effects of preceding actions in a short time
scale—may make the overall action random and jittery. Atari games are typically sampled
with a frame skip of 4, so that a given action is repeated for all the skipped frames when
stepping through the true game frames internally. We can also imagine letting an agent
adaptively choose its ideal frame skip frequency by judging on the scenario. Humans
already do this—for instance, when we speed up a Tetris game when we are ready to
rapidly drop a block.

One of the most useful complexity reduction techniques, generally applicable to actions
and states, is reducing by symmetry. For chess, an agent does not have to learn to play both
sides separately. If it is in the position of the second player, it only needs to rotate the board
(with absolute coordinates) and apply the same learned policy. This way, no matter which
side the agent is on, it uses the same standardized coordinates to play. Symmetries can be
spatial or temporal. Common types of symmetry include translational, rotational,
reflectional, helical (rotation plus shift), and so on; all of them can be described as
functional transformations. Once identified, transformations can be applied to states and
actions to reduce the cardinalities of state and action spaces by orders of magnitude.

Quite notably in RL, there is often an asymmetric relationship between states and
actions. The state space is usually much bigger and more complex than the action space.
State tensors typically have more elements than action tensors, and often exhibit a greater
range of variability. For instance, an Atari Pong image state (after preprocessing) has
84× 84 = 7096 pixels, and each pixel can take one of 256 values, making the cardinality
of the state space 2567096. In contrast, the action has one dimension and can take one of
four values, so the cardinality of the action space2 is 41 = 4.

When the state space is large with huge variations and the action space is small in
comparison, an agent needs to learn a many-to-one function in which many states are
mapped to the same action. This larger state space contains a lot of information to help
select within the relatively small set of actions. In contrast, if the opposite were true, then a
network would need to learn a one-to-many function in which one state maps to many
potential actions—in this scenario, there may not be sufficient information supplied by a
state to choose between actions.

Suppose a state tensor s carries ns bits of information and an action tensor a carries na

bits. If correctly determining one action bit requires one bit of information from a state,
then, to fully distinguish between all possible values of a, we need at least ns = na. If
ns < na, we will not be able do this, so some values of a will be underspecified.

2. The Pong actions in OpenAI Gym are: 0 (no-op), 1 (fire), 2 (up), and 3 (down).
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For Atari Pong, the task of generating one out of four possible action values given a
large state space is well determined, and there is sufficient information in states for an
algorithm to learn a good policy. Imagine a reversed setup where the task is to produce an
image given only one out of four possible action values. Generating the full variety of
images we experience when playing Pong would then be hard to do.

Finally, when approaching a new problem, start with the simplest action design (the
same goes for state). It is helpful for the first action design to be restricted so we can focus
on the simplest aspects of the problem. Simplified problems can be very useful for building
up a solution gradually. If the initial design looks promising and an agent can learn to solve
the simplified version, then complexity can be introduced gradually to make the problem
more realistic and closer to the complete version. Along the way, gradual design
progression will also help us understand more about the nature of the problem and how an
agent is learning to solve it.

The methods for reducing complexity are mostly relevant to actions, but they may also
be applied to states when suitable. To summarize, here are our guidelines for dealing with
complexity in action design:

1. Biject to lower dimensions, or split to more dimensions: Biject actions to 1D
to help discover complex subaction combinations; split action dimensions to manage
cardinality.

2. Switch between absolute and relative: Simplify by taking advantage of a relative
scale for local controls; use absolute scale for global controls.

3. Discretize: Try to stay close to the original nature of a control, but discretize to
simplify while making sure the resolution is sufficient.

4. Reduce by symmetry: Try to find symmetry in actions and apply it to reduce the
action space.

5. Check state-to-action-size ratio: As a sanity check, the action space should not
be more complex than the state space; generally, it should be significantly smaller.

6. Start simple: Start from the simplest action design, then gradually add complexity.

15.4 Summary
This chapter started with control design for humans as a source of inspiration and
compared it with action design for agents. We also considered the completeness
and complexity of actions. In particular, good action design should allow agents to
efficiently control all the relevant components in an environment and not make the
problem unnecessarily hard. Finally, we gave a set of tips to reduce complexity in action
design.
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15.5 Further Reading: Action Design in
Everyday Things

This section contains a whimsical collection of interesting action designs for humans and is
intended to be a source of inspiration.

Action design for humans, more commonly referred to as user interface (UI) design, is
a vast and diverse discipline spanning many domains from industrial product design to
gaming and, more recently, web and app design. Although the term was coined more
recently, interface design has existed throughout the history of humanity, from the first
prehistoric stone axe our ancestors made to the smartphones we hold today. It has always
influenced how we interact with our environments. For inspiration on good interface
design, look no further than musical instruments and games that are ubiquitous in human
societies.

Musical instruments are essentially control devices which interact with air to produce
rich states in the form of sound through plucking, blowing, or hammering, They need to
be meticulously crafted and carefully tuned to produce good sounds. Besides the sound
quality, the maker of an instrument also needs to think about the users—for example, their
hand size, strength, and finger span all matter. But the instruments are only as good as their
users. A top class violinist would play a basic modern violin better than a beginner would
play the best Stradivarius (violins made in the 1700s by the Stradivari family and still
considered the best in the world) whereas a brilliant musician on such an instrument can
produce breathtaking music of great emotion and virtuosity.

Consider classical keyboard instruments which produce sound through a column of air
(organ), a plucked string (harpsichord), or a hammered one (piano). Various organ stops,
harpsichord registrations, and piano pedals also alter the sound together with the precise
touch applied to the keyboard. We have seen that an action for a piano can be simplified to
88 integers. However, this is not sufficient to train a robot to properly play a piano
mechanically. In reality, each piano key can be played with varying pressure to create a
piano (soft) or a forte (loud) note. Additionally, to modify sound, a piano has three foot
pedals: soft, sostenuto, and a damper. Its controls interact in complex ways to produce rich
notes, so modeling the actions and the states (sounds) a piano produces would be a difficult
task. Nonetheless, this is possible and has already been done with digital pianos, although
they still sound different from real ones. To train a piano-playing robot, a first attempt
could be to repurpose the software of a digital piano into a virtual environment for
training before letting the robot train on (and potentially wreck) an expensive piano.

New musical instruments are still being invented. Modern musical genres such as
electronic dance music and techno are known for breaking the mold and creating new
sounds with the help of modern technology. Among these newly created instruments, one
notable example is a new type of keyboard known as the Seaboard [116]. It evolves the
piano into the realm of continuous control. Instead of having disjoint keys, the Seaboard
has a single wavy surface which resembles the contour of a piano’s layout. Touching any
point on the surface will produce a sound from one of its many software presets (guitar,
strings, etc.). Furthermore, its responsive surface recognizes five dimensions of touch:
strike, press, lift, glide, slide. To accommodate these new control dimensions, the Seaboard
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maker, ROLI, also introduced new notations for its sheet music. Overall, with a
two-dimensional surface, five dimensions of touch, and one more for sound presets, this
instrument effectively has eight dimensions: seven continuous and one discrete. To get a
glimpse of it in action, check out some of the videos on YouTube or on its website
https://roli.com/products/blocks/seaboard-block.

One other great source of inspiration for control design is games. Games have been
present in human societies for a long time, growing together with the available technology.
Every generation of games has their own medium, design challenges, and innovations, and
reflects the technology of its own era. When wood tiling became commonplace, the
Chinese created dominoes. With the availability of paper, playing cards could be made.
Pre-computer-era games have physical game pieces to control or interact with, such as
tiles, cards, dices, chess pieces, marbles, sticks, and so on.

During the early computing age, electronic games were popularized by arcade
machines, most notably Atari and Sega. These machines render images on a screen, which
correspond to the states in RL. Their controls are physical buttons and a joystick, which
correspond to the actions. Arcade designers not only had to design the games—they also
had to create the necessary control interfaces that suited them. Sometimes, this meant
inventing an entirely new control interface besides the usual joystick and buttons. An
arcade center these days still showcases many of these early innovations. Shooting games
have plastic guns or joysticks which can aim at targets on screen and shoot. Some
ride-and-shoot games such as the Jurassic Park 1994 Sega additionally have motion seats
that move when players are chased by dinosaurs on screen. A typical driving arcade
machine has a steering wheel, foot pedals, and a gear shift. Dance Dance Revolution has a
floor mat which players can step on to match the rhythmic arrows on screen to the music.
Other arcade machines have unique controls made specifically for their games, such as a
bow-and-arrow, hammer, claw machine, and so on.

The portability of electronic gaming technology gave rise to console games. Most of
these consoles inherited controls from their predecessors, with two buttons, but the
joystick from arcade games was replaced by four distinct arrow buttons. As console games
became popular, makers such as Sony and Nintendo started introducing new control units
to their devices to give the familiar forms we see today—four buttons on each side, with
the additional left/right buttons in the upper corner. Modern console systems today, such
as PSP and Xbox, include a joystick to bring back richer directional control. More
advanced consoles such as the Wii and Nintendo Switch also feature gyroscopic controls
that detect movement in 3D space.

When personal computers became mainstream, computer games also proliferated, and
control design quickly expanded to the keyboard and mouse. Simpler games typically use
the arrow keys along with two other keys to mimic the joystick and two buttons from
early consoles. The inclusion of mouse movement and click opened up new possibilities,
such as camera panning on top of player movements. This made for more intuitive
first-person shooter games—such as Doom where the arrow keys are used to move the
player around and the mouse is used to pan the camera, aim, and shoot. As games grew
more complex, so did their actions. Multiple keys could be pressed in combination to
produce new combo moves. Actions could also be overloaded depending on the game

https://roli.com/products/blocks/seaboard-block
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context. In StarCraft and Dota 2, there are tens to hundreds of objects to control, but
humans only have so many fingers. Therefore, the game controls are designed to be
generic and applicable across different game contexts and objects. Even then, playing any
of these games requires nearly twenty distinct keys. Translating these complex control
systems into RL environments is challenging.

The invention of smartphones created another new media for games, and the mobile
gaming industry was born. Game states and controls moved to a small touch screen where
designers are free to create whatever virtual interfaces they desire. Some smartphones also
include gyroscopic sensors, which car racing games take advantage of by treating the entire
smartphone as a steering wheel.

Now, we are at a new frontier of entertainment technology: virtual reality (VR).
Primitive motion controllers have already been designed to allow users to perform actions
inside an immersive spatial environment. VR platforms such as Oculus [97] and HTC
Vive [55] use handheld consoles with motion sensors. They can also use a Leap
Motion [69] vision-based sensor to track hand and finger movements for a more intricate
and intuitive control experience. VR gloves are another option for hand tracking. These
VR controllers can be used to create and manipulate virtual objects in space. Artists also
use them to create stunning 3D virtual sculptures not possible in the real world. The
sculptures are viewable by others through a screen or a headset that connects to the same
virtual reality.

Another truly impressive but lesser known control technology is the neural interface
wristband by CTRL-Labs [29]. This is a noninvasive wristband that detects the neural
signals sent from a user’s brain to the hand, then reconstructs the corresponding hand and
finger movements using those signals. This sounds straight out of science fiction, but they
have demonstrated the wristband by using it to play Atari Asteroid. At the time of writing,
the wristband is still in active development.

Apart from music and gaming, many more creative control designs can be found at
interactive modern art installations. Actions are conveyed through unusual means to trigger
these installations using shadow, light, motion gestures, or sound. Artist Daniel Rozin [31]
specializes in creating interactive mirrors that use materials such as black and white tiles,
troll dolls, or toy penguins which rotate on a large grid. These objects are essentially the
“pixels” of a physical “screen.”A nearby infrared camera captures a person’s silhouette, then
reflects it back to them on the grid like a mirror. In this creative example, a person’s
moving silhouette is used as an action to control a grid of cute and colorful toys.

Last but not least, common daily objects we interact with are also full of design
inspirations for actions. We are used to the typical control interfaces such as buttons, dials,
sliders, switches, and levers. These are usually mechanical, although virtual interfaces tend
to mimic them as well. As an in-depth reading about control interface design, we highly
recommend the book The Design of Everyday Things by Donald Norman [94].
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This short chapter looks at reward design. We discuss the role of rewards in an RL problem
and some important design choices. In particular, we consider the scale, magnitude,
frequency, and potential for exploitation when designing a reward signal. The chapter ends
with a set of simple design guidelines.

16.1 The Role of Rewards
Reward signals define the objective that an agent should maximize. A reward is a scalar
from an environment assigning credit to a particular transition s, a, s′ that has happened
due to an agent’s action a.

Reward design is one of the fundamental problems in RL, and it is known to be
difficult for several reasons. First, it takes deep knowledge of the environment to have an
intuition about proper credit assignment—that is, judging which transitions are good
(positive reward), neutral (zero reward), or bad (negative reward). Even if we have decided
on the sign of a reward, we still need to choose its magnitude.

If one transition is assigned a reward of +1 and another is assigned a reward of +10, we
can roughly say that the latter is 10 times more important. However, it is often unclear
how these scales should be determined. Since an agent that learns by using rewards as its
reinforcing signal takes them quite literally, reward design must be literal as well.
Furthermore, an agent may learn to abuse a reward by finding an unexpected strategy to
exploit it without producing the intended behavior. As a result, reward design may need
frequent tuning—and thus a lot of manual effort—to get the agent to behave correctly.

Humans tend to have an intuitive sense when it comes to judging if their actions
contribute to an objective. This kind of implicit credit-assignment ability is built from
experience and knowledge. It is a good starting point for designing rewards to encourage
agent behaviors.

Reward is the feedback signal to inform an agent how well or badly it is doing. An
agent typically learns from scratch without any prior knowledge or common sense, so
there are very few constraints on the actions that it explores. A reward signal which grades
only a task’s outcome but not how the task was performed does not constrain the kinds of
behaviors the agent can exhibit, no matter how weird they may be. This is because a
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solution to a problem is often not unique—there exist many paths to multiple solutions.
From a human viewpoint, however, these weird behaviors are not desirable and are
considered buggy.

We can attempt to fix this by placing some constraints on the agent. However, even
serious restrictions on the freedom of action may not be enough. Consider how our
muscular constraints help us learn to walk optimally—but we can also walk strangely if we
want to. The alternative is reward design. In the same way as humans can walk properly or
strangely depending on their objective at the moment, we can design rewards to encourage
the desired behavior of an agent—at least in theory. If we were to faithfully reproduce the
proper reward signal for human-like walking, we can imagine it being quite complex given
how many components have to function properly to achieve this task.

To design a good reward signal, we need to identify which behaviors are desired, then
assign rewards to them accordingly—all while being careful to not exclude other possible
good actions. Then, test and evaluate agents to check that the reward signal we designed
was acceptable. For trivial toy problems, this is doable. However, it is unclear if this is
possible or practical for environments that are far more complex.

Regardless, well-designed reward signals for specific tasks can still take us pretty far.
This was demonstrated by recent breakthroughs in RL such as OpenAI’s Dota 2 [104] and
robotic hand manipulation [101]—in which the reward functions were carefully tuned by
humans and agents were able to accomplish impressive results. The reward design was an
important part of successful agent learning. These results suggest that the complexity
threshold at which manual reward design becomes inadmissible is quite high. Here’s a
natural question to ask: is there any problem that we cannot design a good reward signal
for? If the answer is no, then designing a good reward signal will be possible for a task of
any complexity, even though it might be difficult and time-consuming. With that said, let’s
look at some practical reward design guidelines.

16.2 Reward Design Guidelines
A reward signal can be dense or sparse. A sparse reward is one which produces a neutral
reward signal (usually r = 0) for most of the time steps, and a positive and negative reward
only when the environment terminates or the agent does something of crucial importance.
A dense reward is the opposite: it provides a lot of nonneutral reward signals indicating
whether the last action was good or bad, so that in most time steps an agent will receive a
positive or negative reward.

The correspondence of a reward’s value to the notion of good, neutral, or bad is
relative—that is, the numerical scale for rewards is a design choice. This is also why it is
justified to standardize rewards during agent training. One can design an environment
where all the reward values are negative, with bad rewards being more negative than good
rewards. Since an agent always maximizes the objective, reward values still need to be
ordered so that better rewards have higher values.

Although not necessary, it makes good mathematical sense to set neutral rewards to 0,
bad rewards to negative, and good rewards to positive. This design is easy to reason with,
while it also possesses nice mathematical properties. For instance, if the scale of reward is
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centered at 0, one can easily rescale it symmetrically on both the negative and positive
sides by multiplying with a scalar.

Reward is defined as rt = R(s, a, s′), so the first step of reward design is to figure out
what constitutes good or bad transitions within the environment. Since a transition consists
of an action a causing transition from state s to s′, it helps to systematically enumerate all
possible transitions. However, in complex environments there may be too many transitions
to enumerate, so we need smarter reward design methods.

If possible, classify transitions by rules into good or bad groups, then assign rewards
using these rules. Better still, in many tasks it is possible to simply assign credit based on
the state s′ that is transitioned into without having to consider the preceding action. For
example, CartPole assigns reward of 0.1 for all the states where the pole does not fall over,
regardless of the actions performed to keep it upright. Alternatively, rewards can be given
based only on the action. For example, in OpenAI’s LunarLander environment, each
action of firing the main engine is given a small negative reward as its cost.

Fortunately, rewards are ubiquitous in games, although there they go by a different
name—game score. Score keeping is a universal feature of games because there is always a
winner or tasks to complete. The scores can be provided in an explicit numerical form,
usually displayed on a screen, or in implicit nonnumerical form such as a win/loss
declaration. Once again, we can look to games for inspiration and techniques for reward
design.

The simplest form of reward is a binary win or loss, which we can encode as 1 and 0,
respectively. Chess is one such example. Additionally, when playing multiple rounds of
such a game, the average reward nicely translates to the winning probability. For a
role-playing narrative game, usually there is no score but we can still attach a binary score
for advancing through every stage, so there is an incentive to complete the game.

Another form of reward is a single scalar value that is gradually increased as a player
collects more points. In many games, there are goals to reach, objects to collect, and stages
to pass. Each of these goals or objects is assigned a score. As a game progresses, the score
gets accumulated to an ultimate score that ranks the success of each player. Games with
simple to medium complexity display these cumulative rewards, because it is still practical
to assign scores to all the relevant game elements while making sure their sum reflects the
final game objective correctly.

Lastly, a larger and much more complex game may also track multiple auxiliary game
scores, but these do not necessarily add to the ultimate game objective. Real-time strategy
games like StarCraft and Command & Conquer track scores including buildings, research,
resources, and units, but these do not necessarily correspond to the final game outcome. In
Dota 2, auxiliary scores such as last hits, gold, and experience gains are closely tracked
throughout the game—but in the end, the team that destroys the enemy’s throne wins.
These auxiliary scores often help narrate progress in a long-running game by showing the
advantages of one side over the other, and they are indicative of the final outcome.
However, favorable indication does not always guarantee victory, as a player with low
auxiliary scores can still win the game. Therefore, auxiliary scores are a set of “rewards”
disjoint from the game objective. Despite this, they are still useful to serve as actual reward
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signals since they can help an agent learn. OpenAI Five [104] uses a combination of
auxiliary scores and the final objective as the reward signal for Dota 2.

For win/loss games such as chess, it is hard to design a good intermediate reward
because, with the astronomical number of possible configurations, it is objectively hard to
determine how good a board configuration is. In this case, a reward is only given at the
end of a game when the winner is known. The end reward is simply 1 for the winner and
0 for the loser, and the intermediate reward is 0. This reward signal is sparse.

This begs a question: when a task is defined and we know the final desired outcome
that can be assigned and rewarded easily, why don’t we just stick with a sparse reward, as in
chess?

There is a tradeoff between sparse and dense rewards. Although a sparse reward is easy
to specify, it is much harder to learn from because there is much less feedback from the
environment. An agent has to wait until a task terminates to get a reward signal, but even
then it has no easy way of telling which actions in the intermediate steps were good or
bad. Sparse rewards make a problem very sample-inefficient, so an agent will require orders
of magnitude more examples to learn from. Sometimes, reward sparsity may even make
the problem unsolvable because the agent receives so little feedback that it is unable to
discover a sequence of good actions. In contrast, with dense rewards, although
intermediate rewards may be difficult to specify, the feedback from the environment is
immediate so an agent will get signals to learn from more often.

A useful trick is to combine sparse and dense rewards and vary their weights over time
to gradually switch from dense to sparse reward. Let’s define the combined reward in
Equation 16.1.

r = δ · rdense + rsparse, where δ = 1.0→ 0.0 (16.1)

We gradually decay the coefficient δ from 1.0 to 0.0 over the course of agent training.
A small design detail is to exclude the end reward from rdense, since we do not wish to
double-count it.

Having dense rewards during the early phase of training can help an agent with
exploration by giving it a lot of feedback. Suppose, in a robotic task, an agent’s goal is to
walk to a flag on an open plane. The end reward is easy: 1 for reaching the flag and −1 for
failing when the episode ends. Let the agent’s distance to the flag be d(agent, flag). Then, a
useful dense intermediate reward could be the negative distance, rdense = −d(agent, flag).
In the beginning, this dense reward helps teach the agent that the movements it makes
change its distance to the flag, and that minimizing that distance is good for the objective.
From this, it learns a distance-minimizing policy. After some training, we can remove the
training wheels by decaying δ to 0.0. By the time rdense is muted, the same policy will still
be able to function properly using only the sparse reward.

To appreciate how crucial the dense reward may be, just imagine the same task but with
only the sparse reward. The chance of an agent ever reaching the flag by performing
random walks on a vast 2D plane is extremely small. Most of the time, it is going to fail.
Even if on rare occasions it succeeds, there will be too few successful examples for it to
learn from, let alone to discover the concept of distance minimization. The chance of the
agent learning to solve the problem, even if given plenty of time, is small.
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Another advanced technique used to address the sparse reward issue is reward
redistribution. The idea is to take the end reward, split it up, and redistribute some of it to
credit significant events in the intermediate steps. If such significant events are known
to the reward designer, this is relatively straightforward, but it may not always be easy to
identify them. One solution is to estimate them by collecting many trajectories, identifying
common patterns, and correlating them with the final rewards. This is a form of
auto-credit assignment. An example of this is RUDDER [8] developed by the LIT AI Lab.

The converse of reward redistribution is reward delay, in which all the reward signals are
withheld for a number of time steps. An example of this happens when we skip frames. It
is important that the rewards from the skipped frames are not lost—the total reward should
remain equivalent to that of the original environment. We do this by storing the rewards
from the intermediate frames, then summing them to produce the reward for the next
sampled frame. Summing also ensures that the reward signal has a nice linear property of
working for any frame-skipping frequency without changing the objective.

Something to consider when designing a reward signal is its distribution profile. In
many algorithms, the reward is used in the computation of loss. Having a large reward
magnitude can make the loss huge and cause the gradient to explode. When creating a
reward function, avoid using extreme values. Overall, it is beneficial to shape the reward
signal to have a healthy statistical profile—standardized, with zero mean, and no extreme
values. Ideally, rewards should be assigned based on reasons that are simple and easy to
understand. Overly complicated reward design not only takes time and effort but also
makes the environment and the agent difficult to debug—while there is no guarantee that
it will function significantly better than a simpler one. A complicated reward signal is often
the result of being too focused on some scenarios, so it is unlikely to generalize well to
variations in the environment.

Another thing to be aware of when designing a reward signal is reward farming or reward
hacking. In a sufficiently complex environment, it is hard to anticipate all the possible
scenarios. In video games, it is considered a bug if a player finds an exploit or hack and
then abuses it repeatedly to get extremely large rewards—even if it is permissible within
the game. This is what happened when an evolution-strategy-based agent created by a
team of researchers from the University of Freiburg managed to find a bug in the Atari
Qbert game [23]. Their agent performed a specific sequence of moves which triggered
a bonus animation that kept increasing the game points without bound. The video can
be found on YouTube as “Canonical ES finds a bug in Qbert (Full),” at https://youtu.be
/meE5aaRJ0Zs [22].

In video games, the result of reward hacking may be funny and amusing—but in
real-world applications, this could potentially be harmful with serious implications. If an
RL system controlling industrial hardware encounters an exploit with a runaway process, it
may end up destroying some expensive equipment or injuring people. Since credit
assignment is closely related to specifying and controlling the behavior of an agent, it is also
a major subject of research in AI safety. A good introduction can be found in the paper
“Concrete Problems in AI Safety” [4]. Environments should be designed and agents
trained responsibly to avoid negative side effects, prevent reward hacking, ensure oversight,

https://youtu.be/meE5aaRJ0Zs
https://youtu.be/meE5aaRJ0Zs


ptg33646662

332 Chapter 16 Rewards

encourage safe exploration, and ensure robustness when an RL system is deployed in the
real world.

When reward hacking occurs, we consider the reward signal to be faulty [100]. Then,
the designer must act to patch the bug in the environment or redesign part of the faulty
reward signal. There is no sure way to anticipate where reward hacking could happen; we
have to rely on observations in a test environment to discover it. One way to do so is to
record all the rewards obtained during training and analyze them. Compute the mean,
mode, standard deviation, then scan for abnormal and extreme values. If any extreme
reward values are found, identify the relevant scenarios and manually inspect them to see
how an agent behaved to produce these abnormal reward values. We can also save video
replays of these scenarios for easier debugging, or just watch the environment live provided
there are ways to reproduce the buggy scenarios.

We have covered quite some ground in reward design. To summarize, these are the
factors to consider when designing a reward signal:

1. Use good, neutral, bad reward values: A good starting point is to use positive
values for good, zero for neutral, and negative for bad. Pay attention to scale, avoid
extreme values.

2. Choose sparse or dense reward signal: Sparse rewards are easy to design but
often make a problem much harder; dense rewards are hard to design but give agents
much more feedback.

3. Watch for reward hacking and safety: Constantly evaluate agents and
environments to ensure reward hacking is not taking place. Agent training
and environment design should be done responsibly to ensure the safety of a
deployed system.

A reward signal can be seen as a proxy for transferring human prior knowledge,
expectations, and common sense about a task to an agent—which has none of these. The
way RL is currently set up, an agent does not understand or see a task the same way we
humans do. Its only goal is to maximize the objective. All its behaviors emerge from the
reward signal. To encourage certain behavior, we have to figure out how to assign rewards
in such a way that they emerge as a side effect of maximizing the objective. However,
reward design may not always be perfect, and an agent may misunderstand our intentions
and fail to solve the problem the way we want it to even though it is still maximizing the
total reward. That’s why human domain expertise is required to design a good reward
signal.

16.3 Summary
In this chapter on reward design, we discussed the tradeoff between sparse and dense
reward signals and the importance of the reward scale. A carefully designed reward
function can be very effective, as shown by OpenAI’s Dota 2 results. A good reward signal
should not be too generic or too specific, and should encourage desired behaviors from an
agent. However, unexpected behaviors may emerge from a faulty reward design. This is
known as reward hacking, and it can pose risks to a deployed system. Therefore, we should
be mindful when deploying an RL system to ensure safety.
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Now that we have looked at states, actions, and rewards, the last component necessary to
make a functioning RL environment is a transition function, also known as a model.

The model of an environment can be programmed or learned. Programmable rules are
common, and they can yield environments with various levels of complexity. Chess is
perfectly described by a simple set of rules. Robot simulations approximate a robot’s
dynamics and its surroundings. Modern computer games can be very complex, but they
are still built using programmed game engines.

However, when modeling problems that cannot be efficiently programmed, a model of
an environment can be learned instead. For example, contact dynamics in robotics is
difficult to model with programmable rules, so an alternative is to try to learn it from
real-world observations. For applied problems where the states and actions are abstract
quantities that are difficult to understand and model but for which a lot of transition data is
available, a transition function may be learned instead. An environment could also have a
hybrid model that is partly programmed and partly learned.

This chapter presents some guidelines for checking the feasibility of building a
transition function and for evaluating how closely it approximates the real problem.

17.1 Feasibility Checks
Recall that a transition function is defined as P (st+1 | st, at). It has the Markov property,
which means that the transition is fully determined by the current state and action. In
theory, we have to consider if a model can be built in this form. In practice, we first
consider if we can conceivably build the model using rules, a physics engine, a game
engine, or data.

This section provides some feasibility checks to satisfy before building a transition
function. There are a few things to consider:

1. Programmable vs. learnable: Can one build an RL environment without using
data, by figuring out and programming the transition rules? Can the problem be
fully described by a set of rules? Examples are board games such as chess and physical
systems such as robots. If it is not possible or practical, then the model can only be
learned from data.
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2. Data completeness: If the model needs to be learned from data, is there sufficient
data available? That is, is the data representative enough? If not, is it possible to
gather more data or make up for it? Is all the data fully observable? If not, the model
may be inaccurate; in that case, what is an acceptable threshold of error?

3. Cost of data: Sometimes, generating data can be costly. The process may take a
long time, or cost a lot of money, because collecting real-world data involves long
process cycles and expensive assets. For instance, a real robot moves more slowly
compared to a simulation and is expensive—but creating a realistic model may
require first collecting data from actual robot movements.

4. Data sample vs. sample efficiency: Deep RL still has low sample efficiency and
poor generalizability. This means that a model of the problem needs to have high
fidelity. This, in turn, requires a lot of data to build, and will add to the cost of
learning the model. Even if a transition function is programmable, it may still take a
lot of time and effort to produce a realistic model. For example, video games have
some of the most complex programmable transition functions and can cost millions
of dollars to produce.

5. Offline vs. online: When data is gathered in isolation from an actual RL agent, it is
considered offline. If a model is built with offline data, will it be sufficient to account
for the effects of interactions with an agent? For example, a learning agent may
explore new parts of the state space, thereby requiring new data to fill in the gap in
the model. This requires an online approach—that is, deploying the agent to
interact with the actual problem to gather more data. Is this possible?

6. Training vs. production (related to the previous point): An agent that is trained
using a learned model needs to be evaluated against the actual problem before it
can be used. Is it safe to test an agent in production? How can we ensure that the
behavior is within reasonable bounds? If unexpected behavior occurs in production,
what is the potential financial cost?

If these feasibility checks pass, then we may proceed with constructing a transition
function. When building a model, there are generally a few problem characteristics to
consider. These determine which methods are appropriate.

1. Deterministic problems with known transition rules—for example, chess.
We use the known rules to build a deterministic mapping function, for example
using a stored dictionary. This can be written as st+1 ∼ P (st+1 | st, at) = 1 or,
equivalently, as a direct function where st+1 = fdeterministic(st, at). When building a
model, it is convenient to make use of existing open source engines or commercial
tools. There are many excellent physics or game engines such as Box2D [17],
PyBullet [19], Unity [138], and Unreal Engine [139] that have been used to build a
number of RL environments, from simple 2D toy problems to a highly realistic
driving simulator.

2. Stochastic (nondeterministic) problems with known dynamics—for
example, a realistic robotic simulation. Here, parts of the dynamics are inherently
stochastic, while the rest is composed of a deterministic dynamic with added random
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noise. For example, a physical system can be modeled with deterministic rules—but
to make it more realistic, it is common to account for random noise such as
friction, jitter, or sensor noise. In this case, the transition model has the form
st+1 ∼ P (st+1 | st, at).

3. Stochastic problems with unknown dynamics—for example, complex
inventory management or sales optimization with many unobservable or
unpredictable components. Since the dynamics is unknown, we have to learn them
from data. Collect all the available data in the form . . . , st, at, st+1, at+1, . . . and
build a histogram to capture the frequencies of st+1 given st, at. Then, fit the
histogram with a distribution type, such as Gaussian, Beta, Bernoulli, etc. to obtain a
probability distribution of the form P (st+1 | st, at). This is the learned model. The
entire process can be turned into a supervised learning task to learn the probability
distribution from data, with st, at as inputs and st+1 as target outputs.

4. Problems that do not obey the Markov property—for example, complex
video games. In this situation, longer time horizons are required to fully determine
transitions. There are two common strategies to deal with this. First, if the transition
function is programmable, focus on building a realistic model that is not necessarily
Markov, then decide if the states exposed to an agent should be Markov. If it is
important that they are Markov, this may require redesigning the state to include
sufficient history. Alternatively, states can be simpler; then the problem for an agent
becomes a partially observable MDP. If we are learning a transition function, we
don’t have this luxury since the training data st, at needs to contain sufficient
information to fully learn the next transition. The main strategy here is to redefine
the state to be Markov.

Once we have built a model, how do we check that it is a sufficiently realistic
representation of a problem? This leads us to the next section.

17.2 Reality Check
Any model approximating real-world phenomena is likely imperfect. We therefore need
methods to evaluate how good our approximation is. In this section, we first discuss some
sources of model error, then discuss KL divergence as a way to quantify the error.

We can identify two main reasons that may cause a model to be imperfect.
The first case is when it might not be feasible to completely simulate every aspect of a

problem, so simplifications have to be made. For example, simulation of a robotic arm
might not account for friction, jitters, thermal expansion, and impact-induced
deformations of its physical parts that occur in the real world. Some data is simply not
available in practice. For example, take movie recommendations; it would be useful to
know which genres a person likes, but this cannot be known directly. It can only be
inferred from the previous movies they watched.

The second case is due to the limit of exploration when using learned transition
functions. The problem in this case is that some transitions might not be visited until an
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algorithm is deployed to interact with the environment. This happens when the state space
is so large that it is impractical to learn a good model for all the transitions. Instead, we
typically focus on learning a good model for the transitions an agent is likely to encounter.
Of course if the model fails to account for transitions that an agent encounters in
production, then it may produce inaccurate transitions—but this does not mean that an
agent cannot be trained on a limited model.

A model can be iteratively learned from data as follows. First, collect a subset of data
from the real world and use it to train a model. This model will approximate reality with
some error. We can then train an agent, deploy it to production, collect more transition
data, and retrain to improve the model. We iterate this until the error is reduced to an
acceptable threshold.

Now, we need a notion of error between a learned model and the problem it
approximates. Let’s define the transition function for training versus production
respectively as Ptrain(s

′ | s, a) and Pprod(s
′ | s, a). We now have two probability

distributions so we can measure the difference between them using standard methods.
The Kullback-Leibler (KL) divergence1 is a widely used method to measure how much

one probability distribution diverges from another. Suppose we are given two distributions
p(s), q(s) of the random variable, say s ∈ S. Let p(s) be the ground truth distribution and
q(s) be its approximation. We can determine how much q(s) diverges from the ground
truth p(s) using the KL divergence.

The KL divergence for a discrete variable is shown in Equation 17.1.

KL
(
p(s) || q(s)

)
=

∑
s∈S

p(s) log
p(s)

q(s)
(17.1)

The generalization to a continuous variable is straightforward by turning the discrete
sum into a continuous integral, as shown in Equation 17.2.

KL
(
p(s) || q(s)

)
=

∫ ∞

−∞
p(s) log

p(s)

q(s)
ds (17.2)

The KL divergence is a non-negative number. When it is 0, the approximate
distribution q does not diverge from the ground truth distribution p—that is, the two
distributions are equal. The larger the KL divergence is, the greater the divergence of q
from p is. It is also an asymmetric metric—that is, KL(p || q) 6= KL(q || p) in general.
Because of its desirable properties, KL is also used in a number of RL algorithms to
measure divergence in policy iterations, as we saw in Chapter 7.
KL can be interpreted as the information loss when using q(s) to approximate

the reality p(s). In our case, the reality is Pprod(s
′ | s, a) from production, and the

approximation is Ptrain(s
′ | s, a) from training. Additionally, Pprod and Ptrain are conditional

probabilities, but we can simply calculate KL for each specific instance of the conditional
variables. Let p = Pprod, q = Ptrain, and the KLs,a between them is written in
Equation 17.3.

1. KL divergence is also known as relative entropy.
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KLs,a
(
Pprod(s

′ | s, a) ||Ptrain(s
′ | s, a)

)
=

∑
s′∈S

Pprod(s
′ | s, a) log

Pprod(s
′ | s, a)

Ptrain(s′ | s, a)
(17.3)

This is written for the discrete case. For continuous variables, simply convert the sum
into an integral as appropriate.

Equation 17.3 applies to a single (s, a) pair. However, we want to estimate the KL for
the entire model over all (s, a) pairs. In practice, we do this using a technique often seen
in this book—Monte Carlo sampling.

To use this to improve a model, calculate and keep track of the KL during every
iterations of model training and deployment to ensure that Ptrain does not diverge too far
from Pprod. Over multiple training iterations, we should aim to reduce the KL to an
acceptable threshold.

In this chapter, we set out to build a model P (s′ | s, a) for an environment with the
requirement that it is realistic. Now armed with a tool to perform a quite literal reality
check, we can ask more practical questions. What is the distribution of data available for
training versus for production, and what are the differences? How will the gap between
training and production converge? These questions matter especially in industrial
applications where data is often limited and difficult to obtain, so it may only represent
some subset of the actual problem’s full transition distribution. The available data will affect
the quality of the model, which in turn affects the learning of an RL algorithm. For RL
algorithms to be useful outside of training, we need them to generalize beyond the
training data when deployed to production. If the gap between training and production
data is too large, the agent may fail outside of the training set, so we need to iteratively
improve the model to close the gap.

17.3 Summary
This chapter looked at transition functions, also known as models of environments. A
model can be programmed with rules or learned from data. We presented a list for
checking the feasibility of programming or learning a model. Then, we looked at different
forms a transition function may take. Finally, we presented the KL divergence as a method
for measuring the error between a constructed model and the real transition distribution.
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Epilogue

This book began by formulating an RL problem as an MDP. Parts I and II introduced the
main families of deep RL algorithms that can be used to solve MDPs—policy-based,
value-based, and combined methods. Part III focused on the practicalities of training
agents, covering topics such as debugging, neural network architecture, and hardware.
We also included a deep RL almanac containing information about hyperparameters
and algorithm performance for some classic control and Atari environments from
OpenAI Gym.

It was fitting to end the book by taking a look at environment design since this is an
important part of using deep RL in practice. Without environments, there is nothing for
an agent to solve. Environment design is a large and interesting topic, so we were only able
to touch briefly on some of the important ideas. Part IV should be understood as a set of
high-level guidelines, not a detailed and in-depth review of the topic.

We hope this book has served as a useful introduction to deep RL, and has conveyed
some of the excitement, curiosity, and appreciation we feel for studying and participating
in this field. We also hope that it has stimulated your interest and you are curious to learn
more. With this in mind, we end the book by briefly mentioning a number of open
research questions and, where relevant, providing pointers to recent work in these areas.
This is not a complete list but is a starting point for an endlessly interesting and rapidly
changing field of research.

Reproducibility Currently, deep RL algorithms are known to be unstable, sensitive
to hyperparameters, and for having high variance in performance. This makes results
hard to reproduce. The “Deep Reinforcement Learning that Matters” paper by Henderson
et al. [48] contains an excellent analysis of these issues and proposes some potential
remedies. One of these is to use a more reproducible workflow which this book and its
companion library, SLM Lab, have tried to encourage.

Reality Gap This is also known as the simulation-to-reality (sim-to-real) transfer
problem. It is often difficult to train a deep RL agent in the real world because of cost,
time, and safety. Often, we train an agent in a simulation and deploy it in the real world.
Unfortunately, it is very difficult to model the real world accurately in a simulation—this
is what is called a reality gap. This represents a domain transfer problem in which an
agent is trained on a data distribution different from the test data.

One common approach to deal with this problem is by adding random noise to the
simulation during training. “Learning Dexterous In-Hand Manipulation” by OpenAI [98]
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does this by randomizing the physical properties of the simulation such as object mass,
color, and friction.

Meta- and Multitask Learning One limitation of the algorithms in this book is
that they learn from scratch for each task, which is very inefficient. Naturally, many tasks
are related. For example, competitive swimmers often compete in multiple swimming
styles because the techniques are closely related. When learning a new style, they do not
learn how to swim again from scratch. More generally, humans learn to control their
bodies when growing up, and apply this knowledge to learn many different physical skills.

Metalearning approaches this problem by learning how to learn. The algorithms are
designed to learn how to learn a new task efficiently after being trained on a set of related
learning tasks. An example of this “Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks” by Finn et al. [40].

Multitask learning is concerned with learning multiple tasks more efficiently by
learning them jointly. The Distral algorithm by Teh et al. [134] and the Actor-Mimic
algorithm by Parisotto et al. [110] are examples of this approach.

Multiagent Problems It is natural to apply RL to multiagent problems. OpenAI
Five [104] is an example, where five separate agents were trained using the PPO algorithm
to play the Dota 2 multiplayer game. Simply by tuning the coefficients which balanced the
team and individual rewards, authors saw cooperative behavior emerge among the agents.
DeepMind’s FTW algorithm [56] played the multiplayer game Quake by using
population-based training and deep RL where each agent’s objective was to maximize
the probability of its team winning.

Sample Efficiency The sample efficiency of deep RL algorithms is a significant
obstacle to applying them to real-world problems. One way to tackle this is to incorporate
environment models. The MB-MPO [24] algorithm by Clavera et al. and the SimPLe [62]
algorithm by Kaiser et al. are two recent examples.

Hindsight Experience Replay (HER) [6] is another alternative. It was motivated by the
idea that humans are good at learning from failed attempts at a task as well as successful
ones. In the HER algorithm, trajectories are given new rewards which assume that what
an agent did in an episode was what it was supposed to do. This helps an agent learn about
the environment when rewards are sparse, improving sample efficiency.

Generalization Deep RL algorithms still have poor generalizability. They are often
trained and tested on the same environments, which makes them susceptible to overfitting.
For example, “Natural Environment Benchmarks for Reinforcement Learning” by Zhang
et al. [152] showed that simply by adding image noise to some Atari games, a trained agent
can completely fail. To remedy this problem, they modified the Atari environments by
embedding videos in the game background and used these to train the agents.

In the previous example, the underlying task remained the same even as variations were
introduced into the environment. However, an agent should also be able to generalize to
unseen but related tasks. To test for this, an environment can be made to progressively
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generate new but related tasks. Two examples are the game Obstacle Tower [60]
with generative elements and levels, and the Animal-AI Olympics environment [7] with a
disjoint set of training and evaluation tasks.

Exploration and Reward Shaping It is challenging to train deep RL agents in
environments with sparse rewards because the environment provides little information
about which actions are desirable. When exploring an environment, it is difficult for agents
to discover useful actions and they often get stuck in local minima.

It is often possible to design additional rewards which encourage behavior that will help
solve the task. For example, in the BipedalWalker environment [18], instead of giving an
agent a reward only when it succeeds in reaching the far end, rewards are given for moving
forward and penalties are given for applying motor torque and falling over. These dense
rewards encourage the agent to progress forward efficiently.

However, designing rewards is time-consuming as rewards are often problem-specific.
One way to address this problem is to give an agent an intrinsic reward which motivates
it to explore novel states and develop new skills. This is analogous to rewarding an agent
for curiosity. “Curiosity-Driven Exploration by Self-Supervised Prediction” by Pathak et
al. [111] is a recent example.

The Go-Explore algorithm by Ecoffet et al. [36] takes a different approach. It was
motivated by the idea that exploration could be more effective if it started from promising
states instead of from the beginning of an episode. To implement this, training is split into
an exploration phase and an imitation phase. In the exploration phase, a Go-Explore agent
explores the environment randomly and remembers interesting states and the trajectories
that led up to them. In the imitation phase, it does not explore from scratch but iteratively
from the stored states.
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A

Deep Reinforcement Learning
Timeline

. 1947: Monte Carlo Sampling

. 1958: Perceptron

. 1959: Temporal Difference Learning

. 1983: ASE-ALE—the first Actor-Critic algorithm

. 1986: Backpropagation algorithm

. 1989: CNNs

. 1989: Q-Learning

. 1991: TD-Gammon

. 1992: REINFORCE

. 1992: Experience Replay

. 1994: SARSA

. 1999: Nvidia invents the GPU

. 2007: CUDA released

. 2012: Arcade Learning Environment (ALE)

. 2013: DQN

. 2015 Feb: DQN human-level control in Atari

. 2015 Feb: TRPO

. 2015 Jun: Generalized Advantage Estimation

. 2015 Sep: Deep Deterministic Policy Gradient (DDPG) [81]

. 2015 Sep: Double DQN

. 2015 Nov: Dueling DQN [144]

. 2015 Nov: Prioritized Experience Replay

. 2015 Nov: TensorFlow
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. 2016 Feb: A3C

. 2016 Mar: AlphaGo beats Lee Sedol 4-1

. 2016 Jun: OpenAI Gym

. 2016 Jun: Generative Adversarial Imitation Learning (GAIL) [51]

. 2016 Oct: PyTorch

. 2017 Mar: Model-Agnostic Meta-Learning (MAML) [40]

. 2017 Jul: Distributional RL [13]

. 2017 Jul: PPO

. 2017 Aug: OpenAI Dota 2 1:1

. 2017 Aug: Intrinsic Curiosity Module (ICM) [111]

. 2017 Oct: Rainbow [49]

. 2017 Dec: AlphaZero [126]

. 2018 Jan: Soft Actor-Critic (SAC) [47]

. 2018 Feb: IMPALA [37]

. 2018 Jun: Qt-Opt [64]

. 2018 Nov: Go-Explore solves Montezuma’s Revenge [36]

. 2018 Dec: AlphaZero becomes the strongest player in history for chess, Go, and
Shogi

. 2018 Dec: AlphaStar [3] defeats one of the world strongest players in the game of
StarCraft II

. 2019 Apr: OpenAI Five defeats world champions at Dota 2

. 2019 May: FTW Quake III Arena Capture the Flag [56]

.
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Example Environments

Deep RL today enjoys a great selection of RL environments offered through a number of
Python libraries. Some of these are listed below for reference.

1. Animal-AI Olympics [7] https://github.com/beyretb/AnimalAI-Olympics: an AI
competition with tests inspired by animal cognition.

2. Deepdrive [115] https://github.com/deepdrive/deepdrive: end-to-end
simulation for self-driving cars.

3. DeepMind Lab [12] https://github.com/deepmind/lab: a suite of challenging 3D
navigation and puzzle-solving tasks.

4. DeepMind PySC2 [142] https://github.com/deepmind/pysc2: StarCraft II
environment.

5. Gibson Environments [151] https://github.com/StanfordVL/GibsonEnv:
real-world perception for embodied agents.

6. Holodeck [46] https://github.com/BYU-PCCL/holodeck: high-fidelity simulations
created with the Unreal Engine 4.

7. Microsoft Malmö [57] https://github.com/Microsoft/malmo: Minecraft
environments.

8. MuJoCo [136] http://www.mujoco.org/: physics engine with robotics simulations.

9. OpenAI Coinrun [25] https://github.com/openai/coinrun: custom environment
created to quantify generalization in RL.

10. OpenAI Gym [18] https://github.com/openai/gym: a huge selection of classic
control, Box2D, robotics, and Atari environments.

11. OpenAI Retro [108] https://github.com/openai/retro: retro games including
Atari, NEC, Nintendo, and Sega.

12. OpenAI Roboschool [109] https://github.com/openai/roboschool: robotics
environments tuned for research.

13. Stanford osim-RL [129] https://github.com/stanfordnmbl/osim-rl:
musculoskeletal RL environment.

https://github.com/beyretb/AnimalAI-Olympics
https://github.com/deepdrive/deepdrive
https://github.com/deepmind/lab
https://github.com/deepmind/pysc2
https://github.com/StanfordVL/GibsonEnv
https://github.com/BYU-PCCL/holodeck
https://github.com/Microsoft/malmo
http://www.mujoco.org/
https://github.com/openai/coinrun
https://github.com/openai/gym
https://github.com/openai/retro
https://github.com/openai/roboschool
https://github.com/stanfordnmbl/osim-rl
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14. Unity ML-Agents [59] https://github.com/Unity-Technologies/ml-agents: a set
of environments created with the Unity game engine.

15. Unity Obstacle Tower [60] https://github.com/Unity-Technologies
/obstacle-tower-env: a procedurally generated environment consisting of multiple
floors to be solved by a learning agent.

16. VizDoom [150] https://github.com/mwydmuch/ViZDoom: VizDoom game
simulator, usable with OpenAI Gym.

In this book, we use a number of environments from OpenAI Gym. These include
some easy-to-moderate discrete environments CartPole-v0, MountainCar-v0,
LunarLander-v2 and a continuous environment Pendulum-v0. For harder environments,
some Atari games such as PongNoFrameskip-v4 and BreakoutNoFrameskip-v4 are used.

B.1 Discrete Environments
The discrete-control environments available in OpenAI Gym include easy-to-moderate
environments CartPole-v0, MountainCar-v0, and LunarLander-v2. Harder environments
are some Atari games PongNoFrameskip-v4 and BreakoutNoFrameskip-v4. This section
provides detailed descriptions of these environments; some information is referenced from
the original OpenAI Gym documentation Wiki.

B.1.1 CartPole-v0

Figure B.1 The CartPole-v0 environment. The objective is to balance the pole

for 200 time steps.

This is the simplest toy problem in OpenAI Gym, and it is commonly used to debug
algorithms. It was originally described by Barto, Sutton, and Anderson [11]. A pole is
attached to a cart that can be moved along a frictionless track.

1. Objective: Keep the pole upright for 200 time steps.

2. State: An array of length 4: [cart position, cart velocity, pole angle, pole angular
velocity]. For example, [−0.03474355, 0.03248249,−0.03100749, 0.03614301].

https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/mwydmuch/ViZDoom
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3. Action: An integer within {0, 1} to move the cart left or right. For example, 0 to
move left.

4. Reward: +1 for every time step the pole remains upright.

5. Termination: When the pole falls over ( degrees from vertical), or the cart moves
out of the screen, or a maximum of 200 time steps is reached.

6. Solution: Average total reward of 195.0 over 100 consecutive episodes.

B.1.2 MountainCar-v0

Figure B.2 The MountainCar-v0 environment. The objective is to swing the car left and right

to reach the hilltop in the shortest amount of time.

This is a sparse-reward problem originally proposed by Andrew Moore [91]. The goal is
to strategically “swing” an underpowered car to the top of a hill indicated with a flag.

1. Objective: Swing the car up to the flag.

2. State: An array of length 2: [car position, car velocity]. For example,
[−0.59025158, 0.].

3. Action: An integer within {0, 1, 2} to push left, stay still, or push right. For
example, 0 to push left.

4. Reward: −1 for every time step, until the car reaches the hilltop.

5. Termination: When the car reaches the hilltop, or after 200 maximum time steps.

6. Solution: Average total reward of −110 over 100 consecutive episodes.

B.1.3 LunarLander-v2
This is harder control problem where an agent has to steer a lander and land it without
crashing. The fuel is infinite. The landing pad is always at the center, indicated by two flags.

1. Objective: Land the lander without crashing fuel. Solution total reward is+200.

>15

and conserve

.
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Figure B.3 The LunarLander-v2 environment. The objective is to steer and land the lander

between the flags using minimal fuel, without crashing.

2. State: An array of length 8: [x-position, y-position, x-velocity, y-velocity, lander
angle, lander angular velocity, left leg ground contact, right leg ground contact]. For
example, [−0.00550737, 0.94806147,−0.55786095, 0.49652665, 0.00638856,
0.12636393, 0., 0.].

3. Action: An integer within {0, 1, 2, 3} to fire no engine, fire left engine, fire main
engine, or fire right engine. For example, 2 to fire main engine.

4. Reward:

5. Termination: When the lander lands or crashes, or after 1000 maximum time steps.

6. Solution: Average total reward of 200.0 over 100 consecutive episodes.

B.1.4 PongNoFrameskip-v4

Figure B.4 The PongNoFrameskip-v4 environment. The main objective is to beat

the programmed opponent on the left.

−100 for crashing, +100 for landing. −0.3 per time step when firing main 
engine, +100 to +140 for landing between the flags (landing pad) with zero speed, 
+10 for each leg ground contact.

.
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This is an image-based Atari game that consists of a ball, a left paddle controlled by a
program, and a right paddle controlled by an agent. The goal is to catch the ball and make
the opponent miss the ball. The game goes on for 21 rounds.

1. Objective: Maximize the game score, with a maximum of +21.

2. State: An RGB image tensor of shape (210, 160, 3).

3. Action: An integer within {0, 1, 2, 3, 4, 5} to control an emulated game console.

4. Reward: −1 if agent misses the ball, +1 if opponent misses the ball. The game goes
on for 21 rounds.

5. Termination: After 21 rounds.

6. Solution: Maximize the average score over 100 consecutive episodes. A perfect
score of +21 is possible.

B.1.5 BreakoutNoFrameskip-v4

Figure B.5 The BreakoutNoFrameskip-v4 environment. The main objective is

to destroy all the bricks.

This is an image-based Atari game that consists of a ball, a bottom paddle controlled by
an agent, and bricks. The goal is to destroy all the bricks by bouncing the ball. A game life
is lost every time the ball falls off the screen from the bottom.

1. Objective: Maximize the game score.

2. State: An RGB image tensor of shape (210, 160, 3).

3. Action: An integer within {0, 1, 2, 3} to control an emulated game console.

4. Reward: Determined by the game logic.

5. Termination: After all game lives are lost.

6. Solution: Maximize the average score over 100 consecutive episodes.
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B.2 Continuous Environments
The continuous-control environments in OpenAI Gym include robotics control problems
Pendulum-v0 and BipedalWalker-v2. This section provides detailed descriptions of these
environments; some information is referenced from the original OpenAI Gym
documentation Wiki.

B.2.1 Pendulum-v0

Figure B.6 The Pendulum-v0 environment. The objective is to swing up an inverted pendulum

and keep it standing.

This is a continuous-control problem where an agent applies torque to swing a
frictionless inverted pendulum up, and keep it standing.

1. Objective: Swing and keep the pendulum standing up.

2. State: An array of length 3 with the joint angle θ and its angular velocity: [cos θ,
sin θ, dθ

dt ]. For example, [0.91450008,−0.40458573, 0.85436913].
3. Action: A floating-point number in interval [−2.0, 2.0] to apply torque to joint.

For example, 0.0 to apply no torque.

4. Reward: Equation −(θ2 + 0.1dθ
dt

2
+ 0.001torque2).

5. Termination: After 200 maximum time steps.

6. Solution: Maximize the average total reward over 100 consecutive episodes.

B.2.2 BipedalWalker-v2
This is a continuous-control problem where an agent uses a robot’s lidar sensor to sense its
surroundings and move to the right without falling.

1. Objective: Walk to the right without falling.

2. State: An array of length 24: [hull angle, hull angular velocity, x-velocity, y-velocity,
hip 1 joint angle, hip 1 joint speed, knee 1 joint angle, knee 1 joint speed, leg 1
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Figure B.7 The BipedalWalker-v2 environment. The objective is to move

the agent forward to the right without falling.

ground contact, hip 2 joint angle, hip 2 joint speed, knee 2 joint angle, knee 2 joint
speed, leg 2 ground contact, . . ., 10 lidar readings]. For example, [2.74561788e−03,
1.18099805e−05, −1.53996013e−03, −1.60000777e−02, . . ., 7.09147751e−01,
8.85930359e−01, 1.00000000e+00, 1.00000000e+00].

3. Action: A vector of four floating-point numbers in interval [−1.0, 1.0]: [hip 1
torque and velocity, knee 1 torque and velocity, hip 2 torque and velocity, knee 2
torque and velocity]. For example,
[0.09762701, 0.43037874, 0.20552675, 0.08976637].

4. Reward: Reward for moving forward to the right for up to +300 in total; −100 if
the robot falls.

5. Termination: When the robot body touches the ground or reaches the far right
side, or after 1600 maximum time steps.

6. Solution: Average total reward of 300 over 100 consecutive episodes.
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absolute vs. relative, 319, 321–323
bijecting, 320, 323
cardinality of, 316
combined, 317
completeness of, 318–319
complexity of, 319–323
continuous vs. discrete, 316, 319
debugging manually, 220
encoded as tensors, 316
entropy of, 143, 220
mapping to states, 3
probability of, 220
reinforcing, 3, 25
skipping, 312–313
symmetric, 322–323

actions-per-minute (APM), 312
Actor-Critic algorithms, 15–16, 33, 135

asynchronous parallelization in, 197
debugging, 225
extended by PPO with clipping,
177–179, 190–192

history of, 162
network architecture of, 148–150
training loop of, 147–148
vectorized environments for, 231

Actor-Mimic algorithm, 340
ActorCritic class (SLM Lab), 145, 179
actors, 135–136
Adam optimization algorithm, 126
Adaptive Critic Element (ACE), 162
add_experience method (SLM Lab), 73,
94–95, 120

Adobe, 277
Advantage Actor-Critic (A2C), 135,
141–143, 205–206
hyperparameters for, 233
implementing in SLM Lab, 143–148,
239–241

performance of, 235–237
spec file for, 150–156, 159–160
training agents on, 150–157
with GAE
on a grid search, 159–161
on Pong, 153–154

with n-step returns
on BipedalWalker, 155–157
on Breakout, 158–159
on Pong, 150–153

advantage function, 136–137
estimating, 137–140, 144–146
learning, 140–141
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agents, 2–3, 9
boundaries of, 3
encouraging desired behavior in, 328
hyperactivity of, 312–313, 321
hypersensitivity of, 313
learning from scratch, 327
memory of, 222
no access to reward/transition
functions, 7

problem horizon of, 63–64
rewarding for curiosity, 341
testing in production, 334
training for multiplayer games, 340

AI safety, 332
Algorithm class (SLM Lab), 240
algorithms

debugging, 222, 346
hardware requirements for, 273–285
hyperparameters for, 241
information for, see states
memory consumption in, 282–283
model-based, 11–14
off-policy, 16, 81–82, 198, 205
on-policy, 16, 32, 41, 68, 88–89, 144,
165, 198, 205

online, 72
performance of, comparing, 234–237
policy-based, 11–13, 205
sample-efficient, 206
sample-inefficient, 195
signs of life of, 219
simplification of, 225
testing on CartPole, 226
theoretically correct, 209
value-based, 11–13, 53, 81, 205,
282–283

AlphaGo algorithm, 278
AlphaZero algorithm, 15
Animal-AI Olympics, 341, 345
Ant environment, 260
ApeX, 260
arcade games, 123, 295, 325

Arcade Learning Environment (ALE),
123, 290

art installations, 326
Associative Search Element (ASE), 162
Asynchronous Advantage Actor-Critic
(A3C), 163, 197
implementing in SLM Lab, 239–241
training on Pong, 200–203

asynchronous parallelization, 197–200
Atari 2600, 123
Atari Asteroid, 326
Atari Breakout, 4–5, 158–161,
188–190
blinking elements in, 311
comparing algorithms on, 235, 237
environments for, 349
fully observable, 257
launching ball in, 230
states in, 300

Atari games, 17, 345
adding image noise to, 340
choosing networks for, 260
controller for, 317, 320
designing, 325
frame skipping in, 228, 257, 321
fully observable, 257, 260
image preprocessing for, 308
multiple lives in, 230
running on GPU, 285
stacking previous image states for, 230
states in, 260, 290
training DQN agents on, 123–127

Atari Pong, 123–132
action space in, 322–323
comparing algorithms on, 235–236
detecting the ball and paddles in, 254
environments for, 228, 348–349
image debugging for, 221
internal state in, 257
running DQN on, 210–213
states in, 292–293, 298
training A2C agents on, 150–157
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Atari Qbert, 190–192
comparing algorithms on, 235, 237
rewards hacking in, 331

Atari Seaquest, 301–303
Augmented Random Search, 28
automatic differentiation, 39
autopilot systems, 317

B

backgammon, 17, 79
backpropagation, 18
Baird, Leemon C., 163
Bakker, Bram, 258
Barto, Andrew G., 83
baseline, 33, 49–51
Baselines repository, 228
batch memory, 73
batch training, 73
Bellemare, Marc G., 123
Bellman equation, 57, 79

debugging, 222
for DQN, 58, 82
for SARSA, 58, 66, 82
modified, 104

Bellman, Richard, 2, 79
bias vector, 253
bias-variance tradeoff, 138–139
bijection, 291
BipedalWalker, 5, 155–157

choosing networks for, 260
comparing algorithms on, 235–236
dense rewards in, 341
environments for, 350–351
training PPO agents on, 185–188

BipedalWalker-v2 environment (OpenAI
Gym), 350–351

bits, 278–279
black-box optimization, 28
blinking elements, 311
blocking parallelization, 196–197

board games, 14
described by a set of rules, 333

Boltzmann policy, 85–88
training with, 98

Boltzmann probability distribution, 86
boostrapped learning, 58
Box2D, 334, 345
Breakout, see Atari Breakout
BreakoutNoFrameskip-v4 environment
(OpenAI Gym), 349

build_conv_layers method (SLM Lab),
267–268

build_fc_layers method (SLM Lab), 267
bytes, 278–279

C

calc_gaes method (SLM Lab), 145–146
calc_nstep_returns method (SLM Lab),
144, 146

calc_pdparam method (SLM Lab), 39
calc_policy_loss method (SLM Lab),
39–40, 147, 179–180

calc_q_loss method (SLM Lab), 70–72,
91, 112–115

calc_ret_advs method (SLM Lab), 39–40
calc_val_loss method (SLM Lab), 147
cardinality, 291

vs. dimension, 316, 320–321
cars

controls of, 316
self-driving, 300, 317, 345

CartPole, 2, 4–5, 46
choosing networks for, 260
controls in, 317
environments for, 346–347
fully observable, 256
metainformation in, 304–305
rewards in, 329
spec file for, 44–46, 74–76, 243–246
states in, 293, 298, 300
testing algorithms on, 226
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CartPole-v0 environment (OpenAI
Gym), 33–36, 346–347

central processing unit (CPU), 274,
283–284
logical vs. physical, 274
overclocked, 275

channel ordering conventions, 222, 230
checkers, 79
chess, 13–15

building model for, 334
choosing next move in, 54
coordinates in, 303, 320
described by a set of rules, 333
fully observable, 296
scores in, 329–330
symmetry of, 322
winning probability in, 54

Chinese characters, 305
Clavera, Ignasi, 340
cleanup, 306
cliff, in an environment, 85
clipped surrogate objective, 175–179,
190–192

CNN, see convolutional neural network
CNN-RNN networks, 256
Codacy, 216
Code Climate, 216
code quality, 215–216
code reviews, 216
code style guide, 215–216
colorblindness, 303
combined algorithms, 15
Combined Experience Replay (CER),
239–241

Command & Conquer, 329
computation graphs, 223
computer games, 325
computer graphics, 277
computer vision, 17, 278
computers, 273–278

hardware requirements for, 285
memory of, 275–278

transferring data in, 283–284
conservative policy iteration, 170
Constrained Policy Optimization (CPO),
173

continuous action space, 205–206
discretizing, 321, 323

continuous variables, in SLM Lab, 243
control knobs, 316, 321
control loop, 2–3
controls, see actions
ConvNet class (SLM Lab), 124, 263,
266–268

convolution, 253
convolutional neural network (CNN),
253–255
adding MLPs on top of, 254
choosing, 260
image recognition and, 304
memory consumption in, 283
stateless, 260
testing, 213–215
using GPUs for, 277

credit assignment, 163
critics, 135–141
cropping, 308
CTRL-Labs, 326
CUDA, 102
curiosity-driven exploration, 341

D

Dance Dance Revolution game, 325
data

complexity and size of, 298
cost of, 334
distribution of, 111, 240
generated, 247
learning probability distribution from,
335–336

normalizing, 307
online vs. offline, 334
preprocessing, 228
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sequential, 255
sufficient available, 334
training, see training data
transferring, 283–284

data cube, 291
data types, 278–282
debug_image (SLM Lab), 221
debugging, 209–210, 218–227

manual, 220, 306
of core components first, 226
of images, 220–221
of reward functions, 331–332
using CartPole environment for,
346

version control and, 216
decay factor (λ), 139, 159
decision-making problems, 1
decorator methods, 223–225
Deep Deterministic Policy Gradients
(DDPG), 15

deep neural networks, 17–18
Deep Q-Networks (DQN), 13, 16,
81–102, 205–206
action selection in, 83–88
Bellman equation for, 58, 82
defined, 89–91
experimenting with, 99–101
for Atari games, 260
implementing in SLM Lab, 91–96,
112–122, 239–241

improving, 103
learning Q-functions in, 82–83
maximizing Q-value in, 58
no need for parallelization in, 204
overestimating expected values in, 108
performance of, 235–237
running on Pong, 210–213
spec file for, 96–98, 128–129
training agents in, 96–99, 130–132
training loop of, 92–93
with target networks, 104–106, 113,
116, 243

Deep Q-Networks (DQN) with PER, 13
spec file for, 126, 129
training agents in, 130–132

deep reinforcement learning (deep RL), 11
hardware requirements for, 273–285
low sample efficiency of, 334
poor generalizability of, 340
timeline of, 343–344

Deepdrive, 295, 345
DeepMind, 17, 102

AlphaGo algorithm, 278
AlphaZero algorithm, 15
DeepMind Lab, 345
DMLab-30 library, 258, 261
PySC2, 345

dense layers, 252
designed state, 292–295, 298, 301

debugging, 306
deterministic problems, 334
Dettmers, Tim, 285
diagnostic variables, 219
digit recognition, 304
dilated convolutions, 254
dimensions

multiple, 320
vs. cardinality, 316, 320–321

discount factor (γ), 8, 26, 47–48, 63–64
discrete action space, 13, 65, 81, 205–206
discrete variables, in SLM Lab, 243
discretization, 302
Distral algorithm, 340
distribution, estimating, 170
DMLab-30 library, 258, 261
Doom, 325
Dota 2 game, 15

choosing networks for, 260
controls in, 321
mastering, 320, 326
scores in, 329–330
states in, 299
training multiple agents for, 340
tuning reward functions for, 328
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Double DQN, 13, 102, 106–109
for Atari games, 260
implementing in SLM Lab, 239–241
spec file for, 129–130
training agents in, 130–132
with target networks, 108–109

Double DQN with PER, 111–112,
124–206
hyperparameters for, 232
implementing in SLM Lab, 239–241
performance of, 235–237
spec file for, 124–127, 130
training agents in, 127, 130–132

double estimation, 106
double-precision numbers (doubles), 280
DoubleDQN class (SLM Lab), 113, 116
downsampling, 292, 297–298, 301, 308
DQN, see Deep Q-Networks
DQN class (SLM Lab), 113, 116
DQNBase class (SLM Lab), 112–113, 116
Dueling DQN

for Atari games, 260
implementing in SLM Lab, 240–241

Dyna-Q algorithm, 15
dynamic programming, 2, 79

E

Ecoffet, Adrien, 341
empirical unit tests, 222
ENIAC computer, 51
entropy, 220

regularization of, 143
environment wrappers, 228
environments, 2–3, 9

boundaries of, 3
choosing networks for, 259–262
continuous, 155–157, 350–351
deterministic, 14, 57
discrete, 346–349
high- vs. low-resolution, 150

learning from, 3
models of, 13–14, 333
observability of, 256–260, 296
real-world, 290
states of, 256–260
stochastic, 14, 57
transition functions for, 11
vector, 204, 231

episode length, 219
episodes, 3
episodic training, 73
EpisodicLifeEnv wrapper (SLM Lab), 230
ε-greedy (epsilon-greedy) action
functions, 66, 69–70

ε-greedy (epsilon-greedy) policy, 53,
85–88
decaying over time, 219

epsilon_greedy function (SLM Lab),
69–72

Expected SARSA, 58
experience replay, 88–89, 102, 195

combined, 239–240
experiences, 3

informative, 109
experiments

data generate by, 247–249
reproducible, 216, 241–242, 339
running, 226, 246–247

exploding loss, 223
exploration, 66, 307

decaying over time, 219
encouraging, 143

exploration-exploitation tradeoff, 53, 66,
83

exponentially weighted average, 138–140,
159

F

factory machines, 317
feature engineering, 298
feature map, 254
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feedback, 1, 327
sparse, 20, 330

Fibonacci sequence, 6
FireResetEnv wrapper (SLM Lab), 230
floating-point numbers (floats), 279
forward pass, 17
frames

concatenating, 310
skipping, 228, 230, 257, 304, 311–313,
321, 331

stacking, 230, 310
true vs. effective rates of, 312

frames-per-action (FPA), 312–313
FrameStack wrapper (SLM Lab), 230
fully connected layers, 252
fully observable environments, 256, 296

given full history, 258–260
given partial history, 257–258, 260

function approximation, 19
linear, 67, 84
nonlinear, 17, 67
with neural networks, 83, 106

G

game engines, 334
games

control design in, 325–326
scores in, 329
with a target state, 13

γ (gamma), see discount factor
Gated Recurrent Unit (GRU), 255
generalization, 84–85, 340
Generalized Advantage Estimation (GAE),
138–140, 145–146, 159–161
debugging, 222
derivation of, 139
hyperparameters for, 233
performance of, 235–237
testing implementation of, 211–212
with PPO, 188–190

get_out_dim method (SLM Lab), 264–265

get_policy_out_dim method (SLM Lab),
264

get_priority method (SLM Lab), 121
Gibson Environments, 345
Git, 216

diff view of, 216–217
SHA, 216, 241–242
workflow of, 216–218

Github, pull requests in, 226–227
global networks, 195–198
Go, 14, 15
Go-Explore algorithm, 341
goal, in reinforcement learning, 1
good old-fashioned AI (GOFAI), 301
Google

Python Style Guide, 216
tensor processing unit (TPU), 278

gradient, 18
ascent of, 167, 170
calculated locally vs. globally, 198
clipping, 223
descent of, 17
of surrogate objective, 171

graphics processing unit (GPU), 277
not for smaller networks, 284

gravitational waves, 290
grayscaling, 292, 298, 301–302, 308
greedy actions, 66
greedy prioritization, 110
grid search, 159–161, 188–190

H

hand manipulation, see robotic hand
HandManipulateBlock environment, 261
hard drive, 276
hash conflicts, 303, 306
Hindsight Experience Replay (HER), 340
Hogwild!, 198–200
Holodeck, 295, 345
HTC Vive, 326
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Huber loss, 126
human visual cortex, 162
Humanoid environment, 260
hyperactivity, 312–313, 321
hyperparameters, 44

debugging, 226
search syntax for, 243–246
searching in parallel, 275
specified in a spec file, 241
testing, 246
tuning, 231–237

hypersensitivity, 313

I

images
channel ordering conventions of, 222,
230

cropping, 308
downsampling, 282, 292, 297–298,
301, 308

grayscaling, 282, 292, 298, 301–302,
308

high-resolution, 298
learning from, 253–255
mapping features of, 254
normalization of, 309
preprocessing, 220, 230, 308–310
raw, 220
recognition digits from, 304
rendering, 220
strong spatial correlation of, 252–253

IMPALA algorithm, 261
importance sampling, 111–112, 170, 195
individual losses, checking, 225
information blindness, 305–306
information loss, 301–303
information-processing systems, 290
__init__ method (SLM Lab), 42, 93–94,
120

init_nets method (SLM Lab), 112–113,
116, 265

integers, 278
internal state, 256–260
iterative Linear Quadratic Regulators
(iLQR), 14

J

Jurassic Park 1994 Sega game, 325

K

Kaiser, Lukasz., 340
kernels, convolution, 253–254
KL penalty

adaptive, 175
controlling size of, 174

KL-penalized surrogate objective, 174–177
Kullback-Leibler (KL) divergence, 172,
220, 336–337

L

L2 distance, 83
lagged network, 198
λ (lambda), see decay factor
Leap Motion sensor, 326
learnable functions, 9
learned reinforcing signal, 135
learning rate, 219
LeCun, Yann, 17
Levine, Sergey, 67, 111, 168
LIGO, 290
Lin, Long-Ji, 89, 102
linear function approximation, 67, 79
linearized control problems, 13
linters, 216
LIT AI Lab, 331
local smoothness, 85
Long Short-Term Memory (LSTM), 255
Los Alamos research lab, 30, 51
loss, 331
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loss functions, 17
debugging, 222, 225

Lovelace, Ada, 273
LRSchedulerClass class (PyTorch), 270
LunarLander

choosing networks for, 260
comparing algorithms on, 235
environments for, 347–348
fully observable, 256
rewards in, 329

LunarLander-v2 environment (OpenAI
Gym), 347–348

M

machine translation, 17
main method (PyTorch), 36
MANIAC computer, 51
MarioKart, 311–312
Markov decision process (MDP), 2, 6–9

control loop of, 8–9
vs. POMDP, 256–259

Markov property, 6, 256, 333
matrices, 291, 316

operations on, 277
Matrix, The, 298
MaxAndSkipEnv wrapper (SLM Lab), 230
maximum expected value, 107
MB-MPO algorithm, 340
MDP, see Markov decision process
mean squared error (MSE), 56
mean, computing, 307
memory

debugging, 222
initializing, 120
off-policy, 93
on-policy, 41–44
resetting, 120
types of, 275–278

Memory class (SLM Lab), 41–44, 72–73,
112, 117, 240

memory stick, 276

meta control, 320
metainformation loss, 303–306
metalearning, 340
Metropolis, Nicholas, 51
Microsoft Malmö, 345
Minecraft, 345
MLPNet class (SLM Lab), 263, 266–267
Mnih, Volodymyr, 81, 104, 163, 197, 199
MNIST dataset, 304
mobile games, 326
model, see transition functions
Model Predictive Control (MPC), 14
model-based algorithms, 11–14
monotonic improvement, 168, 172–173
Monte Carlo sampling, 14, 30–31, 51,
141, 337
disadvantages of, 32, 57
producing target values with, 56

Monte Carlo Tree Search (MCTS), 14
Moore, Andrew, 347
MountainCar-v0 environment (OpenAI
Gym), 347

moving average, 247–249
moving target, 104–106
MuJoCo, 295, 345
multiagent problems, 340
multilayer perceptron (MLP), 252–253

choosing, 260
on top of CNN, 254
stateless, 260

multitask learning, 340
multitrial graphs, 249
musculoskeletal RL environment, 345
musical instruments, 324

N

n-step returns, 137–138
advantage estimation with, 144–145
with A2C
on BipedalWalker, 155–157
on Breakout, 158–159
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on Pong, 150
with A3C, 203

natural language processing (NLP), 17,
278, 291, 301, 306

Natural Policy Gradient (NPG), 173
NEC games, 345
Net API (SLM Lab), 262–271
Net class (SLM Lab), 240–241, 263–269
networks

CNN, see convolutional neural
network

deep neural, 17–18
DQN, see Deep Q-Networks
lagged, 198
locked vs. lock-free, 198–199
policy, 26
RNN, see recurrent neural network
target, 104–106, 108–109, 115
training, 108
value, 56
worker vs. global, 195–198

networks parameters, 223
neural interface wristband, 326
neural networks, 17–18

approximating Q-function in, 69
architecture of, 148–150, 222, 251–271
choosing, 259–262
convolutional, 213–215, 253–255, 277,
283

data types in, 281
debugging, 222–225
function approximation with, 83, 106
generalization and, 84–85
hybrid, 255, 260–261
initializing, 113
producing Q-value estimates, 56
pruning, 199
representing Q-functions with, 64
spec file for, 266
stateful vs. stateless, 260
training, 17–18

neuroscience, 162

never fully observable environments, 259,
260

Nintendo, 325, 345
Niranjan, Mahesan, 53
nonblocking parallelization, 197–200
nonlinear function approximation, 17,
67

NoopResetEnv wrapper (SLM Lab), 229
normalization, 307
numpy library

data types in, 278–280
representing states in, 291
temporal preprocessing in, 310
using with PyTorch, 283–284

Nvidia, 277

O

objective, 1, 3, 8, 26
maximizing, 27

objective function
surrogate, 165, 170–171, 173–177
using identity as, 170

observables, see states
observed state, 256–260
Obstacle Tower, 341, 346
Oculus, 326
off-policy algorithms, 16, 81–82, 205

global gradient calculation in, 198
off-policy memory, 93
on-policy algorithms, 16, 32, 68, 144, 205

implementing, 41
limitations of, 88–89
local gradient calculation in, 198
sample-inefficient, 165, 195

one-step lookahead, 56
online algorithms, 72
OnPolicyBatchReplay class (SLM Lab),
73–74, 144

OnPolicyReplay class (SLM Lab), 73, 144
OpenAI, 299

Baselines repository, 228
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Coinrun, 345
HandManipulateBlock, 261
Retro, 345
Roboschool, 345

OpenAI Five, 260, 340
OpenAI Gym, 123, 295, 296, 345–346

environments in
Ant, 260
continuous, 350–351
discrete, 228, 346–349
Humanoid, 260

image channel ordering convention in,
222

wrapper for, 124
optimality, 79
oracle, 19
overfitting, 340

P

parallelization, 195–204
and data transfer, 284
asynchronous, 197–200
synchronous, 196–197
with vectorized environments, 231

parameter space (Θ), 166
parameters

sharing, 149
when to update, 73

parametrization by θ, 17, 26
Parisotto, Emilio, 340
partially observable MDP (POMDP), 7,
256–259

Pathak, Deepak, 341
Pendulum-v0 environment (OpenAI
Gym), 350

Peng, Jing, 143
PER, see Prioritized Experience Replay
performance collapse, 165–168, 170,
173

Π (Pi), see policy space
Pi class (PyTorch), 35

piano
controls of, 316, 324
mastering, 320

Pixar, 277
PlayStation Portable (PSP), 325
point-of-view camera vision, 295
poker, 259, 296
policies, 2, 9, 10, 26

Boltzmann, 85–88
continuous, 37–38
difference in performance of, 168
discrete, 36–37
ε-greedy (epsilon-greedy), 53,
85–88

good vs. bad, 26
implementing with PyTorch, 36–38
learning directly, 68
monotonic improvement of, 172
parametrized, 17, 26, 166

policy gradient, 25, 27
derivation of, 28–30
monitoring, 219

Policy Gradient Theorem, 13
policy loss

calculating, 39–41, 147, 179–180
debugging, 225

policy network, 26
policy space (Π), 166
policy-based algorithms, 11–13, 205
Polyak update, 105, 115
POMDP, see partially observable MDP
Pong, see Atari Pong
PongNoFrameskip-v4 environment
(OpenAI Gym), 348–349

pooling operations, 254
preprocessed state, 292
PreprocessImage wrapper (SLM Lab), 230
preprocessing, 222, 306–313
principle of optimality, 79
priorities

storing, 120
updating, 121
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Prioritized Experience Replay (PER), 13,
102, 109–112

implementing in SLM Lab, 117–122,
239–241

testing, 222

PrioritizedReplay class (SLM Lab), 112,
117, 241

probability distribution, 335–336

problem horizon, 63–64

problem isolation, 219

process utilization rate, 274

processing core, see central processing unit
(CPU)

Proximal Policy Optimization (PPO), 15,
165, 174–192, 205–206

hyperparameters for, 234

implementing in SLM Lab, 179–181,
239–241

on BipedalWalker, 185–188

on Pong, 182–185

performance of, 235–237

spec file for, 182–189

training loop of, 180

vectorized environments for, 231

with clipping, 175–179, 190–192

with GAE, 188–190

with KL penalty, 174, 176, 177

pull requests, 216–217

PyBullet, 334

PySC2 environment, 345

Python Style Guide, 216

PyTorch, 18

constructing Tensor objects in,
283–284

image channel ordering convention in,
222, 230

implementing

policies, 36–38

REINFORCE, 33–38

representing states in, 291

using in SLM Lab, 270–271

Q

Q-functions, 10–11, 54–56
approximating, 81
debugging, 222
learning
in DQN, 82–83
in SARSA, 56
speed of, 63
using TD learning, 56–65

long-term information in, 61
optimal, 81, 83
overestimating values in, 107–108
represented with neural networks, 64
tabular, 59–61, 84
training on target values, 68

Q-learning, 89, 102
Q-loss

in DQN, 91–92, 113–115
in SARSA, 70–71

Qbert, see Atari Qbert
QT-OPT, 13
quasilinear equations, 2

R

R2D2 algorithm, 261
Random Access Memory (RAM),
275–278, 283–284

random estimation, see Monte Carlo
sampling

random numbers, 222
raw state, 291–296, 298, 301
reality checks, 335–337, 339
recurrent neural network (RNN),
255–256, 301
choosing, 260
stateful, 260

RecurrentNet class (SLM Lab), 263, 266
registers, 275
REINFORCE, 12, 16, 25–51, 205–206

defined, 32
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experimenting with, 47–51
implementing
in PyTorch, 33–38
in SLM Lab, 38–46, 239–241

improving, 32–33
learning policies directly in, 68
spec file for, 44–46
training loop of, 40–41

Reinforce class (SLM Lab), 38–41, 144
reinforcement learning (RL), 1–5

generic algorithm for, 9
vs. supervised learning, 19–21

reinforcing signal, 39
relative control, 321
relative entropy, see Kullback-Leibler (KL)
divergence

relative policy performance bound, 172
relative policy performance identity,
168–170

replacement update, 104, 106
Replay class (SLM Lab), 91, 93–96, 117,
241

replay memory, 109, 118, 240, 282–283
reproducibility, 241–242, 339
reset method (SLM Lab), 41–42, 93–94,
120
implementing in memory classes, 72

resident memory, 275–276
resizing, see downsampling
return, 8, 26

expected, measuring, 10
rewards, 2, 5, 327–332

combined, 330
cumulative, 65–66
debugging manually, 220
delay of, 331
dense vs. sparse, 20, 163, 328–330,
341, 347

designing, 327–332
discontinuous, 85
farming or hacking, 331
motivating exploration, 330, 341

neutral, centered at 0, 328
no access to, for agents, 7
redistribution of, 330
role of, 327
scaling, 230
stochastic, 82
total, 219
tuned by humans, 328
used in loss computation, 331

Robertie, Bill, 79
robotic hand, 15, 261

building model for, 334–335
controls for, 317, 319
degrees of freedom in, 315
tuning reward functions for, 328

Rozin, Daniel, 326
RUDDER, 331
Rummery, Gavin Adrian, 53

S

SAC, see Soft Actor-Critic
sample efficiency, 88, 334, 340
sample method (SLM Lab), 40–41, 44, 96

implementing in memory classes, 72
sample_idxs method (SLM Lab), 95–96,
122

sampling
a batch of experiences, 117–118
and momery usage, 95
distribution of, 111, 240
importance, 111–112, 170
random, 30
random-uniformly, 110, 118, 240

Samuel, Arthur, 79
SARSA, 13, 16, 53–79, 205–206

action selection in, 65–67
Bellman equation for, 58, 66, 82
defined, 67
experimenting with, 76–78
implementing in SLM Lab, 69–76,
239–241
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producing target values in, 56
selecting actions in, 58
spec file for, 74–76
training agents in SLM Lab, 76
training loop of, 71–72

SARSA class (SLM Lab), extending, 91
scalar weights, 150
scalars, 291, 316
ScaleRewardEnv wrapper (SLM Lab), 230
Schaul, Tom, 109–111, 130
Schulman, John, 138, 165, 174
scientific workflow, 226
Seaboard, 324
Sega, 325, 345
Sequential class (PyTorch), 267
sessions, 246–247, 275
share_memory method (PyTorch), 284
shooter games, 295
similarity, measuring, 83
SimPLe algorithm, 340
simplification, 225–226
singular combinations, 317
singular controls, 317
SLM Lab, 239–249

Atari games in, 123–127
commands in, 246–247
debugging in, 241
decorator methods in, 223–225
development mode in, 247
distributions in, 243
experiments in, 47–51, 216, 241–242,
247–249

hyperparameters in, 241
image preprocessing in, 220–221,
309–310

implementing
A2C, 143–148, 239–241
A2C with n-step returns, 150–153,
155–159

A2C with GAE, 153–154, 159–161
A3C, 239–241
CER, 239–241

Double DQN, 239–241
DQN, 91–96, 112–122, 239–241
Dueling DQN, 240–241
PER, 117–122, 239–241
PPO, 179–185, 189–192, 239–241
REINFORCE, 38–39, 46, 239–241
SAC, 240–241
SARSA, 69–76, 239–241

logging diagnostic variables in, 219
Net API, 262–271
online standardization in, 307
parallelization in, 196–200
pull requests in, 217–218, 226–227
reproducibility of, 241–242, 339
reusing components in, 241
running, 246–247
sessions in, 246–247
spec file in, 44, 241–246, 266
trials in, 46, 246–249
unit tests in, 210–213
variables in, 243
wrapper module of, 228

Soft Actor-Critic (SAC), 15, 260
implementing in SLM Lab, 240–241

softmax function, 86
software engineering, 209–218
Sony, 325
sparsity assumption, 199
spatial correlation, 252–253
spec file, 44, 241–246, 266
speech recognition, 278
speech synthesis, 17
speed-variance tradeoff, 73
standard deviation, 307
standardization, 307–308
Stanford osim-RL, 345
StarCraft

controls in, 326
mastering, 320
RL environment for, 345
scores in, 329

state information loss, 253
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state preprocessor module, 306
state space, 5, 260

cardinality of, 297–299
vs. action space, 322–323

states, 2, 289–313
completeness of, 296–297
complexity of, 297–301
debugging, 220, 306
definition of, 289–291
designed, 292–295, 298, 301
evaluating, 10
mapping to actions, 3
observed vs. internal, 256–260
preprocessed, 292
ranks of, 291
raw, 291–296, 298, 301
shapes of, 291
value of, 54

stereoscopic (3D) vision, 295
stochastic gradient descent (SGD), 18
stochastic problems, 334
strided convolutions, 254
sum trees, 117–121
supervised learning (SL), 19–21, 162, 335
surrogate objective, 165, 170–171,
173–177
clipped, 175–179, 190–192
constrained, 173, 177
KL-penalized, 174, 177

surrogate policy gradient derivation, 171
surround sound, 295
Sutton, Richard S., 13, 53, 79, 83,
162–163

symmetry, 322–323
synchronous parallelization, 196–197

T

tabular Q-function, 59
target networks, 104–106, 108–109

updating, 115
target state, 13

TD-Gammon, 79
technical debt, 216
Teh, Yee Whye, 340
temporal difference (TD) backup, 61
temporal difference (TD) error, 110

absolute, extracting, 117, 121
calculating, 114

temporal difference (TD) learning, 53,
56–65, 79, 81
nonlinear function approximation and,
67

speeding up, 89
temporal preprocessing, 310–313
tensor processing unit (TPU), 278
TensorFlow, 18, 291
tensors, 291, 316–317, 322
terminal state, 3
Tesauro, Gerald, 17, 79
test coverage, 210
test_atari method (SLM Lab), 211
test_calc_gaes method (SLM Lab),
211–212

Tetris, 322
Θ (Theta), see parameter space
time steps, 2
total reward, 219
tractability, 297
traffic lights, 303
train method (PyTorch), 35–36
train method (SLM Lab), 40–41, 71–72,
91–93, 147–148, 180–181

train_step method (SLM Lab), 269
training

adding random noise to, 339
batch, 73
episodic, 73
exploration and imitation phases of,
341

stabilizing, 104
training data

decorrelating, 81, 195
gathered, 81–82, 195, 206
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generated, 204, 206
value ranges of, 223

training networks, 108
trajectory, 3, 26

predicting, 13
transition functions, 6–7, 11, 333–337

constructing, 334–335
deterministic, 334
evaluating, 335–337
feasibility checks for, 333–334
for training vs. production, 336–339
learned, 335–336
no access to, for agents, 7
stochastic, 82

trials, 246–249
trust region, 173–174
trust region constraint, 173–174
Trust Region Policy Optimization
(TRPO), 15, 173

trust-region method, 141
Tsitsiklis, John N., 79
Turing machine, 273
Turing, Alan, 273
Twin Delayed Deep Deterministic Policy
Gradient (TD3), 260

U

Ulam, Stanislaw, 30, 51
uniform random sampling, 110, 118
unit tests, 210–215

empirical, 222
for action completeness, 318

Unity, 334
ML-Agents, 295, 346

University of Freiburg, 331
University of Pennsylvania, 51
Unreal Engine, 295, 334, 345
update method (SLM Lab), 41–43, 112,
115
implementing in memory classes, 72

update_nets method (SLM Lab), 115

update_priorities method (SLM Lab),
117, 121–122

user interface (UI), 317, 324–326

V

V -functions, 10–11, 54–56
debugging, 222

value functions, 10, 53–56
value loss

calculating, 147
debugging, 225

value network, 56
value ranges, 223
value-based algorithms, 11–13, 53, 81, 205

memory consumption in, 282–283
van Hasselt, Hado, 106
Van Roy, Benjamin, 79
VanillaDQN class (SLM Lab), 91, 112
variables

decaying, 211–212
discrete vs. continuous (SLM Lab), 243

variance, 32
vector environment wrapper, 196
vector environments, 204, 231
vectors, 291, 316
video games, 295

building model for, 335
controls in, 317–318
cost of production of, 334
frame rate of, 304, 311
rewards hacking in, 331

virtual memory, 275–276
virtual reality (VR), 316, 326
VizDoom, 346
von Neumann, John, 51

W

Watkins, Christopher, 102
weight matrix, 253
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Wierstra, Daan, 257

Wii, 325

Williams, Ronald J., 25, 143

word embedding, 291, 301, 306

worker networks, 195–198

wrapper module (SLM Lab), 228

X

Xbox, 325
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Zhang, Shangtong, 340
zip codes, recognizing, 17
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